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Propositions

accompanying the dissertation

METRIC OPTIMIZATION AND MAINSTREAM BIAS MITIGATION IN
RECOMMENDER SYSTEMS

by

Roger Zhe LI

1. Bias roots in data, but its effect depends on the model.
(this thesis)

2. Hyperparameters are abused because of sloppy mathematical modeling.
(this thesis)

3. Equal treatment of users when training does not result in equal quality when
recommending.
(this thesis)

4. Investing in GPUs is less important than investing in data.

5. Deadlines are effective only when set by others.

6. Experience in industry makes better PhD candidates in technical sciences.

7. Globalization helps local diversity but ends up undermining global diversity.

8. PhD candidates will graduate much faster with proper psychological support.

9. Transferable skill courses provided by the graduate school are useless if not
embedded into the academic context.

10. Publishing code next to papers does not help reproducibility as much as it reveals
the mismatch between what research is done and what is reported.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors prof. dr. A. Hanjalic and dr. J. Urbano.
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1.1. RECOMMENDER SYSTEMS
With the increasing number of information channels available to us nowadays, one can
easily realize that more is not always better. The problem of information overload [50]
has never been bigger, and with that also the challenge of filtering out the information
that is useful to us [111, 25]. The same holds for numerous online transactions platforms,
where we are exposed to many options to choose from (e.g., booking a hotel), or many
items to buy. The technology that proved to be helpful in this respect is the one under-
lying the recommender systems [134, 147]. Such systems have been successfully applied
in numerous application scenarios including e-commerce [136, 72], entertainment [45,
16], news communication [141], social media [121], education [58], healthcare [124], and
Internet of Things (IoT) [39]. Their core function is to predict the need of a customer (in
the remainder of this thesis referred to as user) based on a learned preference model, and
to provide a recommendation service that best satisfies that need. Since this service can
be targeted towards recommending various things, from (trans)actions, via information,
to things to buy, in the remainder of this thesis, we will refer to the targets of this service
as items.

Recommender systems by nature involve multiple stakeholders [3]. Next to the pri-
mary goal to provide service that satisfies their users, the commercial and strategic in-
terests of online product sellers and system (platform) providers (e.g., Amazon, Book-
ing.com) need to be satisfied as well. For example, in a system recommending informa-
tion and services in the tourism domain [17, 92], users may seek to book a hotel that
matches their interests, and that is both affordable and convenient, while hotels seek to
maximize their profit margin. At the same time, the platform aims at attracting more ho-
tels as well as satisfying the exposure needs of those who paid the commission [55]. An
ideal recommender system is thus expected to find an operating strategy that is good for
all parties involved, with the challenge that the interests of those parties are not neces-
sarily aligned with each other. Since the users’ satisfaction can be seen as the precondi-
tion of a successfully operating recommender system, is has been the main focus in the
development of these systems.

Users of recommender systems typically have heterogeneous demands, which
makes user satisfaction an ensemble of multiple aspects. Starting with the demand
that the recommended information should be relevant to the users in the first place
(i.e., corresponding to the user’s need in general), other aspects, like diversity [24, 117,
151], novelty [145], and serendipity [54] may also play an important role, as well as self-
actualization [59], which helps the users get new insights into their preferences and de-
velop new preferential patterns for the future.

1.2. ACCURACY-ORIENTED RECOMMENDATION
Since there is no good recommendation without relevant items, one can argue that the
prerequisite of user satisfaction is to get relevant items pushed to the top of the list of
recommended items (also referred to as recommendation list). The ability of a recom-
mender system to achieve this is also referred to as recommendation accuracy. The other
aspects mentioned above, that we refer to as beyond-accuracy demands, can only be
meaningfully addressed if a sufficient relevance base is secured. For example, diversify-
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ing among non-relevant items does not make a user more satisfied with the service, and
self-actualization can only be meaningfully deployed if the users are confident about the
system’s ability to understand their initial needs and the evolution of these needs.

In view of the above, the major scientific and development effort in the field of rec-
ommender systems has been invested in maximizing the recommendation accuracy.
This translates onto the development of machine learning models that exploit previ-
ous interaction history of a user (recommendation via content-based filtering) and other
users (recommendation via collaborative filtering) with items, as well as any other avail-
able side information on users and items to either predict the ratings of a user to new
items, or predict how a user would rank new relevant items. Developing a recommenda-
tion model is based on the following main considerations:

• Collecting abundant data to learn from. In recommender systems based on
collaborative filtering (our focus in this thesis, further denoted by CF), previous
user-item interactions are captured by a user-item matrix (UIM). Such matrix can
contain explicit ratings, or signals implicitly representing user preferences (e.g.,
watching or downloading an item, time spent on analyzing an item). The more
the users are active in such interactions, the more information is captured in the
UIM. In addition to UIM, there are, in general, other information resources to de-
ploy, such as the information on the users (e.g., demographics) and items (e.g.
content features) themselves, and about different use contexts (e.g., user prefer-
ences varying per season), for more comprehensive preference modeling and bet-
ter recommendation-model training [30, 114].

• Defining the recommendation-learning model. Collaborative Filtering, which is
built upon the assumption that users sharing similar preferences in the past will
keep having similar taste in the future, is the most successful and widely-used ap-
proach to build recommender systems. Depending on the type of the available
input data, learning to recommend in the CF case relies in general on three cat-
egories of learning models: Matrix Factorization [60] (based on UIM only), Fac-
torization Machines [99] (based on UIM accompanied by contextual information
on users, items and their interactions), and deep neural networks (DNNs) (abun-
dant information about users, items and their interactions). In particular, com-
pared to the first two categories, DNNs are also capable of capturing higher-order
user-user, user-item and item-item relations, resulting in more advanced learning
models [47, 48].

• Finding a criterion to optimize for. Machine learning algorithms are generally de-
veloped to optimize a criterion defined as a function, that is, to maximize a reward
or minimize a cost function. Since the choice and quality of the criterion plays a
crucial role in achieving the best possible recommendation accuracy, its definition
becomes a key issue in the development of recommender systems. Previous work
adopts a number of accuracy-oriented criteria focusing on different aspects. In the
case of rating prediction, the optimization criteria typically deployed are Mean Ab-
solute Error (MAE) and Root Mean Square Error (RMSE), while ranking prediction
typically deploys Reciprocal Rank (RR) [33], normalized Discounted Cumulative
Gain (nDCG) [51] and Average Precision (AP ) [81].
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Within the above three items, finding a good criterion to optimize for may be the
most tricky one in the attempt to provide a recommendation service leading to high
satisfaction of as many users as possible. While a choice of a widely applied, popular
optimization criterion could, on the first sight, appear as the best educated guess, this
criterion may not tailor to the needs of all users. They may focus on different aspects
and perceive the quality of the produced recommendation list differently. Research on
the choice of the optimization criterion has received extensive attention in the domain of
information retrieval, especially regarding direct optimization for a ranking-based eval-
uation metric. In the recommender systems community, Shi et al. [114, 113] and Liang
et al. [71] showed that the evaluation criteria could be directly selected to optimize the
recommendation model. On the other hand, both empirical study [135] and theoretical
derivation based on the maximum entropy framework [10, 142] show that optimizing
for some criteria would lead to a broader effectiveness of a retrieval system compared to
other criteria. This may indicate that, in order to maximize the score on one evaluation
criterion, it may not be necessary to also optimize for it. Instead, using a more generic
optimization criterion may lead to even better performance, independent of which eval-
uation criterion is deployed. Inspired by this knowledge gap, the first focus of this thesis
is to dive deep into this topic, check the effectiveness of optimizing a recommender sys-
tem in view of different criteria, and find an answer to the first main research question
underlying this thesis:

RQ1: In order to achieve the best possible accuracy for a broad population of users,
should we optimize a recommender system for the criterion we would evaluate it on?

1.3. BIAS IN RECOMMENDATION
It is not always possible to effectively address the challenge of maximizing the satisfac-
tion of a broad user population by only focusing on selecting the appropriate optimiza-
tion criterion. One of the main factors that typically needs to also be taken into account
is the bias [27] in recommendations. While several categories of bias have been dis-
cussed in the literature [12], we focus in this thesis on the bias caused by imbalance in
the user-related input data (further referred to as the user base), or more specifically,
by the underrepresentation of some users or user groups in the data. This bias can be
related to different factors, such as demographics (age [38], gender [69, 26], race [134]),
and can lead to different sorts of effects on recommendation. For example, the imbal-
ance in the user base in terms of gender can lead to serious consequences in some do-
mains in which recommender systems are being deployed to automate processes, like
hiring. Gender-based discrimination in job recruitment has been reported [8] as a con-
sequence of correlating suitability for certain professions to gender when training the
recommender system.

In this thesis, we focus on one typical scenario where imbalance in user base is
caused by different taste and user-item interaction patterns across users. Intuitively,
users who have different tastes from the majority are likely to interact with items that
are less frequently purchased. Together with the users who are in general less active
on the platform, these non-mainstream users generate less information for preference
modeling than the majority or mainstream users. It can be said that, through the domi-
nance of the mainstream users in steering the learning of a recommender system, non-
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mainstream users are more difficult to recommend to, and therefore suffer from the
mainstream bias [15, 150]. Consequently, these users could be discouraged from using
the systems in the first place [65]. This could make customer retention challenging for
online businesses. For other use cases however, such as information and news recom-
mendation, we foresee even more serious consequences. Recommender systems may
become less inclusive with respect to non-mainstream opinions and views (e.g., politi-
cal) and in this way contribute to undesired long-term effects, like intellectual segrega-
tion and societal polarization. In addition, the long-term existence of mainstream bias
will result in a continuous improvement of the performance for the mainstream group
as well as a continuous decrease of the performance for the rest [76], amplifying the ac-
curacy gap between them even further.

From the technical perspective, the bias due to data imbalance emerges from how
recommender systems are typically trained, namely by trying to minimize the recom-
mendation error, or – as an equivalent – to maximize the accuracy averaged over all
users. This averaging biases the learning of the recommendation model towards users
who are overrepresented in the input data because their information is dominant in
steering the learning process. Consequently, the minority group may become (partly)
neglected. In other words, a good overall average accuracy score might be achieved even
if the scores on the minority user group are bad, as long as those obtained for the users
from the majority group are excellent. Since imbalance in input data is realistic in a prac-
tical use case, relying on the optimization of average accuracy is insufficient to develop
effective recommender systems [12]. As an alternative, we need to care more about max-
imizing the accuracy of every user instead of their average. This idea of looking into the
accuracy on the individual level when training a recommender system is closely related
to the concept of risk-sensitive optimization [130] in information retrieval.

Despite being the subject of research over the past years, debiasing recommender
systems remains a challenging research topic [27]. In this thesis, we give our contri-
bution to this effort by searching for an answer to the following second main research
question:

RQ2: How to mitigate the mainstream bias in recommender systems, so that different
users or user groups share a more balanced recommendation accuracy?

1.4. CONTRIBUTIONS OF THIS THESIS
In the following, we explain how the core research questions stated above are addressed
in different chapters of this thesis.

Chapter 2 focuses on the RQ1, namely the impact of choosing different optimization
targets on the average recommendation accuracy. We present an extensive experimen-
tal study conducted on different datasets in both pairwise and listwise learning-to-rank
(LTR) scenarios, to compare the relative merit of popular IR metrics used in the recom-
mendation context, namely RR, AP and nDCG , with Rank-Biased Precision (RBP ) [87]
when used for optimization and assessment of recommender systems in various combi-
nations. For the first three, we follow the practice of loss function formulation available
in literature. For the fourth one, we propose novel loss functions inspired by RBP for
both the pairwise and listwise scenario. Our results confirm that the best performance is
indeed not necessarily achieved when optimizing the same metric being used for evalu-
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ation. In fact, we find that RBP-inspired losses perform at least as well as other metrics
in a consistent way, and offer clear benefits in several cases. Interesting to see is that
RBP-inspired losses, while improving the recommendation performance for all users,
may lead to an individual performance gain that is correlated with the activity level of a
user in interacting with items. The more active the users, the more they benefit. Overall,
our results challenge the assumption behind the current research practice of optimiz-
ing and evaluating the same metric, and point to RBP-based optimization instead as a
promising alternative when learning to rank in the recommendation context.

Upon answering the RQ1 related to average recommendation accuracy, we focus in
chapters 3 and 4 on the RQ2 related to the accuracy at the individual user level and
propose ideas for mitigating the mainstream bias. In Chapter 3, we propose NAECF, a
conceptually simple but effective idea to introduce extra information to learn from and
to maintain the intrinsic features of all users in the recommendation model. The idea
consists of adding an autoencoder (AE) layer when learning user and item representa-
tions with text-based Convolutional Neural Networks. The AEs, one for the users and
one for the items, serve as adversaries to the process of minimizing the rating prediction
error when learning how to recommend. They enforce that the unique properties of all
users and items are sufficiently well incorporated and preserved in the learned represen-
tations. These representations, extracted as the bottlenecks of the corresponding AEs,
are expected to be less biased towards mainstream users, and to provide more balanced
recommendation utility across all users. Our experimental results confirm that non-
mainstream users tend to receive better recommendations under our proposed model,
while the recommendation quality for mainstream users is maintained. Our results em-
phasize the importance of deploying extensive content-based features, such as online
reviews, in order to better represent users and items and thus maximize the de-biasing
effect.

In Chapter 4, we explore a different avenue to mitigate the mainstream bias solely
based on the user-item interactions under the learning-to-rank paradigm. Without ex-
ternal resources, we first investigate whether it is possible to make the importance of
users explicitly related to their mainstreamness during training, and propose a sim-
ple user-weighting approach incorporated into the training process by taking the cost
of potential recommendation errors into account. In this way, mainstreamness deter-
mines the relative importance of a user, and the model is pushed to focus more on non-
mainstream users and improve their recommendation accuracy. We further discuss the
way to define mainstreamness, and find that compared to other measures, recommen-
dation accuracy could be a more direct and powerful proxy to quantify mainstreamness.
Finally, since our work is built upon individual users rather than looking into the whole
user base, data needs for such kind of research might be different. We therefore discuss
how to get reliable results on evaluating recommendation quality from the data perspec-
tive, and provide suggestions regarding the minimum number of interactions per user
when partitioning the datasets.

Chapter 5 summarizes this thesis, draws conclusions, and points out the future re-
search directions rooted in this thesis.
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1.5. HOW TO READ THIS THESIS
The main scientific contribution of this thesis is presented in the technical chapters 2, 3
and 4. Each of these chapters is connected to one publication, which is referenced at
the beginning of the chapter. In this book, we retain the original form of the publica-
tions, possibly with some minor modifications. Each technical chapter represents an
independent work that can be read without necessarily reading previous chapters. As a
consequence, there might be overlapping insights and background information in the
introductory and related work sections of the technical chapters and the notation and
terminology might vary slightly across them.

1.6. LIST OF PUBLICATIONS
The papers published in the course of the research towards this thesis are listed below.
For the papers that are directly connected to this dissertation, the references to the cor-
responding technical chapters are added in parentheses.

• Roger Zhe Li, Julián Urbano, and Alan Hanjalic. “New Insights into Metric Opti-
mization for Ranking-based Recommendation”. In: SIGIR. ACM, 2021, pp. 932–
941 (Chapter 2)

• Roger Zhe Li, Julián Urbano, and Alan Hanjalic. “Leave No User Behind: Towards
Improving the Utility of Recommender Systems for Non-mainstream Users”. In:
WSDM. ACM, 2021, pp. 103–111 (Chapter 3)

• Roger Zhe Li, Julián Urbano, and Alan Hanjalic. “Mitigating Mainstream Bias in
Recommendation via Cost-sensitive Learning”. In: ICTIR. ACM, 2023, pp. 135–142
(Chapter 4)

• Zhe Li. “Towards the next generation of multi-criteria recommender systems”. In:
RecSys. ACM, 2018, pp. 553–557





2
NEW INSIGHTS

INTO METRIC OPTIMIZATION

FOR RANKING-BASED

RECOMMENDATION

This chapter is published as Roger Zhe Li, Julián Urbano, and Alan Hanjalic. “New Insights into Metric Opti-
mization for Ranking-based Recommendation”. In: SIGIR. ACM, 2021, pp. 932–941

9
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2.1. INTRODUCTION
Offline evaluation of ranking-based recommender systems generally relies on effective-
ness metrics from Information Retrieval (IR). These metrics quantify the quality of a
ranked list of items in terms of their relevance [126] and according to the particular eval-
uation criteria they capture. Therefore, it has been seen as an intuitive and logical choice
to learn a ranking model for a recommender system by directly optimizing the metric
used for evaluation [73]. Different ranking approaches have been designed along this
line, aiming at achieving a better recommendation performance [112, 114, 113, 71].

Previous research shows, however, that optimizing the metric used for evaluation is
not necessarily the best approach. Different IR metrics reflect different aspects of re-
trieval performance [6, 53, 105, 85], and do so to different extents. Although no metric
covers all evaluation criteria, there is evidence that some metrics are more informative
than others [10, 142, 9]. This may enable them to, when used for optimization, achieve
the best performance in view of a given evaluation metric other than itself, or even in
view of multiple target evaluation criteria. Empirical results show that the advantage in
informativeness can indeed be transferred into higher effectiveness when these metrics
are used for optimization. Results on web search [35] and text retrieval [142] show that,
when targeting at less informative metrics such as P@10 and RR, optimizing more in-
formative metrics, like AP or nDCG , can perform even better than optimizing the less
informative metrics themselves.

The discussion above points to the possibility to achieve better ranking performance
according to the evaluation criterion captured by metric X if we do not optimize for X ,
but for a more informative metric Y instead. This, however, is more likely to be suc-
cessful when the metrics X an Y are highly correlated. From the perspective of ranking
effectiveness, correlation would typically arise between metrics that share characteris-
tics, such as top-weightedness and localization. According to Moffat [85], correlation
in view of such properties could tell something about the ability of the metrics to re-
veal the same aspects of the system behavior, as opposed to non-correlated metrics that
reveal different aspects of the system behavior. Previous research on text retrieval and
web search has shown high level of correlation among many metrics, such as between
nDCG and AP , RR and AP , or P@k and AP [135, 43, 11]. When targeting at maximizing
one specific evaluation metric, one should therefore search among informative metrics
correlated to the evaluation target to find the most effective optimization objective.

Motivated by the above, in this chapter we revisit the choice of the metric to optimize
in a ranking-based recommendation scenario. Our goal is to provide more insights into
this optimization scenario, broadening the possibilities to benefit from such a metric
choice, compared to what is commonly reported in the literature.

Although several popular metrics like RR, nDCG and AP have been applied to the
task, RBP (Rank-Biased Precision) [87], another important effectiveness metric widely
used in traditional IR tasks, has hardly been applied for training and/or testing recom-
mendation models. Nonetheless, RBP is an informative [85, 88, 7] and flexible metric
that incorporates a simple user model through a persistence parameter. Since varying
the value of the persistence parameter makes RBP correlated with different groups of
metrics [105, 86], RBP has the potential to optimize for different metrics that reflect dif-
ferent evaluation criteria [87, 43].
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Following the spirit of existing metric optimization processes, we propose novel ob-
jective functions inspired by RBP for both the pairwise and listwise learning-to-rank
(LTR) paradigms. In this way, we enable RBP to join the other metrics and serve as both
the learning objective and evaluation target for our investigation. Specifically for the
listwise case, we will show that minimizing the proposed RBP-based objective function
provides an elegant instrument to directly optimize for the ranking positions of the rele-
vant items. Furthermore, the proposed RBP-based listwise loss function is independent
of the persistence parameter p, which makes it possible to conduct RBP-based opti-
mization using a single unified framework, regardless of the target persistence to evalu-
ate.

Empirical results obtained on four real-world datasets point to the following main
insights:

1. The assumption behind the practice to optimize and evaluate ranking-based rec-
ommender systems using the same metric does not necessarily lead to the best
performance.

2. RBP-inspired losses perform at least as well as other metrics in a consistent way,
and offer clear benefits in several cases. This makes RBP a promising alternative
when learning to rank in the recommendation context.

3. RBP-based listwise optimization leads —relative to other metrics— to a signifi-
cantly better ranking performance for active users with more of the relevant inter-
actions, compared to less active users. However, this performance bias does not
come at the cost of reducing utility for inactive users. On the contrary, the ranking
performance improves for all users, only to different degrees.

The remainder of this chapter is organized as follows. In Section 2.2, we position
our contribution in the context of the related previous work. Section 2.3 describes the
technical details of the models we use for a direct optimization of IR metrics. Section 2.4
introduces the design and protocols of our experiments, the results of which we present
and discuss in Section 2.5. Section 2.6 concludes the chapter with pointers to future
work.

2.2. RELATED WORK
Direct optimization of IR metrics is a logical way of building ranking-based recom-
menders. Despite the fact that almost any IR metric can be transformed into an objec-
tive function for optimization, the choice of metric to optimize for maximizing the rank-
ing effectiveness remains non-trivial. Intuitively, choosing to optimize more informative
metrics helps with achieving higher ranking effectiveness. Several studies [10, 142, 9], in-
spired by Shannon [110] and Jaynes [52], have assessed the informativeness of IR metrics
by how well they constrain a maximum entropy distribution over the relevance of ranked
items, in the sense that such distribution accurately estimates the precision-recall curve
or other metric scores for the same items. The results indicate that more complex met-
rics, such as nDCG and AP , are more informative than simpler metrics [135].

One way of achieving optimal ranking with respect to a given metric is to deploy
a pairwise LTR approach. The pairwise LTR paradigm considers relevant-irrelevant
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(positive-negative) item pairs, and aims at maximizing the change in the considered
IR metric caused by a ranking position swap. This idea lays the foundation for a batch
of models, including LambdaRank [19], LambdaMart [21, 49] and LambdaFM [144]. In
particular, LambdaRank is widely used as the underlying model in studies comparing
the optimization of different metrics. LambdaRank-based results in [35, 142] show that
optimizing for informative metrics can lead to good performance, not only when evalu-
ating with the same metric, but also with others. This insight invites to revisit pairwise
learning recommender systems by experimenting with other metrics to optimize, even if
they are not the evaluation target. Similarly, LambdaFM [144] was deployed to assess the
effectiveness with respect to three metrics, namely nDCG , RR and AUC , by optimizing
for nDCG . Optimal performance was achieved with respect to nDCG and RR.

Another way of achieving optimal ranking with respect to a given metric is to deploy a
listwise LTR approach. This approach looks at the entire ranked list for optimization, and
therefore better resembles the concept of direct metric optimization than the (indirect)
pairwise LTR approach. Although straightforward and close in nature to LTR, listwise
methods have to deal with loss functions containing integer ranking positions, which
causes non-smoothness and therefore non-differentiability. A common way to deal with
this problem is to approximate the indicator function by a differentiable alternative.
CofiRank [137] was one of the first works addressing this issue by choosing to minimize
the (1−nDCG) loss with a structured estimation. Another popular method is to use a
smooth function, such as a sigmoid or ReLU [91], to approximate the non-smooth indi-
cator function. This method has been widely applied for optimizing DCG [71], AP [114]
and RR [113]. Rather than optimizing the whole list and taking items at the bottom into
account, Liang et al. [71] proposed Top-N-Rank, which focuses on the top ranked items
and uses a listwise loss with a cutoff to directly optimize for DCG@k.

Despite this rich track record of attempts to learn a ranking by metric optimization,
still insufficient is known about what metric to optimize for in order to obtain the best
performance according to some evaluation metric. Moreover, we believe that the scope
of the metrics to consider could further be expanded to broaden the possibilities for im-
proving ranking effectiveness beyond what has been tried so far. In this work, to conduct
our experimental assessment regarding ranking effectiveness for recommendation, we
follow both the pairwise and listwise LTR approaches, and consider different IR metrics
to optimize and assess ranking performance. Specifically, we add the RBP metric as a
promising candidate to the set of typically deployed RR, AP and nDCG .

2.3. METHODS

In this section we describe the design choices and methodology behind our experimen-
tal approach to acquire new insights into the issues related to generating recommenda-
tions through optimizing IR metrics. We start by introducing our underlying recommen-
dation model with the notation and terminology used throughout the chapter. Then, we
describe the four IR metrics we choose to optimize. Finally, we define the corresponding
objective functions we deploy for optimization in both the pairwise and listwise cases.
In this way, we put special emphasis on the definitions of objective functions for RBP
that we introduce in this chapter.
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2.3.1. RECOMMENDATION MODEL
Recommender systems are meant to recommend "items" (in a general meaning of the
term) to users according to their preferences. For a system with M users and N items,
ground-truth user-item interaction data can be represented by a matrix Y with dimen-
sions M ×N . We consider a binary relevance scenario in this work, which implies that
elements in Y are either yui = 1, indicating a positive interaction (preference) between a
user u and an item i , or yui = 0, indicating either a negative interaction (e.g. a ‘dislike’),
or no interaction between u and i . We refer to items with the positive (negative) interac-
tion as the positive (negative) items. We assume that an arbitrary user u generated mu

positive interactions across all items.
Following the practice from other ranking-based recommendation approaches that

target direct metric optimization [113, 71, 63], in this chapter we choose Matrix Fac-
torization (MF) [101] as the recommendation model. Although collaborative filtering
can be achieved via more advanced methods such as Neural Collaborative Filtering [47],
Collaborative Variational Autoencoders [68] and Graph Neural Networks [48, 28], we still
choose the base Matrix Factorization model because our aim in this chapter is to study
the relative merits of metrics. A more comprehensive experiment to assess generaliz-
ability with other models is left for future work.

The users and items are thus represented by latent factor matrices U M×D and V N×D ,
respectively, where D is the number of latent factors. Using the latent vectors of users
and items, a recommendation model can predict the relevance of items for each user,
and store the scores in the matrix F M×N , with the element fui representing the predicted
relevance of item i to user u. The ranking position Rui corresponding to the relevance
score fui , is an integer ranging from 1 to N , calculated from a pairwise comparison be-
tween the predicted relevance score for item i and all other items:

Rui = 1+
N∑

j=1\i
I
(

fu j > fui
)

, (2.1)

where I(·) denotes the indicator function.

2.3.2. METRICS
As introduced before, we consider four metrics to optimize when training the ranking
mechanism of a recommender system: RR, AP , nDCG and RBP . These metrics, assess-
ing the recommendation performance for user u, can be formulated as follows:

nDCG(u) = DCG(u)

i DCG(u)

=
∑N

i=1 (2yui −1)/log2(Rui +1)∑mu
i=1 1/log2(i +1)

, (2.2)

AP (u) = 1

mu

N∑
i=1

yui

Rui

N∑
j=1

yu j I(Ru j ≤ Rui ) , (2.3)

RR(u) =
N∑

i=1

yui

Rui

N∏
j=1

(
1− yu j I(Ru j < Rui )

)
, (2.4)
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RBP (u; p) = (1−p)
N∑

i=1
yui pRui−1 . (2.5)

According to the RBP formulation originally proposed by Moffat and Zobel [87], p
is a constant parameter ranging from 0 to 1, indicating the degree of persistence of a
user. A high persistence models a user that is willing to explore items deep down the
ranked list. The theoretical upper limit of RBP is 1 when N is infinite, which means 1 is
never reached in practice [105]. To align the range of RBP with other metrics used in the
chapter and in this way make it more comparable, we choose to optimize nRBP instead,
which normalizes the bare RBP by the maximum obtainable with m positive items:

nRBP (u; p) = RBP (u; p)

i RBP (u; p)

=
∑N

i=1 yui pRui−1∑mu
i=1 p i−1

= Z (p,mu)RBP (u; p) , (2.6)

where Z (p,mu) = 1/(1 −pmu ), serving as a normalization factor.

2.3.3. PAIRWISE METRIC OPTIMIZATION
Following the same rationale as in Section 2.3.1, we choose LambdaRank [19], the base
Lambda gradient ranking model, as the pairwise LTR approach. We do not consider the
more complex LambdaMART [21] and LambdaFM [144] to avoid the effect of other fac-
tors such as model ensemble and dynamic negative sampling strategy. Derived from
RankNet [20], LambdaRank aims at obtaining smooth gradients for optimization by cal-
culating the performance gain from swapping the position of documents i and j in
a ranked list. For the λ-optimization of RR, AP and nDCG , we follow the existing
approaches proposed by Donmez, Svore, and Burges [35]. To the best of our knowl-
edge, LambdaRank using RBP has not been formally proposed yet, so we define the
λ-optimization of nRBP following the same principles.

The cost for λ-optimizing an item pair (i , j ) for user u is

Cui j =−Sui j oui j + ln
(
1+eSui j oui j

)
, (2.7)

where Sui j equals +1 or −1 depending on whether the ground truth label yui is larger
than that of yu j , and the term oui j ≡ fui − fu j represents the difference of the predicted
relevance scores. The derivative of the cost with respect to oui j can be formulated as

δCui j

δoui j
=−Sui j +

Sui j eSui j oui j

1+eSui j oui j
=− Sui j

1+eSui j oui j
. (2.8)

In order to reward the positive gains and punish the negative, the λ-gradient for
nRBP can thus be written as

λui j = Sui j

∣∣∣∣∆nRBP (Rui ,Ru j ; p)
δCui j

δoui j

∣∣∣∣ , (2.9)
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where Rui and Ru j are the ranking positions of the item pair, calculated as in Eq. (2.1),
and ∆nRBP (Rui ,Ru j ; p) is the difference between the corresponding nRBP values. This
leads to the RBP-based λ-gradient formulated as

λui j = Sui j

∣∣∣∣∣ Z (p,mu)(1−p)
(
yui pRui−1 − yu j pRu j −1)

1+eSui j oui j

∣∣∣∣∣ . (2.10)

2.3.4. LISTWISE METRIC OPTIMIZATION
Pairwise methods, such as LambdaRank, can easily avoid the issue of non-smoothness
of the optimized ranking metrics. However, and despite their success, eluding this is-
sue in the listwise approach remains an open problem [35]. Successfully addressing this
challenge is important because, in that way, the optimization process becomes more
intuitive, straightforward and natural [74]. As mentioned in Section 2.2, methods have
already been proposed for listwise optimization of RR, AP and nDCG . The underlying
principle is to approximate the non-differentiable indicator function with a smooth al-
ternative. This has been done by deploying either a sigmoid function [114, 113] or the
Rectified Linear Unit (ReLU) [91] as proposed in [71]. To make a consistent comparison,
in this chapter we use a sigmoid for all metrics.

Apart from the difference in the choice of the smoothing function, compared to
TFMAP [114] and CLiMF [113], Top-N-Rank [71] is also distinctive for the way the ap-
proximated ranking position R̃ui is modeled. TFMAP and CLiMF model R̃ui using only
the predicted score fui . In contrast, Top-N-Rank infers the predicted ranking position
by looking at the whole recommendation list. It follows the idea from Eq. (2.1) to get the
ranking position by pairwise comparison, which is closer in nature to sorting.

Taking all the above into account, and following the same rationale as in Sec-
tions 2.3.1 and 2.3.3, we do not contemplate more complex techniques such as Boosting
[127, 40] or multi-agent learning [152], so that metrics are compared on a base recom-
mendation model derived from Top-N-Rank. Specifically, we replace ReLU by a sigmoid
function and approximate the ranking position as

R̃ui = 1+
N∑

j=1\i
σ( fu j − fui ) , (2.11)

where σ(x) = 1/(1+ e−x ). Accordingly, the approximation of the indicator functions in
Eqs. (2.3) and (2.4) can be formulated as

I(Ru j < Rui ) = I( fu j > fui ) ≈σ( fu j − fui ) , (2.12)

N∑
j=1

I(Ru j ≤Rui ) = 1+
N∑

j=1
I(Ru j <Rui ) ≈ 1+

N∑
j=1\i

σ( fu j − fui ) . (2.13)

Top-N-Rank, however, optimizes metrics with a cutoff, so it does not use information
from all items. As indicated by Donmez, Svore, and Burges [35], optimizing nDCG on
the whole item list can lead to significantly better nDCG@10 performance than directly
optimizing nDCG@10. Consequently, we choose to eliminate the cutoff. Since the target
is to maximize the approximated IR metrics, we can consider their additive inverse as
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the loss functions for optimization. Based on the above, the RR, AP and nDCG loss
functions for user u can be formulated as follows:

LnDCG (u) =−
∑N

i=1(2yui −1)/log2(R̃ui +1)∑mu
i=1 1/log2(i +1)

, (2.14)

L AP (u) =− 1

mu

N∑
i=1

yui

R̃ui

(
1+

N∑
j=1\i

yu jσ( fu j − fui )

)
, (2.15)

LRR (u) =−
N∑

i=1

yui

R̃ui

N∏
j=1\i

(
1− yu jσ( fu j − fui )

)
. (2.16)

To the best of our knowledge, no method has been proposed yet for RBP-based
listwise optimization. Inspired by the loss definitions for the other metrics, and again
choosing to work with the normalized formulation of nRBP , we introduce the method
for defining the corresponding loss function as follows.

By virtue of the monotonicity of the logarithm function, the recommendation model
that optimizes nRBP (u; p) also optimizes

ln

(
nRBP (u; p)

mu

)
= ln

(
RBP (u; p)

mu

)
− ln

(
i RBP (u; p)

)
. (2.17)

Note that the second term is a constant for each user, so we focus on the first term. Based
on Jensen’s inequality, we can derive a lower bound for the first term as follows:

ln

(
RBP (u; p)

mu

)
= ln(1−p)+ ln

(
1

mu

N∑
i=1

yui p R̃ui−1

)

≥ ln(1−p)+ 1

mu

N∑
i=1

ln
(

yui p R̃ui−1
)

= ln(1−p)+ 1

mu

N∑
i=1

yui (R̃ui −1)ln(p) .

(2.18)

Note that the last equality holds because only yui = 1 contributes to the summation, and
the two remaining logarithmic terms are constant across users.

Because p ∈ (0,1), ln(p) is negative, so maximizing the formulation in Eq. (2.18) be-
comes equivalent to minimizing

∑N
i=1 yui (R̃ui −1). In this way, our RBP-based optimiza-

tion of the ranking treats all relevant items equally and aims at bringing them close to the
top. Although convenient and intuitive, this function does not have common bounds
across users. Therefore, if used alone as the optimization objective, it would make the
training process sensitive to specific users. To (partially) resolve this issue, we come back
to the second term in Eq. (2.17), find its own “lower bound” using Jensen’s inequality and
subtract it from Eq. (2.18) to make the lower bound equal 0 for all users. After dropping
the logarithms, the regulated nRBP loss for user u can now be denoted as

LnRBP (u) =
N∑

i=1
yui (R̃ui −1)−

mu∑
j=1

( j −1) . (2.19)
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In this way, the optimization of nRBP becomes equivalent to an elegant direct op-
timization for the rank position of the relevant items. In view of the fact that the ideal
situation leads to ranking all relevant items at the top, the listwise loss inspired by RBP
shows potential for achieving high ranking effectiveness across different evaluation cri-
teria, making it an informative metric. Furthermore, LnRBP is independent of p, which
makes it possible to conduct RBP-based optimization for different p values in one uni-
fied framework. We note here once again that the regularization in Eq. (2.19) only has
effect on the lower bound of the loss value range. The loss value remains user-sensitive
and can still be arbitrarily large depending on the number of interactions mu . We ana-
lyze the consequences of this in Section 2.5.3.

2.3.5. MODEL LEARNING

In recent years, Adaptive Moment Estimation (Adam) [57] has become one of the
most popular optimizers. Compared to traditional optimizers like Stochastic Gradient
Descent (SGD), its insensitivity to hyper-parameters and faster convergence makes it
widely deployed in machine learning models. Despite these advantages, Adam tends to
suffer from convergence and generalization power [149, 88]. Because in this chapter we
investigate the generalization power of optimizing for different metrics, we still choose
to optimize all our models with SGD.

2.4. EXPERIMENTAL DESIGN
Our goal is to investigate the capabilities of metrics used for optimization when the rec-
ommendation performance is assessed by the same or other metrics. In the following
we explain the selection of datasets and experimental protocol for our experiments.

2.4.1. DATASETS

We selected four widely-used and real-world datasets to experiment with a diverse set
of data. Two of them, CiteULike-a [128] and Epinions [120], contain unary data, while
the other two, Sports & Outdoors and Home & Kitchen, are datasets with graded ratings
from Amazon [93]. Amazon datasets contain integer relevance scores ranging from 1 to
5, so we need to binarize them before they can be used by our LTR methods. We choose
to consider as positive only ratings of 4 and 5, which surely reflect a positive preference,
and every other rating as a negative preference. In addition, and as is common in exper-
imentation with recommenders, the absence of a rating is also taken as a negative inter-
action in all datasets [119]. As shown by Cañamares, Castells, and Moffat [23], although
users with few ratings might exist in commercial services, they are usually filtered out in
offline experiments because the lack of data leads to unreliable performance measure-
ments. To address this issue, we only keep users with at least 25 relevant interactions in
all datasets. The post-processed dataset statistics are shown in Table 2.1.

2.4.2. EXPERIMENTAL PROTOCOL

We use LensKit [37] to randomly split the data into training and test sets , stratifying by
user: we sample 80% of their interactions for training, and leave the rest for testing. As
a result, each user has at least 20 relevant interactions in the training set, and at least 5
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Table 2.1: Dataset statistics.

Dataset #users #items #ratings Density
CiteULike-a 2,465 16,702 157,527 0.383%

Epinions 4,690 32,592 325,154 0.213%
Sports & Outdoors 9,123 119,404 342,311 0.031%
Home & Kitchen 20,531 222,472 795,845 0.017%

in the test set. The evaluation metrics used are RR, AP , nDCG and RBP with p equal
to 0.8, 0.9 and 0.95, so that we can assess recommendation performance under differ-
ent degrees of user persistence. For pairwise optimization using LambdaRank, these six
metrics are in line with six separate loss functions. In the listwise context, however, we
have in total 4 loss functions because the loss for nRBP is independent of p. All mod-
els are trained with a considerable number of epochs (3,000), so that every metric has a
more than reasonable chance to achieve its best performance. For each model, we se-
lect the epoch yielding the best performance on the corresponding evaluation metric.
For the optimization of listwise nRBP , the optimal epoch is chosen for each of the 3
values of p separately, so that we actually have 3 different models.

To reduce random error due to data splitting, we adopt a Monte Carlo cross-
validation approach [36] and create three independent splits per dataset. Shi et al. [114]
indicate that, for IR metrics that only rely on the ranking positions of relevant items,
there is no need to consider all irrelevant items when training. As a result, a negative
sampling process can significantly speed up training without hurting the overall perfor-
mance. Negative sampling is, however, not only beneficial for efficiency. According to
Cañamares and Castells [22], removing some (or even a significant number of) negative
items from both the training and test sets can make the evaluation more informative and
less biased with, balancing popularity and the average relevance of items across users.
Such a strategy can therefore also make the evaluation more effective. We choose to in-
form the negative sampling process by the number of relevant items for each user, so we
sample as many negative items as positives, twice as many, or five times as many; we
denote this as the Negative Sampling Ratio (NSR). These negative items, along with the
80% of positives, form the complete training set for a user. In order to align the distri-
butions of training and test sets, we complete the test set using the same approach: the
remaining 20% of positives, plus 100%, 200% or 500% as many negatives.

In order to maximize the performance of the assessed models, we fine-tuned the
learning rate of SGD and performed a search in the range {0.001, 0.01, 0.1} for Lamb-
daRank and {0.001, 0.01, 0.1, 1, 3, 10} for listwise models. We also conducted a pre-
liminary exploration on the number of latent factors for Matrix Factorization within the
range {8, 16, 32, 64, 128}. The results showed that, although there is a positive correlation
between the ranking effectiveness and the latent space dimensionality, such a correla-
tion has no impact on the relative performance of different losses. Therefore, we do not
analyze the effect of dimensionality in this chapter and simply fix the number of latent
factors at 32 throughout the experiments.

We implement all models in PyTorch [96]. To accelerate the training process, we use
CUDA and CuDNN on an NVIDIA GeForce GTX 1080Ti GPU.



2.5. Results

2

19

2.5. RESULTS
In this section we compare the effectiveness of different metrics when used for opti-
mization in ranking-based recommender. The goal of the analysis is threefold. First, in
Section 2.5.1 we focus on the overall performance of pairwise and listwise models and in-
vestigate whether the practice of optimizing for the metric used in evaluation is justified
in ranking-based recommendation. Then, in Section 2.5.2 we conduct a deeper analysis
on the impact of a metric chosen for optimization on the ranking effectiveness assessed
by different evaluation metrics. In doing so, we especially focus on the performance of
the RBP-inspired objective functions introduced in this chapter. Finally, in Section 2.5.3
we investigate the effect of different metric optimization strategies on the recommen-
dation utility for active and inactive users, with special emphasis on the impact of the
missing upper bound of the RBP-based listwise loss function proposed in Eq. (2.19).

Due to space constraints, we do not report all the results obtained in our experi-
ments. The reported results are, however, fully representative of the complete set of
results that led to the final observations, conclusions and recommendations for future
work.1

2.5.1. SHOULD WE OPTIMIZE THE METRIC USED TO EVALUATE?
Fig. 2.1 shows the performance of all pairwise and listwise learning objectives on all 6
evaluation metrics. While a negative correlation can be observed between recommen-
dation effectiveness and the NSR, this does not necessarily mean that the models trained
with more irrelevant items are worse. Because the training and test sets follow the same
distribution, more negative items in the test set just make the relevance prediction task
harder.

Several observations can be made from this figure. First, in both pairwise and listwise
models, optimizing RR consistently yields significantly worse performance, even when
the evaluation target is also RR. This observation supports previous findings that opti-
mizing other metrics can achieve higher RR test scores than optimizing RR itself [35].
The explanation for this is two-fold. First, RR does not exploit all the information in the
training data because it only focuses on the first relevant item, resulting in suboptimal
models compared to optimizing other metrics. Second, as indicated by Webber et al.
[135], RR is not well correlated with other informative metrics, such as nDCG and AP ,
which may optimize for RR but not the other way around. Because the performance
gap of optimizing RR is stable and significant, we do not include it in further analysis
and instead focus on the other 5 learning objectives (metric_optim), but still with all 6
evaluation metrics.

Second, listwise and pairwise methods behave differently when optimizing nRBP .
In the pairwise context, the recommendation performance obtained by optimizing dif-
ferent nRBP losses is varied. Specifically, we find that optimizing with p = 0.95 outper-
forms optimizing with p = 0.8 or p = 0.9. This finding is consistent with prior research
showing that RBP.95 is better correlated with informative metrics than with other dif-
ferent p’s [105, 86]. Such an inner-RBP advantage can also be explained by the nature

1All data, code and full results are available at
https://github.com/roger-zhe-li/sigir21-newinsights.

https://github.com/roger-zhe-li/sigir21-newinsights
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Figure 2.1: Overall performance of pairwise and listwise methods. metric_optim denotes the metric-based
losses for optimization, and a panel row denotes an evaluation metric. All results are averaged over the 3 data
splits. Note that y-axes vary per row.
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of the metric. Because p models user persistence, a high value takes relevant items ly-
ing deeper in the list into account during training. This allows the model to account
for more information, which benefits its performance. Although higher p also brings
a slower weight decay, which does not favor prediction for the top of a recommenda-
tion list, this effect is insignificant for systems with binary relevance, where we do not
need to put highly relevant items ahead of moderately relevant ones. In the listwise con-
text, however, the results obtained when optimizing for nRBP with different p values
are in general homogeneous. This shows that our p-independent nRBP loss provides a
generic method to optimize for multiple RBP metrics. In this way, the concern of choos-
ing a specific p for optimization is addressed in a simple and effective way.

Last but not least, in both listwise and pairwise paradigms optimizing nDCG , AP and
RBP-inspired losses achieves similar stable performance across different datasets, NSRs
and evaluation targets. Such an observation, combined with the finding that optimizing
RR leads to the worst ranking effectiveness when evaluating with RR, suggests that the
practice to optimize and evaluate recommender systems with the same metric is not
necessarily the best. A more detailed analysis on the relative advantages of individual
metrics is given in the next section.
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Figure 2.2: The frequency for each metric-based loss (metric_optim) of achieving the best performance on
specific evaluation metrics (metric_eval), in all 3 data splits and all 3 NSR’s.

2.5.2. IS RBP MORE EFFECTIVE AS OPTIMIZATION METRIC THAN OTH-
ERS?

Fig. 2.2 shows how often each metric achieved the best test performance, across evalu-
ation metrics, when used for optimization. Since frequencies are counted from 3 splits
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and 3 NSR’s for each evaluation metric, the frequency is expected to have a row-wise
sum of 9. Of course, it is possible for different losses to tie and obtain the best result for a
certain case, so the row-wise sum is actually larger than 9 for several evaluation metrics,
especially in the listwise case. Overall, we find that in both pairwise and listwise sce-
narios most of the best performance cases are achieved when optimizing RBP-inspired
metrics. More importantly, in LambdaRank we even find that optimizing nRBP.95 shows
a significant and clear advantage over all the other metrics.
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Figure 2.3: Estimated Marginal Mean (standardized) score for each metric_optim. Each panel represents an
evaluation metric. Small bounded segments represent 95% confidence intervals. Long unbounded segments
are prediction intervals.

Even though RBP-based losses seem to achieve the best performance, Fig. 2.1 sug-
gests that differences could be too small or indistinguishable from random error, so next
we proceed to a statistical analysis. First, we standardize performance scores within
dataset-NSR combination to avoid homoscedasticity, because Fig. 2.1 evidences very
different scales per dataset and NSR. This way, scores are comparable across metrics.
We then fit a linear model on the standardized scores, using as independent variables
the loss function, dataset and NSR, as well as their 2-factor interactions with loss func-
tion.2 To properly compare the effect of each loss function while controlling for the other
factors, we compute their Estimated Marginal Means (EMM) [108], as well as 95% confi-

2The inclusion of dataset and NSR main effects does not inform the model in any way because of the standard-
ization, but we keep them to follow the hierarchy principle of linear models.
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dence and prediction intervals, that is, what to expect on average over multiple training
runs, and what to expect of an individual training run.

Fig. 2.3 presents the EMM standardized performance scores of all metric-based
losses except RR. These overall results show that, in LambdaRank, optimizing nRBP.95
achieves the best performance across all 6 evaluation metrics and shows a consistent
and statistically significant advantage over the other losses. In listwise models, our RBP-
inspired loss also achieves a statistically significant advantage over the others on all 6
evaluation metrics. These observations demonstrate the power of optimizing nRBP .

To further explore the stability of such performance gain across different datasets, we
show in Fig. 2.4 the EMM scores, but faceted by dataset. Although the general superiority
of RBP-based learning objectives is statistically significant on average, the overlapping
prediction intervals indicate that it is not always necessarily the best option. In Lamb-
daRank, the nRBP.95 loss performs best in all datasets except Epinions, where it is not
statistically different from the nDCG and AP losses. Interestingly, we see that optimizing
nRBP.8 lies in the opposite extreme and consistently achieves the worst performance.
Even its prediction interval seldom overlaps with that of optimizing nRBP.9 or nRBP.95.
In listwise recommendation, the RBP-inspired loss shows significant superiority over
AP in a nearly consistent fashion, except for some notable cases like evaluating RR in
the Epinions dataset or RBP.95 in the Home & Kitchen dataset. It also performs signifi-
cantly better than nDCG in general, but both losses yield otherwise similar performance
in several cases, especially in the Epinions and Sports & Outdoors datasets. On the Ci-
teULike dataset, however, the advantage of RBP-based models is very clear and there is
even no overlap between the prediction intervals, except when evaluating RR.

All in all, we draw the conclusion that optimizing nRBP.95 can help achieve recom-
mendation effectiveness at least not worse than when optimizing other informative met-
rics, such as nDCG and AP . Furthermore, the performance of optimizing nRBP on dif-
ferent metrics is homogeneous, which means that our RBP-inspired listwise loss is able
to help maximize RBP scores regardless of p. Moreover, according to the unreported re-
sults from our training logs, this homogeneity is not only achieved in evaluation scores,
but also in the convergence process. When training with listwise RBP-inspired losses,
we manage to get the optimal RBP values on all three p values at a similar stage. In some
models, the epochs to get all three optimal RBP scores are even the same, which means
that the epoch with the optimal RBP.95 score also provides good scores on RBP.8 and
RBP.9, and that we have the possibility to validate on only one p value to satisfy different
needs expressed by different values of p. Hence, our listwise nRBP optimization can
serve as a generic choice for rank-based recommendation. We can explain this by the
nature of our listwise nRBP loss. With our transformation in Eq. (2.19), we do not assign
different weights to items ranked at different positions. Instead, we aim at bringing all
relevant items to the top of the list, and treat all positive items as equally important. This
provides the model with more abundant information to train.

The observations above point to the conclusion that, although the superiority
brought by optimizing for RBP-based losses is not always significant and not fully con-
sistent across datasets, we are still provided with a promising alternative metric to opti-
mize in rank-based recommender systems. By optimizing RBP-based losses, we are able
to get at least comparable performance as optimizing nDCG and AP , with very clear
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Figure 2.4: Estimated Marginal Mean (standardized) score for each metric_optim, by evaluation metric (rows)
and dataset (columns). Small bounded segments represent 95% confidence intervals. Long unbounded seg-
ments are prediction intervals.
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Figure 2.5: Score difference between optimizing nRBP.95 and AP or nDCG (higher is better for nRBP.95),
when NSR=500%, as a function of the number of positive items for the user. Curves show spline-smoothed fits
with 95% confidence intervals.
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benefits in many cases. In the following section, we will conduct an analysis seeking the
source of performance advantage of RBP-based listwise losses.

2.5.3. WHEN TO DEPLOY RBP FOR RECOMMENDATION?

The analysis in the previous section indicated that optimizing nRBP can provide rec-
ommendation performance comparable to that of nDCG and AP or even better. We
may trace back the source of such effectiveness and identify the best way to deploy it if
we analyze the properties of the RBP-based objective functions in the pairwise and list-
wise context. Similarly to the nDCG and AP losses, the pairwise nRBP loss in Eq. (2.10)
guarantees strict bounds for the swap loss for each user, so that users are treated equally
regardless of how many interactions they have. Contrary to this, the loss used for list-
wise nRBP in Eq. (2.19) is directly related to the predicted rank positions, which makes
it have a different upper bound across users. Active users with more positive interactions
are more likely to have larger loss values during training, especially for large N SR. Such
an imbalance may benefit active users, but perhaps at the cost of sacrificing the utility
for inactive users. We investigated whether this effect indeed occurs in our experiments.

Fig. 2.5 shows the performance difference between the nRBP.95 loss and AP or
nDCG loss for every user, as a function of the number of positive items they contain in
the training set. We deliberately choose to compare nRBP.95 because it achieves overall
best results, and AP and nDCG for being the two next best losses, also with a properly
bounded loss function. In addition, we only show results here for N SR = 500%, as it is ex-
pected to amplify the aforementioned bias, if any. We find that the RBP-inspired losses
indeed perform differently under pairwise and listwise environments. In LambdaRank,
where the nRBP.95 loss is also strictly bounded, we do not observe a clearly positive or
negative correlation between the performance difference and the user activity level. In
several cases, for active users with more items available for training, optimizing nDCG
and AP is even more advantageous than optimizing nRBP.95. This means that active
users did not benefit from the fully bounded nRBP loss, and there is no effectiveness
imbalance between active and inactive users.

However, this observation does not hold in listwise models, as evidenced by the clear
and significant positive correlation in all datasets except Epinions: active users do in-
deed benefit the most. More interestingly, this benefit for active users is not in detriment
of the inactive users. As we can see in the figure, compared to optimizing nDCG and
AP , optimizing the listwise nRBP.95 loss benefits all users on the CiteULike dataset, and
achieves similar effectiveness for inactive users on the other 3 datasets. This superior-
ity confirms our assumption that active users, whose listwise nRBP loss magnitudes are
larger than for other users, can indeed get more effective recommendations due to a
training process biased towards their utility, without negatively influencing the less ac-
tive users. Such an insight is potentially interesting for some business applications of
recommender systems, where it is beneficial to maximally serve loyal users without los-
ing the stickiness of less active users.
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2.6. CONCLUSION
Direct optimization of IR metrics has long been a hotspot in the research on ranking-
based recommender systems. The intuitive and logical common practice is to build
models by optimizing the same metric that will be used for evaluation. In this chap-
ter, we reported the results of an extensive experimental study aiming at acquiring new
insights about the strength of the foundations behind this practice and at learning more
about what metric to optimize in order to maximize recommendation effectiveness. For
this purpose, we expanded the scope of metrics usually deployed to define the objective
functions for LTR approaches and focused on RBP as a promising alternative to other
metrics such as AP , nDCG and RR.

Experimental evidence on both pairwise and listwise frameworks show that optimiz-
ing AP , nDCG and nRBP generally outperforms optimizing RR, and that optimizing
nRBP is generally no less effective than optimizing nDCG or AP . These findings chal-
lenge the practice to optimize and evaluate ranking-based recommender systems using
the same metric. Furthermore, the new generic listwise RBP-inspired loss proposed
in this chapter was shown to be able to achieve the optimal performance for different
values of the user persistence parameter, without the need to specify this parameter ex-
plicitly. Optimizing this loss even significantly outperformed the direct optimization of
nDCG and AP in some cases, showing the high potential of RBP for developing ranking-
based recommender systems. Finally, and due to the lack of a common upper bound
across users, our proposed listwise nRBP loss benefits active users more than nDCG
and AP , but without hurting the effectiveness for inactive users. This makes optimiza-
tion of the proposed RBP-based listwise loss interesting for some business application
cases favoring loyal users.

For future work, we will experiment with more advanced recommendation models
and larger datasets to study the extent to which our conclusions and insights generalize
to other settings. We will also analyze to what extent the exclusion of very inactive users
affects our conclusions, especially with regards to the bounds of nRBP losses. Further-
more, it would be interesting to theoretically investigate the source of the effectiveness
of RBP even deeper. Our results show that it is a promising metric to optimize when
learning to rank for recommendation, pointing to the possibility of finding even more IR
metrics that could show similar potential.
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3. Leave No User Behind: Towards Improving the Utility

of Recommender Systems for Non-mainstream Users

3.1. INTRODUCTION
Collaborative Filtering (CF) models are the most investigated and deployed models in
the domain of recommender systems [4]. These models assume that users who had sim-
ilar preferences on items of a specific kind (e.g. books, movies) in the past may continue
having similar preferences on other items of the same kind. The preferences of the users
are expressed through their explicit (e.g. ratings) or implicit (e.g. clicks, downloads) in-
teractions with items.

Among the CF models, Matrix Factorization (MF) [60], which tries to find a represen-
tation of both users and items in the same latent factor space, has long been the most
successful and most widely deployed CF model. More recently, generalized factoriza-
tion models, such as factorization machines [99], have been proposed, exploiting input
beyond user-item interactions to learn the latent space. Exploiting more input, such
as contextual features and other types of useful side information about users and items,
was shown to further improve the recommendation quality. The potential for further im-
provement, for instance by relying on more abundant input data including audio, visual
and textual item descriptions or social network dynamics, came only when deep neural
networks (DNN) [74] entered the recommendation domain and enabled more sophisti-
cated user/item representation space learning. In particular, textual data acquired from
websites have been extensively exploited for this purpose, allowing users to leave re-
view comments for items along with ratings. For this type of data, DNN-based user/item
modeling utilizing NLP techniques has been shown to achieve significantly higher rec-
ommendation performance [146, 31, 122, 75] as well as provide convincing explanations
[26, 32, 131, 95].

While these developments have greatly contributed to the improvement of the over-
all recommendation accuracy, one problem has remained largely unsolved, namely the
presence of various types of biases in the learned recommendation models. In this chap-
ter we focus on the bias towards the so-called mainstream users. A mainstream user
often prefers items liked by many people and also reacts negatively to items widely dis-
liked by others [106]. Contrary to this, non-mainstream users typically show interest
on rarely-visited items or have an opposite attitude towards widely accepted or rejected
items. Such a “grey sheep” property [148] makes these users different from others, mak-
ing it difficult for a CF algorithm to identify similar peers. This leads to recommenda-
tions of a generally lower quality, because recommendations for these users are based on
neighbors with insufficiently similar preferences. Furthermore, non-mainstream users
are typically a minority and the numerous consistent user-item interactions within the
cluster of mainstream users are likely to be dominant in steering the process of learn-
ing the user/item representation space. Because of this, the non-mainstream users and
their preferred (“outlier”) items become underrepresented in such a space, leading to
inequality of the recommendation performance across the user population. This is the
mainstream bias, the tendency to provide better recommendations to the mainstream
users. Such bias could make non-mainstream users draw insufficient utility from a rec-
ommender system and could discourage them from using it anymore. This could lead
to online businesses starting to lose customers. For the information and news recom-
mender systems, however, we foresee even more serious consequences. Recommender
systems may namely become less inclusive with respect to non-mainstream opinions
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and (e.g. political) views and in this way contribute to undesired long-term effects, like
intellectual segregation and societal polarization.

In this chapter we build on the success of DNNs for developing recommendation
models and propose a simple but effective solution towards neutralizing the main-
stream bias. With our new recommendation model, referred to as Neural AutoEncoder
Collaborative Filtering (NAECF), we introduce adversarial conditions to the process of
learning the recommendation algorithm, which in this specific case is realized as the
minimization of the rating prediction error. The adversarial conditions are imposed by
autoencoders [13], a deep learning architecture widely used for recommendation [109,
94, 77], added to a state-of-the-art DNN-based recommendation framework. They en-
force that the user and item representations are learned in a way such that they preserve
their specific and unique properties before being fed to the rating predictor.

Since this preservation is achieved for all users, mainstream or not, the autoencoders
prevent that the learned representations are biased towards the users with a main-
stream taste. The results of experiments conducted on different domains and scales
of the real-world datasets from Amazon [80] show that the representations learned in
this way indeed help to de-bias the produced recommendations (predicted ratings in
this case). Compared to the case without deploying the adversarial conditions, our
proposed method produces significantly better recommendations for non-mainstream
users while largely maintaining the recommendation quality for mainstream users. We
clearly show that this performance improvement largely stems from adding adversar-
ial conditions to the process of user and item representation learning. In addition, our
experiments demonstrate the benefit the non-mainstream users draw from the applica-
tion of content-based features such as online reviews, further highlighting their value for
achieving high recommendation quality across the user community.

The proposed NAECF approach is, to the best of our knowledge, the first to enforce
preserving the unique user and item properties as the adversary to the process of learn-
ing how to recommend. This allows us to effectively address the mainstream bias in
recommender systems, which has not been extensively studied this far.

A recommender system can be designed to either predict ratings or rank items. De-
spite the latter is picking up momentum in the field, we still choose in this chapter to
follow the rating prediction paradigm. The main reason for this lies in the core of our
contribution, which is to investigate how a state-of-the-art recommendation framework
may be extended in order to de-bias the process of generating recommendations. Since
the framework we build upon was evaluated in terms of rating prediction, we follow this
same paradigm in this chapter. Nonetheless, the user-item representation space gen-
erated by the autoencoders can serve to predict both ranking and ratings, so we do not
consider our choice to limit the broad application of our proposal to the recommenda-
tion practice.

The results of this chapter can be fully reproduced with data and code available on-
line1.

1https://github.com/roger-zhe-li/wsdm21-mainstream

https://github.com/roger-zhe-li/wsdm21-mainstream
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3.2. RELATED WORK
Our work relates mainly to two topics: biases in recommender systems and review-based
user/item modeling.

3.2.1. BIASES IN RECOMMENDER SYSTEMS
Potential biases in the training data have already been recognized in early work on ma-
trix factorization for recommendation. Koren, Bell, and Volinsky [60] introduced a cor-
rection in the dot-product rating prediction formula to incorporate rating biases across
users, that is, how the rating scale is interpreted by different users. Another bias related
to ratings is the anchoring bias; it emerges from the influence of previous recommen-
dations to a user on that user’s future ratings. Adomavicius et al. [5] explored two ap-
proaches to neutralize this bias. The first approach involves computational post-hoc
adjustments of the ratings that are known to be biased. The second approach involves
a user interface by which the system tries to prevent this bias during rating. A different
sort of bias is the popularity bias, due to which popular items may be recommended
more frequently than other, less popular items (e.g., long-tail). Abdollahpouri, Burke,
and Mobasher [1] proposed an add-on to a general collaborative filtering algorithm by
which a trade-off between accuracy and long-tail coverage can be tuned. More recently,
the discussion about biases has increasingly been conducted in the context of resolv-
ing ethical and societal issues when deploying recommender systems in practice, such
as polarization [98], fairness [82] and discrimination [78], giving a further boost to the
research on this topic.

In this chapter we focus on the aforementioned mainstream bias. While being con-
ceptually close to popularity bias [2, 62], there is an important difference between the
two. Popularity bias could lead to a separation between more and less popular items,
similar to the separation of items into those being interesting to mainstream and non-
mainstream users. However, popularity bias is not informative regarding the way a rec-
ommender system serves different groups of users. According to Steck [118], users may
tend to provide feedback on popular items simply by following (being influenced by)
other users. In this way, their preferences are likely to be unconsciously driven away
from their real interest. By focusing on mainstreamness, we explicitly look at the bias in
the user population.

Kowald, Schedl, and Lex [62] demonstrated that non-mainstream music listeners are
likely to receive the worst recommendations. Schedl and Bauer [107] investigated music
preferences across age groups. They observed that, although only taking a small propor-
tion of users, kids and adolescents have significantly different preferences from other
age groups in terms of music genres, and the recommendation performance on these
two groups is also distinctive among all users. To repair the unfairness caused by the
mainstream bias, several recent works aim at identifying non-mainstream music listen-
ers and using the power of cultural aspects [106, 89] and human memories [61] to better
profile these underrepresented users in recommender systems. Despite the reported
progress, existing methods to alleviate the mainstream bias usually rely on their specific
definitions of mainstreamness, which may limit the findings. Furthermore, these meth-
ods tend to split users into different mainstreamness groups for individual training. This
setting may cause the loss of recommendation accuracy due to not exploiting the cross-
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group collaborative information. The approach proposed in this chapter aims at neu-
tralizing the mainstream bias in a more generic fashion and without divisions within the
user population.

3.2.2. REVIEW-BASED USER/ITEM MODELING

Supported by the rapid development of natural language processing (NLP) techniques,
online reviews have increasingly been identified as an important source of useful in-
formation for addressing data sparsity issues in recommendation. Exploiting these re-
views has led to several advanced recommendation concepts, pioneered by Collabora-
tive Deep Learning (CDL) [129]. This concept introduces a hierarchical Bayesian model
using Stacked Denoising Autoencoders (SDAE) to reconstruct the rating matrix from en-
coded textual reviews. Another method, DeepCoNN [146], unifies the processes of learn-
ing the user/item representation and rating prediction in an end-to-end model. The
unification is achieved through a combination of Convolutional Neural Networks (CNN)
and factorization machines. Due to the sequential nature of reviews, Recurrent Neural
Networks (RNN) and attention models are also widely used for user and item feature
learning. Wu et al. [138] trained the review representations and ratings jointly within a
Long Short-Term Memory (LSTM) framework for movie recommendation. Chen et al.
[26] extended the DeepCoNN concept by incorporating attention factors into NARRE,
a DeepCoNN-based framework, to provide convincing explanations. MPCN [122] is an-
other attention-based model, which uses two hierarchical attention layers to infer the re-
view importance. Although the use of text reviews has partially resolved the data sparsity
issues, a more direct way to achieve this is to increase the scale of the training data. As an
example, AugCF [132] was proposed on top of DeepCoNN to augment review and rating
data using Generative Adversarial Networks [42]. All models mentioned above represent
users and items following the same principle, and the representations are derived from
the same data source. Contrary to this, NPA [140] and NeuHash-CF [44] represent users
and items in different ways. While they model the items using content-based informa-
tion, the users are represented by one-hot coded user ID.

Despite the remarks expressed in literature state that reviews serve the recommen-
dation better as regularizers than features [104], the models mentioned above have been
reported to achieve remarkable overall recommendation accuracy, showing the benefit
of using textual review data as input. In this chapter, we look at online reviews from a dif-
ferent angle and further than accuracy alone. We analyze their value in achieving better
user representations that allow us to balance the recommendation quality across users.
We show that, with our proposed recommendation model, reviews can be instrumental
in neutralizing the mainstream bias.

3.3. PROPOSED MODEL: NAECF
The architecture of the proposed NAECF model is illustrated in Fig. 3.1. The scheme
shows that with NAECF we pursue two learning goals simultaneously: maximizing the
recommendation accuracy and reconstructing the users’ and items’ original feature vec-
tors in the autoencoders. These feature vectors consist of the texts of user reviews, so we
refer to the process taking place in the two AEs as “text reconstruction”. Recommenda-
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Figure 3.1: Overall architecture of NAECF.

tion accuracy may be achieved by optimizing for rating prediction or ranking prediction.
Since DeepCoNN [146], the strongest baseline for comparison, is designed for rating pre-
diction, we also take rating prediction as the criterion for recommendation optimization.
This allows us to assess specifically the effect of enforcing user and item reconstruction
as an adversarial condition to recommendation optimization on the mainstream bias. If
the effect is there, it can also be expected if a ranking prediction scheme is expanded in
the same way.

3.3.1. MODEL FORMULATION
The data we use consist of tuples (u, i ,rui ,cui ), representing a user u providing a rating
rui to item i and leaving a review text cui for said item. Based on Fig. 3.1, we see the
realization of the overall goal of NAECF by minimizing the following loss:

L = LR +w (LU +L I ) , (3.1)

where LR , LU and L I are, respectively, the mean rating prediction loss, and the mean text
reconstruction losses for users and items. The constant w is a weight determining the
relative influence of user and item AEs compared to the rating prediction module. The
three losses are defined by the following expressions:

LR = 1

NR

∑
u,i

lossR (u, i ) (3.2)

LU = 1

NU

∑
u

lossU (u) (3.3)

L I = 1

NI

∑
i

lossI (i ) , (3.4)
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where NR , NU and NI represent the number of interactions, users and items in the train-
ing set, respectively. Normalizing by these terms makes the effect of the weight w invari-
ant to the statistics of the dataset.

3.3.2. LEARNING FOR RATING PREDICTION2

In NAECF, the rating prediction loss for an individual user-item interaction is computed
as a traditional squared loss

lossR (u, i ) =
(

rui − r̂ui

rmax − rmi n

)2

, (3.5)

where r̂ui is the predicted rating given by user u to item i . The loss is normalized by the
limits of the rating scale used in the dataset, so that LR is bounded between 0 and 1. The
prediction is computed for user and item representations xu and yi , which encode the
text features as low-rank latent vectors for users and items, respectively. Specifically, they
are extracted as the bottlenecks of the corresponding AEs, as indicated by the green and
blue blocks in Fig. 3.1. We follow the settings of DeepCoNN [146] with a Factorization
Machine layer [100], and compute rating prediction as

r̂ui = â0 +
|ẑ|∑

m=1
âm ẑm +

|ẑ|∑
m=1

|ẑ|∑
n=m+1

〈v̂m , v̂n〉ẑm ẑn , (3.6)

where â0 denotes the global bias, ẑ denotes the concatenation of user and item vectors
used in FM, and âm denotes the importance of latent factor ẑm . Second order interac-
tions are modeled by 〈v̂m , v̂n〉 =∑|ẑ|

f =1 v̂m, f v̂n, f .

3.3.3. LEARNING FOR TEXTUAL FEATURE TRANSFORMATION AND RECON-
STRUCTION

The latent factors xu and yi are used not only for rating prediction, as indicated in the
previous section, but also to reconstruct the original user and item representations in
the computation of text reconstruction losses. We use an encoder to generate latent fac-
tors, which takes an initial user representation Vu or item representation Vi . We deploy
the strategy proposed by DeepCoNN [146], that applies TextCNNs [56] for feature trans-
formation. For an arbitrary user u, we extract all review texts they authored and concate-
nate them into a single long document. Similar to the top NLP models like BERT [34] and
GPT-2 [97], here we adopt a cutoff length TU to truncate words exceeding the limit. For
users with fewer than TU words, we pad empty words, denoted by <UNK> and initialized
by zeros. This way all users are represented by the same number of review tokens. Then
we introduce a look-up layer to get the initial individual word embeddings from a pre-
trained model. By concatenating them, we obtain user embedding V u

1:TU
. Similarly, we

obtain item embedding V i
1:TI

for item i .

Encoding these initial V u
1:TU

and V i
1:TI

embeddings results in the latent factors, which
then serve as input to a decoder that we introduce to create reconstructed embeddings

2Compared to the original published paper, this subsection is slightly modified for better clarity.
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Figure 3.2: Architecture of the convolutional autoencoder for text feature transformation and extraction.

V̂ u
1:TU

and V̂ i
1:TI

. The architecture of the decoder is symmetric to the encoder with de-
convolution and unpooling layers, as shown in Fig. 3.2. All hyper-parameters used in the
decoding stage are the same as in the encoding stage.

The success of reconstructing initial user and item embeddings is modeled by the
text reconstruction losses, which are computed for each user and item. In order to have
scores on a bounded scale, we rely on the cosine similarity to measure text reconstruc-
tion loss. Unlike most cases in text analysis where embedding values are positive, the
original pre-trained embeddings we use in this chapter do have negative values, making
the cosine similarity range from -1 to 1. Therefore, we also normalize cosine similarities
so that the scales of LU and L I are comparable to that of LR . This leads to the following
formulation of the individual text reconstruction losses:

l ossU (u) =
(1−cos

(
V u

1:TU
,V̂ u

1:TU

)
2

)2

, (3.7)

lossI (i ) =
(1−cos

(
V i

1:TI
,V̂ i

1:TI

)
2

)2

, (3.8)

where cos stands for the cosine similarity between the original vectors and the recon-
structed ones.

3.3.4. MODEL LEARNING

We use Adaptive Moment Estimation (Adam) [57] to minimize the overall loss function
in Eq. (3.1). This way, training converges fast and the learning rate is adapted during the
process.



3.4. Experimental Design

3

37

Table 3.1: Statistics of the datasets.

Dataset #users #items #ratings Sparsity #words
Instant videos 5,130 1,685 37,126 99.57 19M
Digital music 5,541 3,568 64,706 99.67 73M

BeerAdvocate 3,703 37,580 393,035 99.72 198M

3.4. EXPERIMENTAL DESIGN
Here we present a series of experiments designed to evaluate the proposed NAECF
model through the following research questions:

• RQ1: Does NAECF improve the recommendation for non-mainstream users, cre-
ating a better balance across users?

• RQ2: What is the effect of using reviews and textual feature transformations on
mainstream and non-mainstream users?

• RQ3: What is the correlation between recommendation accuracy and the difficulty
of user feature reconstruction?

3.4.1. DATA AND METRICS
In this chapter we focus on improving the recommendation for non-mainstream users,
and investigate the power of text reviews for this purpose. Therefore, the selected
datasets are all review-based (see Table 3.1). We use two Amazon real-world datasets3

covering different recommendation domains, namely instant videos and digital music,
and another dataset from BeerAdvocate [79]4. The ratings all range from 1 to 5. How-
ever, in the Amazon datasets ratings are integers, while in the BeerAdvocate dataset they
are multiples of 0.5. Users in the Amazon datasets have at least 5 interactions. To align
with this setting, we filter the BeerAdvocate dataset using the same threshold. Due to the
unavailability of computational resources, we randomly sampled 25% of users to form a
BeerAdvocate subset.

Following the original setting of DeepCoNN [146] and its latest related research [104],
we use the Google News pre-trained word vectors [84] to generate pre-trained word em-
beddings. Each word in the review is thus represented as a 300-dimension vector.

We evaluate the rating prediction accuracy by computing the conventional Root-
Mean-Square Error on the test set:

r RMSE =
√∑

u,i (rui − r̂ui )2

N
. (3.9)

where N is the number of ratings. To evaluate recommendation performance for indi-
vidual users, we also report per-user RMSE (uRMSE , as opposed to r RMSE) for further
investigation. We cap the predicted ratings to [1,5], so there are no out-of-bounds values.

3http://jmcauley.ucsd.edu/data/amazon/
4http://snap.stanford.edu/data/web-BeerAdvocate.html

http://jmcauley.ucsd.edu/data/amazon/
http://snap.stanford.edu/data/web-BeerAdvocate.html


3

38
3. Leave No User Behind: Towards Improving the Utility

of Recommender Systems for Non-mainstream Users

3.4.2. BASELINES
We compare the performance of our proposed NAECF model with two related recom-
mendation models:

• Matrix Factorization [60]. We use MF as a classical, pure similarity-based CF base-
line. All non-textual hyper-parameters in NAECF are reused.

• DeepCoNN [146]. This is the pioneering work and state-of-the-art method that
introduces deep learning techniques to build a text-based recommender system.
User and item features are extracted in parallel, and their interaction is realized by
means of factorization machines (FM). Although there are other text-based mod-
els following a similar architecture, such as NARRE [26] and [132], that may out-
perform DeepCoNN, the components they added for better recommendation per-
formance are mainly attention layers or data augmentation modules, introducing
no significant change in the model architecture. Therefore, to focus on the effect
of autoencoders in NAECF, we still adopt DeepCoNN as the strongest and most
relevant baseline.

3.4.3. EXPERIMENTAL PROTOCOL
We randomly split the datasets into training, validation and test sets with proportions
80%, 10% and 10%, respectively. To address the influence of the data splitting strategy,
we set 10 different random seeds and thus use 10 different splits. While all users have
at least 5 interactions in total, a random split may distribute these interactions unevenly
across sets, such that there may be users with only one rating in the training set. To
address this potentially unreliable situation, we only account for users with at least 3
interactions in the training set for evaluation.

We first do a grid search on the two Amazon datasets separately to fix the hyper-
parameters on DeepCoNN. Then we reuse them for the investigation of NAECF. The
hyper-parameters tuned are listed below, with the optimal values indicated in bold:

• Number of latent factors for DeepCoNN and NAECF: {5,10,20,50,100,200,500}.
All latent factors are initialized with a Uniform distribution between −0.01 and
0.01.

• Learning rate: {0.00001,0.0001,0.001,0.01,0.03,0.1}.

• Dropout rate to avoid overfitting: {0,0.1,0.2,0.5}.

• Batch size: {32,64,128,256,512,1024}.

• Number of words: {128,256,512,1024,2048}.

• Length of CNN kernels: {2,3,4}.

Using the DeepCoNN architecture as reference, we investigate the impact of text re-
construction loss with different weights. Since our main concern in this chapter is the
effect of adding adversarial conditions via AEs to the original DeepCoNN setting, we
weight the user and item AEs with the same weight w , as shown in Eq. (3.1). Specif-
ically, we consider weight values in the set {0,0.1,0.2,0.5,1,2,5,10}. Note that NAECF
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reduces to DeepCoNN when w = 0. Similar to the fine-tuning of the hyper-parameters,
the optimal weight is selected on the validation set.

Autoencoders act as adversaries to the rating prediction process, so their activation
may lower the overall validation r RMSE . Therefore, we deploy a two-stage training strat-
egy: we set w = 0 in the first 50 epochs as a pre-training process to get the model ready
to train for NAECF, and then change w to the value we are tuning for the next 50 epochs.

Since NAECF does not chase the best overall performance, but rather a better balance
across users, we follow a different validation strategy for w . First, we separate users in
bins based on their uRMSE score with DeepCoNN; to stress more on the performance
for non-mainstream users, we use the 4 uneven bins defined by percentiles 10, 50 and
90 of the uRMSE distribution. The performance gain with respect to DeepCoNN is then
computed using these bins as strata, assigning smaller importance to the first and last
bins, that is, users with a good recommendation and users who are extremely difficult to
model. This way, the assessment of model capability is better aligned with our purposes.
Gain is thus defined as follows:

∆= 0.1∆1 +0.4∆2 +0.4∆3 +0.1∆4, (3.10)

where ∆b indicates the mean uRMSE difference between DeepCoNN and NAECF in
user bin b, and bin weights reflect the fraction of users they contain out of the total sam-
ple. A positive ∆ value means NAECF improves upon DeepCoNN.

All models are implemented in PyTorch [96], with CUDA and CuDNN for acceleration
on an NVIDIA GeForce GTX 1080Ti GPU.

3.5. RESULTS
In this section, we present and analyze the experimental results. As a summary, Table 3.2
presents the mean performance of all models over the 10 splits per dataset. It can be seen
that DeepCoNN and NAECFs show significantly better recommendation accuracy than
MF (paired t-test, p < 0.05 [125]), and that NAECF and DeepCoNN perform similarly
overall, provided that the weight of the text reconstruction loss is not too high. Fur-
thermore, in Section 3.5.1 we show that NAECF, while maintaining similar overall rec-
ommendation quality as DeepCoNN, manages to create a significantly better balance
across users thanks to the introduction of the user and item reconstruction losses as ad-
versaries to the rating prediction optimization. Finally, in Section 3.5.2 we dive deeper
into the ability of the autocorrelates to reconstruct users from the learned representa-
tions, and how this correlates with the recommendation performance per user. This
analysis sheds more light on the mechanics underlying NAECF and the reported results.
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Table 3.3: Weights w yielding the best performance gain per split on the validation set.

Dataset
Split

1 2 3 4 5 6 7 8 9 10
Instant Video 2 5 0.1 10 1 5 0.1 0.1 0 0.5
Digital Music 0 0 5 5 2 0.1 2 0.1 0.1 0.5

BeerAdvocate 0.1 0.2 0 0.5 0 0.2 0.5 0.1 0.1 0.2

3.5.1. PERFORMANCE BALANCE ACROSS USERS
In order to answer research questions RQ1 and RQ2, we investigate the effect of autoen-
coders and text reviews on the recommendations for non-mainstream and mainstream
users.

EFFECT OF AUTOENCODERS.
As an adversarial learning model, NAECF has two conflicting goals: minimizing the text
reconstruction losses LU and L I versus minimizing the rating prediction loss LR . If the
weight of the text reconstruction loss is too small, autoencoders cannot exert sufficient
influence on the training process, making them ineffective regarding the mainstream
bias. Conversely, if the text reconstruction loss dominates the training process, we expect
to have a significant drop in terms of overall rating prediction accuracy. Following the
validation process in Section 3.4.3, we chose the weight w with the best gain ∆ on the
validation set as the optimal one.

Table 3.3 reports the optimal validation-set weight per split. As the table shows, in 5
of the 30 splits a weight w = 0 achieved the best gain; note that such cases correspond
to a simple re-training of DeepCoNN. However, in the vast majority of cases a weight
different from zero yielded a better performance gain, although there does not appear to
be a single optimal weight for the autoencoders in NAECF. Overall, this suggests that w
is a hyperparameter to tune on a case-by-case basis, and that autoencoders are expected
to help when the characteristics of the data allow for it; sometimes they do not lead to
a substantial gain over DeepCoNN. Furthermore, and based on detailed r RMSE results
not reported in the chapter, we see that the weights with the best performance gains
often lead to lower overall performance (7, 6, and 6 out of 10 seeds in three datasets).
This contrast shows that a high score on an overall accuracy metric like r RMSE does not
necessarily reflect a good balance across individual users.

After the optimal weights are chosen on the validation set, we turn our attention to
the corresponding test-set results. In Table 3.4 we report the average performance gains
of NAECF over DeepCoNN, both per bin and overall. The table shows that users in the
central bins (ie. central 80% of users) receive a statistically significant performance gain
on all datasets, which is exactly the users that we specifically target in NAECF. For the two
Amazon datasets, these are also the bins receiving the largest gains; for the BeerAdvocate
dataset it is the first bin that has the highest gain, though the difference is not significant
from the second bin. In fact, the gains and losses observed for the 10% of users in the first
bin are not statistically different from zero, which means that users that already receive
good performance are neither helped nor punished by NAECF. Therefore, the applica-
tion of autoencoders as adversaries to the rating prediction problem does not sacrifice
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Table 3.4: Test-set performance gains averaged over splits (higher is better): per-bin gain ∆b and overall gain
∆. Green/red for gains/losses statistically different from 0 (t-test, p < 0.05).

Dataset ∆1 ∆2 ∆3 ∆4 ∆

Instant Video -0.0035 0.0256 0.0267 -0.0308 0.0175
Digital Music 0.0036 0.0184 0.0106 -0.0167 0.0103

BeerAdvocate 0.0119 0.0117 0.0063 -0.0115 0.0073

performance for the mainstream users. Finally, we observe that the 10% of users in the
last bin do receive a statistically significant performance loss. While unfortunate, such
loss is a collateral damage on a minority of users who are hard to satisfy anyway, in bene-
fit of the bulk of users who now receive better recommendations. Averaging gains across
bins, as indicated in Eq. (3.10), we see that NAECF yields statistically better results than
DeepCoNN on all datasets. This indicates the overall success of NAECF to create a bet-
ter balance across users. In general, we help most of the non-mainstream users without
hurting mainstream users.

Figure 3.3 shows the test-set performance gain for the different data splits. We can
first notice that the optimal weight, selected based on the gain on the validation set,
turned into a slight loss in the test set for only one split in the Instant Video dataset
(∆ = −0.0054), and one split in the Digital Music dataset (∆ = −0.001). Detailed results
not reported in the chapter show that this is mainly due to a drop in∆4, representing the
users that are hard to optimize for in any case. In 5 cases the optimal weight was w = 0,
which yields a gain∆= 0.5 For the majority of cases though (23 out of 30 splits), the opti-
mal weight selection achieves a higher gain ∆ and therefore helps achieve a better over-
all balance in recommendation performance across mainstream and non-mainstream
users. If we consider only top 90% users to select the best weight, there are in total 28
out of 30 splits (except 2 in the Digital Music dataset) where NAECF shows superiority
over DeepCoNN. However, this does not mean that a higher weight is always better for
reaching a balance across users. For the BeerAdvocate dataset, 83% of the top-3 weights
selected via the validation process are not larger than 0.5. For the two Amazon datasets,
and although the optimal weights distribute over all weight candidates, unreported re-
sults still show that weights no larger than 2.0 take 85% of the top-3 best results. This
observation matches our expectation that a mild weight value is more likely to bring a
better trade-off between the overall recommendation accuracy and the balance across
users. Based on these observations, we provide a positive answer to RQ1.

EFFECT OF TEXT REVIEWS.
We hypothesize that exploiting elaborate user- and item-related information, in our case
in the form of online reviews, not only contributes to overall recommendation perfor-
mance [146, 26], but also to neutralizing the mainstream bias. While non-mainstream
users are relatively underrepresented in the user space, it should at least help if their
individual representations are as elaborate as possible to model their preferences better.

5Due to the stochastic nature of the training process, one retraining of DeepCoNN may yield a slight gain with
respect to another, but it should be zero on expectation. Therefore, we set ∆= 0 when w = 0.
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Figure 3.3: Test-set performance gain ∆ on each of the 10 data splits, sorted within dataset.

In order to verify this hypothesis, we investigate the effect of this additional infor-
mation compared to the case where it is not used, such as in a classical collaborative-
filtering model like MF. We deliberately do not compare MF with NAECF because we
would confound the use of text reviews for boosting recommendation accuracy and bal-
ancing across users. Instead, we choose to compare with DeepCoNN, which may anyway
be regarded as a special case of NAECF and, architecture-wise it is the closest to collab-
orative filtering in the NAECF family. As such, a superiority of DeepCoNN over MF will
indirectly mean a superiority of NAECF as well.

Fig. 3.4 shows the uRMSE improvements on the test set made by DeepCoNN, com-
pared to MF on all 3 datasets. As the figure shows, our expectations are met on all three
datasets. The improvement on uRMSE scores has a clearly positive correlation with the
baseline uRMSE achieved by MF, meaning that it is the users who received worse recom-
mendations in MF, the ones who benefit the most from the inclusion of textual features in
DeepCoNN. We note that, close to the origin of the plots, we see that DeepCoNN leads to
slight performance loss for the users for which MF achieved the best performance. This
is however an artifact of the evaluation process. Note that users with a uRMSE close to
zero in MF have almost no room for improvement, so any other model we compare with
will probably perform worse. Similarly, other models will likely perform better for the
users with very high uRMSE in MF, because it is just not possible to perform worse. To
illustrate and account for this effect, Fig. 3.4 also compares with a retrained MF model,
displaying both the overall correlation and the loss close to the origin. These serve as a
sort of baseline to assess the improvement of DeepCoNN (ie. rather than comparing the
red curve with the y = 0 axis, compare it with the blue curve). We can thus confirm the
superiority of DeepCoNN, as uRMSE scores are always higher than on a retrained MF
model.

Finally, and similar to the comparison between DeepCoNN and NAECF stated in
Eq. (3.10), here we also compare DeepCoNN and MF in terms of gain ∆. The values
on three datasets are 0.1175, 0.1017 and 0.3282, respectively. Such a significant improve-
ment shows the effectiveness of review-based features in creating balance across differ-
ent users, by which we provide an answer to RQ2.
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Figure 3.4: uRMSE gain over MF (positive is better) of DeepCoNN and a retrained MF model, on all 10 data
splits. Curves represent a spline-smoothed fit.

In summary, we confirmed that NAECF creates a better balance across users by signif-
icantly improving the recommendation accuracy for non-mainstream users, subject to
a good selection of the weight hyper-parameter. We also compared the review-based
DeepCoNN and the CF-based MF, and found that the improvement stems mainly from
a better optimization for non-mainstream users who are harder to handle in bare col-
laborative filtering. This way, NAECF’s superiority lies in the use of review text, not only
to boost rating prediction, but also as an adversary to ensure better user representation.
Ultimately, these findings direct an open question to the correlation between the text
reconstruction loss and the recommendation accuracy, which we study next.

3.5.2. USER FEATURE RECONSTRUCTION

Mainstream users are generally active and display common behavioral patterns. This
makes it easier for them to be matched with proper neighbors in collaborative filter-
ing, ultimately giving them more accurate recommendations. At the same time, good
performance on similarity-based user modeling will make them easier to reconstruct in
the NAECF autoencoders, and should therefore have a lower text reconstruction loss af-
ter training. This should be reflected by a positive correlation between uRMSE scores
and user reconstruction losses l ossU . Because DeepCoNN does not contain any text
reconstruction module, the loss should be randomly distributed and uncorrelated with
uRMSE ; we verified this in the data but do not report it here. However, intuition tells
us that mainstream users should have low reconstruction losses. The failure of Deep-
CoNN to reflect this expectation means there is room for improvement to create a better
balance across users, which is confirmed by our findings in the previous section.

Therefore, we now look into the correlation between user reconstruction loss lossU

and uRMSE recommendation accuracy. Fig. 3.5 shows the relationship for each of the
evaluated weights w . We can see clear differences across datasets, but there are several
qualitative commonalities. First, the majority of users are not mainstream even if they
have a rather low uRMSE score. Second, higher weights generally lead to lower recon-
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Figure 3.5: NAECF lossU by test-set uRMSE , for each weight w . Lines represent a spline-smoothed fit.

struction losses and therefore to better user representations. This is expected because a
high weight makes the text reconstruction losses dominate the overall loss in Eq. (3.1),
but the figure further shows that the relative relationship between lossU and uRMSE
is pretty consistent across weights. Interestingly, the BeerAdvocate dataset shows some
fluctuations with high weights. This evidences that the optimal weight needs proper tun-
ing, because excessively high weights lead to substantial performance loss and uRMSE
scores become less stable as a consequence. As reported in Table 3.3, the optimal weights
for this dataset are rather small indeed in comparison with the other two datasets.

We also followed the earlier approach of dividing users in four bins according to
the uRMSE distribution. Fig. 3.6 similarly shows the relationship between lossU and
uRMSE with all the evaluated weights, but differentiating among user bins. We can
clearly observe that, as expected, the relationship is monotonically positive except for
the last bin in the Digital Music dataset. This confirms again that users who are better
represented receive more accurate recommendations. As reported in Table 3.4, main-
stream users in bin 1 do not always benefit from NAECF because they already receive
good recommendations and there is little room for improvement, regardless of how well
they are reconstructed. Fig. 3.6 confirms this especially in the two Amazon datasets,
where bin 1 users receive nearly perfect recommendations. But NAECF improves per-
formance especially for the 80% of non-mainstream users in bins 2 and 3, because those
are harder to represent to begin with. Fig. 3.6 confirms that these users generally have
the highest reconstruction losses indeed. Together with the correlations in Fig. 3.5, we
see the relationship between the mainstreamness of users and the difficulty to represent
them. Notwithstanding, the bottom 10% of users in bin 4 are too extreme to find proper
representations, so the autoencoders hardly work for them. We even observed in Fig. 3.6
a negative correlation on the Instant Video and Digital Music datasets when uRMSE is
large. This confirms that NAECF sacrifices performance for these extreme users in fa-
vor of the others. Although unfortunate, we find this behavior acceptable because these
users often display such particular tastes and patterns that it is hard for them to benefit
from virtually any CF-based recommendation model.
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Figure 3.6: NAECF l ossU by test-set uRMSE , with all evaluated weights w . Error bars show standard deviations
per user bin.

3.6. CONCLUSION AND FUTURE WORK
Rating accuracy has long been an important criterion to evaluate recommender systems,
if not the most important. Previous research has therefore focused mainly on maximiz-
ing the overall performance averaged over users. However, traditional collaborative fil-
tering methods focus more strongly on recommending items that have positive interac-
tions by similar users. In this situation, it is hard for CF models to work well with non-
mainstream users that have special tastes or habits. Because non-mainstream users are
rather a minority, this problem may not have a strong effect on the overall accuracy, yet
it may create an unfair imbalance across users. To address this problem, we proposed
a conceptually simple but effective model named NAECF, which minimizes the rating
prediction loss while keeping the user and item properties preserved in the learned user
and item representations. Preservation of user and item properties is imposed as an ad-
versarial condition by minimizing reconstruction losses in addition to rating prediction
error. This prevents these representations from being biased towards mainstream users.

We conducted experiments on three real-world datasets, and found that NAECF
achieves an overall rating accuracy that is on par with the state-of-the-art. However,
its strength is in the better balance it achieves across users thanks to a significant im-
provement of the recommendation accuracy for non-mainstream users, without signifi-
cantly harming the mainstream ones. This improvement is achieved through an optimal
trade-off between rating prediction and text reconstruction. Our results confirm a clear
correlation between how well users are represented and the quality of their recommen-
dations, evidencing that side information may be instrumental not only for boosting
overall accuracy, but also to minimize possible biases in the learned models.

Future work will be conducted in several directions. First, we will investigate whether
the conclusions drawn here for rating prediction generalize to the ranking paradigm,
which is gaining popularity in the recommendation field. Second, in this chapter we
treated users and items as equally important through a single text reconstruction weight.
One may argue that improving the representation of users alone is not enough, because
the model also needs a good item representation to know what to recommend. However,
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users and items may have different impacts, and we would like to explore this question
by implementing two weights in the NAECF loss. Third, we introduced side informa-
tion from text reviews in order to achieve a better balance across users. However, text
reviews are just an example of additional content-based resources such as images and
demographic information that can be used to achieve a similar function. We would like
to further investigate the effect of other side information in the future and, perhaps more
importantly, how to effectively incorporate such information in NAECF to eliminate the
mainstream-bias. Finally, we are also interested in combining NAECF with explainable
recommendation, so that we can provide convincing explanations to non-mainstream
users.
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4.1. INTRODUCTION
One of the critical limitations of recommender systems based on collaborative filter-
ing (CF) models [41] is that they are not fair in how they serve different groups of
users [64, 69]. This fairness issue is a result of the varying quality of users’ neighborhoods
(groups of users with similar preferences) from which information is taken to train a CF
model [150, 65]. The information collected from large, coherent, and information-rich
neighborhoods will be the dominant one in steering the process of learning to recom-
mend for all users. We refer to such dominant neighborhoods as mainstream. Because
the users belonging to such neighborhoods —the mainstream users— are compatible
with the learned model, they are optimally served. For the non-mainstream users, e.g.
niche groups who deviate from the mainstream and whose interaction information is
therefore less rich [69], who are less active compared to the mainstream users [90], or
where the preferences are not well pronounced, the neighborhoods cannot fully reflect
their genuine preferences. All this will make the non-mainstream users receive recom-
mendations of a lower quality than the mainstream users. The difference in the quality of
the CF model for these two user groups, further referred to as the mainstream bias, will
result in the continuous improvement of the performance for the mainstream group,
and continuous decrease of the performance for the rest [76].

While the issue of treating users differently by a recommender system in general has
been addressed by a number of approaches, making for example assumptions about the
relation between users’ gender [83] or demographics [38] and the quality of recommen-
dation, not many approaches have focused specifically on addressing the mainstream
bias. Li, Urbano, and Hanjalic [65] deployed an autoencoder [103] for feature recon-
struction as an adversary to a traditional CF model, forcing it to deviate from the pure
similarity-based learning and make the learned model more compatible with the non-
mainstream users. More specifically, the autoencoder was deployed to steer the process
of learning the user/item representation space for rating prediction via optimal recon-
struction of the properties of all users, mainstream and otherwise, assuming this would
lead to equal treatment of users during recommendation. Still, a more explicit focus on
the mainstreamness of users is needed to ensure that the bias is effectively addressed.

Inspired by outlier detection techniques, Zhu and Caverlee [150] did focus on explic-
itly quantifying mainstreamness via similarities of user-preference profiles, and incor-
porated them to fine-tune the recommendation process for different user groups. How-
ever, in the absence of ground truth data about mainstreamness, it is difficult to assess
how well these approaches identify non-mainstream users. In addition, these main-
streamness statistics are model-agnostic in the sense that they are independent of the
recommendation strategy, effectively ignoring the model’s own capability to reduce the
mainstream bias or even amplify it. As a result, the learning process could be tailored to
the wrong users.

In this chapter, we choose to focus there where the effect of mainstreamness is di-
rectly observed, that is, the recommendation utility provided by the data and recom-
mendation model at hand. If a user receives poor recommendations it could be because
their preferences deviate from the rest, or because there is not enough data to properly
quantify their similarity to other users or to fully exploit it. Therefore, we choose utility as
an implicit proxy for mainstreamness. Through this quantification of user mainstream-
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Figure 4.1: Cost functions used in the paper. The contrast denotes the relative cost between users with main-
streamness 0 and users with mainstreamness 1 (i.e. x10 means 10 times as much).

ness, we make the training process focus on the non-mainstream ones by assigning them
higher weights. We do so, however, in a cost-sensitive way [123], taking the cost of recom-
mendation errors into account while training the CF model. Our results show that our
implicit measurement of mainstreamness via utility is better able to differentiate niche
users than an explicit approach, and that the cost-sensitive learning strategy does miti-
gate the bias by balancing the recommendation quality across users. Finally, we inves-
tigate data requirements for conducting research on mainstream bias at the individual
user level, and provide suggestions for reliable experimentation in this area.

4.2. PROPOSED APPROACH
The basis of our approach is a weighted loss function where every user u ∈U is assigned
a weight ω(u) that informs the learning process about the importance of every user’s
individual recommendation loss. The global loss is thus simply

L = ∑
u∈U

ω(u)LR (u) , (4.1)

where the recommendation loss LR is specific of the model and learning paradigm. This
way, we explicitly tell the learning process what users to optimize for by means of ω,
which, in our case, should be high for non-mainstream users and low for mainstream
users.

4.2.1. DEFINITION OF WEIGHTS
As explained in the previous section, we define ω as a function of the user mainstream-
ness mu . However, rather than simply using a naïve transformation of mu , we introduce
flexibility through a cost function that maps user mainstreamness onto a cost value. In
particular, and assuming mu ranges between 0 and 1, we use the density function of a
Normal distribution truncated between 0 and 1, with zero mean and variance adjusted
to achieve a contrast ranging between 5 (i.e. users with mainstreamness mu = 0 have
a cost 5 times as large as users with mu = 1) and 80 (ie. 80 times as much). This is a
simple choice to make ω smooth and monotonically decreasing, but other cost func-
tions that emphasize different levels of mainstreamness are of course possible; we leave
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this discussion for further work. Fig. 4.1 shows some examples. Nonetheless, the formu-
lation of the cost function may consider various aspects tailored to the business case,
as well as different magnitudes for the contrast between users with low and high main-
streamness. For example, it would be reasonable to assign very high weights to non-
mainstream users with high activity, or to users with very low activity as an attempt to
reduce the churn rate.

An important point to consider when defining ω is the distribution of mainstream-
ness across users. It could be the case that, given the current data and model, the least
mainstream users are actually fairly mainstream already, so their weight relative to the
most mainstream users should be adjusted via a smaller contrast. It could also be the
case that the dataset is very sparse and there are simply not enough neighbors around
users for the model to learn a good representation. That is, the majority of users could be
considered non-mainstream, and as a result the cost function would hardly differentiate
among them. Lastly, one could decide to compute mu in several different ways (see next
Section), which could potentially lead to quite different mainstreamness score distribu-
tions altogether, ultimately leading to a different set of weight values even for the same
users.

In order to minimize this dependence on the dataset and mainstreamness definition,
and ensure that the full co-domain of the cost function is used, we first normalize the raw
mainstreamness scores. Simply re-scaling between the minimum and maximum could
still lead to a disproportionate use of small parts of the co-domain, and would also be
very sensitive to outlier users. Instead, we use the rank statistic of mu normalized in
[0,1]. We achieve this by using the empirical cumulative distribution function (ecdf)

ω(u) = cost(ecdfU (mu)) , (4.2)

where, as mentioned, cost is defined in terms of a truncated Normal density function.

4.2.2. MEASUREMENT OF MAINSTREAMNESS
An explicit approach to compute mu would ideally follow some notion of mainstream-
ness, but mainstreamness is itself a complex construct very hard to define formally [14,
150, 65]. Recently, Zhu and Caverlee [150] took inspiration from outlier detection tech-
niques to propose four different definitions:

• Sim: users are mainstream to the extent that their interactions are similar to that
of the other users. The Jaccard coefficient is used to measure the average similarity
between a user and all the others.

• Den: users are mainstream to the extent that there are enough close neighbors to
calculate similarity with. The local outlier factor algorithm (LOF) [18] is used to
identify niche users.

• Dis: users are mainstream to the extent that their interactions are common in the
dataset, that is, they interact with popular items. The cosine similarity is used to
measure the similarity between a user and the average user interactions.

1Data available from the authors’ public repository at https://github.com/Zziwei/
Measuring-Mitigating-Mainstream-Bias.

https://github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias
https://github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias
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Figure 4.2: Comparison of the four mainstreamness definitions proposed by Zhu and Caverlee [150], as applied
to the MovieLens 1M dataset.1Density plots illustrate the distribution of mainstreamness for each definition.
Scatter plots show the relationship between pairs of definitions, quantified in the upper-right half via Pearson
correlation scores. Scores are standardized to zero mean and unit variance for better comparison.

• Deep: similar to Den, niche users are identified by an outlier detection al-
gorithm. In particular, the deep support vector data description algorithm
(DeepSVDD) [102] is used.

However, it is difficult to assess how well these, or any other definitions for that mat-
ter, correlate with the concept of mainstreamness. To illustrate, Fig. 4.2 compares these
four definitions as applied to the MovieLens 1M dataset. Although they are somewhat
correlated to one another, it is evident that they produce very different scores. For in-
stance, Sim and Dis lead to nicely shaped distributions, suggesting few users with ex-
treme (non-)mainstreamness. However, Den and Deep lead to very skewed distributions,
even in the opposite direction, pointing to many users with extreme scores. This shows
that the same user could be considered both mainstream or non-mainstream, depend-
ing on how we choose to define mainstreamness.

Furthermore, it should be noted that these four definitions of mainstreamness are
agnostic to the recommendation model. However, the effect of mainstreamness, ulti-
mately, depends on the model and how it is able to exploit the specifics of the dataset it
is trained on. It is not far-fetched to think of a user, assessed as non-mainstream, who
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receives bad recommendations under one model but good recommendations under a
more capable one.

This leads us to consider an alternative, implicit way to quantify mainstreamness
that is not model agnostic. In particular, we decide to focus there where the effect of
mainstreamness is to be observed, that is, the recommendation utility provided by the
recommendation model at hand. This is where mainstreamness will ultimately have an
impact on. The very nature of collaborative filtering tells us that if a user receives poor
recommendations it is because they are non-mainstream under the current model: they
cannot be properly represented, either because their preferences are somehow different
from their closest neighbors, or because there are not enough data to properly quantify
their similarity. Therefore, we use utility as a proxy for mainstreamness. Since utility, just
like mainstreamness, is a complex concept difficult to measure, we decide to simply use
the accuracy of the recommendation model for that user, measured through a metric
like nDCG or AP .

But there is the question of what accuracy scores we actually use. In principle, these
scores should reflect user mainstreamness when there is no mechanism to minimize
its effect, and they should be achieved by the recommendation model in the dataset at
hand. Therefore, we decide to use the accuracy achieved, on a validation set, by the
vanilla model whose loss function is as in Eq. (4.1) but using no weights. As intended, we
thus first see how the model reacts to mainstreamness as reflected in the observed utility
for users, and then act upon it in a cost-sensitive way.

4.3. EXPERIMENTAL DESIGN
We carried out a number of experiments to investigate the effectiveness of the proposed
approach in mitigating the mainstreamness bias, as well as the effect of the contrast ap-
plied by the cost function. In particular, we study contrasts x5, x10, x20, x50 and x80,
that is, the most non-mainstream user has a weight between 5 and 80 times larger than
that of the most mainstream user. Fig. 4.1 details the cost functions. Regarding the mea-
surement of mainstreamness, we consider both an explicit and an implicit quantifica-
tion. For the former, we follow Zhu and Caverlee [150] and compute Sim scores. This
choice is motivated by the time complexity of their four approaches (the computation
of mainstreamness may quickly become intractable as the numbers of users and items
increase; while their datasets include a few thousand items, ours span from a few thou-
sands to over half a million), and their correlation to one another (Sim is also the one
most correlated with the others, in particular with Deep). For the implicit quantifica-
tion we compute utility scores using the metric nDCG as an exemplar of recommender
systems research; hereafter, we will refer to this definition of mainstreamness as Util.

We selected four real-world datasets containing user-item rating interactions from
various domains and with different densities, especially including some highly sparse
datasets (see Table 4.1). In line with common practice in ranking-oriented recommender
systems research, we see all existing interactions in the datasets as relevant, and all other
unseen interactions as irrelevant. We use LensKit [37] to evenly split the relevant items
for each user into training, validation and test sets. To make the modeling of utility —
and hence mainstreamness— robust, each user has at least five relevant transactions
in each of the three sets; we explain the rationale for this decision in Section 4.5. For



4.4. Results

4

55

Table 4.1: Dataset statistics after pre-filtering.

Dataset #users #items #ratings Density
MovieLens 1M [46] 6,040 3,609 562,957 2.583%
BeerAdvocate [79] 8,821 43,663 780,752 0.203%
Amazon Digital Music [93] 14,057 379,171 619,673 0.011%
Amazon Musical Instruments [93] 15,270 585,766 862,798 0.010%

training the model, we follow He et al. [47] and Wu, Wu, and Huang [139] and randomly
sample four irrelevant items per relevant item in the training partition. For validation
and test, we follow DaisyRec [119] and evaluate the model for each user by ranking a
total of 500 items consisting of their relevant items in the validation/test partition and
a set of randomly sampled irrelevant items. Finally, to make sure relevant items are the
minority, as happens in reality, we truncate the number of relevant interactions to 200.
The dataset statistics after processing are shown in Table 4.1.

Regarding the recommendation model, we deploy a simple but effective CF model
that only utilizes user-item interactions. Specifically, we choose Factorization Machines
(FM) [99], which optimize the binary cross-entropy (BCE) loss via the Adaptive Moment
Estimation (Adam) [57] learner, and leave the investigation on other training paradigms
for future work. For each user, the BCE loss is normalized by dividing by the total num-
ber of relevant and irrelevant items used for training, so that all user losses are on the
same scale in (4.1). After a fine-tuning process based on grid search, we fixed several key
hyper-parameters including the dimension of vectors used for interaction (32), learn-
ing rate (0.0001), L2-regularization coefficient to avoid overfitting (0.001), and batch size
(512).

All models are trained for 300 epochs to ensure full convergence, and with 3 dif-
ferent random initializations to minimize random effects due to the sampling process.
The whole pipeline is implemented in PyTorch [96], and all experiments are run on one
NVIDIA GeForce GTX 2080Ti GPU 2.

4.4. RESULTS

4.4.1. MAINSTREAMNESS AND UTILITY
We first examine how Sim and Util differentiate between mainstream and non-
mainstream users. In particular, we are interested in how well they correlate with the
test nDCG scores obtained by the baseline FM model: non-mainstream users should re-
ceive recommendations with low nDCG scores, while mainstream users should receive
higher scores.

For each of the four datasets, Fig. 4.3 compares Sim and Util. We can first see that
both approaches lead to similar distributions in the Amazon datasets, where there ap-
pear to be many non-mainstream users. However, they somewhat disagree in the Beer-
Advocate dataset, where Util does not identify many non-mainstream users to benefit
from the cost-sensitive approach. In terms of correlation with the test nDCG scores, we

2All data, code and results are available at
https://github.com/roger-zhe-li/ictir23-cost-sensitive.

https://github.com/roger-zhe-li/ictir23-cost-sensitive
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Figure 4.3: Correlation between mainstreamness and test nDCG in the baseline model (FM), for each main-
streamness definition. Density plots illustrate the distribution of mainstreamness. Scatterplots show their
relationship with nDCG, quantified at the top via Pearson correlation scores. Mainstreamness scores are stan-
dardized to zero mean and unit variance for better comparison.
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Figure 4.4: Correlation between user groups, split by mainstreamness, and test nDCG in the baseline model
(FM).

can see that Util is much better correlated, specially in the Amazon datasets. This points
to the possibility that Sim identifies many non-mainstream users to which the model is
still able to offer good recommendations. If the training process increases their impor-
tance by assigning them a high weightω, we may loose the opportunity to focus on those
users that still receive poor recommendations.

In order to assess the effectiveness of the cost-sensitive approach for the mitigation
of the mainstream bias, we will look in the next Section into different groups of users
separated by their mainstreamness: group ‘low’ contains the 20% of users with lowest
mainstreamness scores on the baseline model, group ‘med-low’ contains the next 20%
or users, group ‘med’ contains the middle 20% of users, and so on with groups ‘med-high’
and ‘high’. An effective mitigation of the mainstream bias would be reflected in increased
performance for the lower groups, which ideally should be those with lowest test nDCG
scores in the baseline model. Fig. 4.4 shows how well Sim and Util separate users in these
five groups. We can first see that the groups are indeed correlated with nDCG , but we
can notice that this correlation is stronger with Util, specially in the Amazon datasets
(the low groups receive lower utility, and the higher groups receive higher utility). We
can also see that groups tend to overlap substantially when separated by Sim, potentially
misplacing users. This overlap can be quantified by an ANOVA model of nDCG modeled
by two factors: dataset and user-group nested within dataset. Indeed, the user-group
effect has a much larger sum of squares (SS) with Util than with Sim (SS=440 vs SS=218;
SS of the dataset effect is 843). Finally, Fig. 4.4 also points that the BeerAdvocate dataset
may be hard to further optimize for because the utility scores are already relatively high.

4.4.2. BIAS MITIGATION

An effective mitigation of the mainstream bias would be reflected in increased perfor-
mance for the lower groups (i.e. mainly ‘low’ and ‘med-low’), ideally with no detriment
to the higher groups and, especially, overall. In the previous section we separated users
into groups by each of Sim and Util, but here we separate them directly by their test
nDCG with the baseline model FM, because this better illustrates how non-mainstream
users suffer from the bias.

Table 4.2 reports the relative percentage improvement in nDCG scores per user
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Table 4.2: Mean nDCG of the baseline model (FM) per user group, and relative percentage improvement of
each cost-sensitive model (e.g. users in group ‘low’ of MovieLens 1M received a score of .3284 with the baseline,
and an improvement of +3.89% with the x80-contrast cost-sensitive model under the Util mainstreamness def-
inition). Column ‘Overall’ lists the mean across all users. Green/red for statistically significant gain/loss with
respect to the baseline (hierarchical linear model with seed and user random effects, Bonferroni correction).

MovieLens 1M BeerAdvocate
med- med- med- med-

Overall low low med high high Overall low low med high high
FM .5531 .3284 .4621 .5753 .6613 .7388 .6887 .4144 .6051 .7301 .8132 .8809

Si
m

x5 .5465 -0.36 -0.89 -1.62 -1.3 -1.33 .6792 -0.52 -1.72 -1.83 -1.44 -1.13
x10 .5437 -0.47 -1.32 -2.23 -1.87 -1.94 .6734 -0.81 -2.87 -2.94 -2.27 -1.8
x20 .541 -0.53 -1.76 -2.85 -2.41 -2.51 .6666 -1.35 -4.23 -4.13 -3.22 -2.56
x50 .5376 -0.67 -2.28 -3.64 -3.06 -3.26 .6588 -2.01 -5.65 -5.56 -4.29 -3.54
x80 .5359 -0.67 -2.55 -4.06 -3.39 -3.59 .6548 -2.55 -6.39 -6.17 -4.84 -4.08

U
ti

l

x5 .5567 +1.67 +1.81 +0.63 +0.16 -0.13 .6846 +0.63 -0.41 -0.94 -0.83 -0.77
x10 .5574 +2.38 +2.34 +0.7 +0.11 -0.27 .6807 +0.44 -1.19 -1.66 -1.39 -1.27
x20 .5579 +3.05 +2.87 +0.73 0 -0.48 .6762 +0.54 -2.11 -2.67 -2.09 -1.74
x50 .5579 +3.62 +3.31 +0.68 -0.21 -0.84 .6722 +2 -3.09 -3.86 -2.89 -2.32
x80 .5577 +3.89 +3.47 +0.63 -0.32 -1.05 .6715 +2.98 -3.2 -4.25 -3.14 -2.54

Amazon Digital Music Amazon Musical Instruments
med- med- med- med-

Overall low low med high high Overall low low med high high
FM .3456 .2324 .2695 .3145 .3828 .5289 .3606 .2348 .2772 .3276 .4085 .5552

Si
m

x5 .3395 +0.65 +0.05 -0.61 -1.8 -4.45 .3581 +1.61 +0.77 -0.09 -1.06 -2.5
x10 .3368 +0.99 +0.1 -1 -2.67 -6.27 .3577 +3.29 +1.44 +0.08 -1.68 -3.54
x20 .3347 +1.31 +0.09 -1.3 -3.46 -7.69 .3576 +3.33 +1.44 +0.04 -1.72 -3.58
x50 .3328 +1.63 +0.07 -1.6 -4.13 -8.92 .3576 +3.37 +1.45 +0.03 -1.75 -3.6
x80 .3316 +3.66 +0.9 -1.78 -5.07 -10.62 .3576 +3.39 +1.45 +0.02 -1.77 -3.61

U
ti

l

x5 .3454 +1.59 +1.43 +1.2 +0.4 -2.58 .3607 +1.1 +0.96 +0.62 -0.04 -1.19
x10 .3453 +2.54 +2.09 +1.53 +0.18 -3.5 .3607 +2 +1.52 +0.78 -0.32 -1.8
x20 .3454 +3.59 +2.78 +1.64 +0.11 -4.25 .3607 +2.63 +1.93 +0.8 -0.53 -2.08
x50 .3458 +4.84 +3.67 +1.92 -0.11 -4.9 .3608 +3.94 +2.48 +0.85 -0.83 -2.66
x80 .346 +5.45 +4 +2.02 -0.18 -5.15 .3608 +4.48 +2.64 +0.88 -0.97 -2.86

group, as well as the overall mean score across all users in the dataset. We can clearly see
that the use of Sim benefits the non-mainstream users only in the two Amazon dataset;
in MovieLens and BeerAdvocate they are even hurt further. In contrast, Util is always
able to improve the utility of non-mainstream users across datasets, achieving relative
nDCG improvements of up to 5% in the Amazon datasets. Improvements on the lower
user groups are generally higher than losses on the higher groups, where users already
receive (very) high recommendation utility anyway and such minor losses are probably
unnoticed. This redistribution of model performance has a negligible effect on the global
performance of the models, as evidenced by the overall nDCG scores. This means that,
with proper selection of the contrast in the cost function, Util can minimize the main-
stream bias at virtually no overall loss in utility. On the other hand, the use of Sim for
training leads to inferior overall performance on all four datasets.

Fig. 4.5 presents a more fine-grained picture with one of the three random initial-
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Figure 4.5: Mean nDCG relative percentage improvement between cost-sensitive models and baseline model,
as a function ecdf(test nDCG) in the baseline FM model, for a sample data split. Curves fitted by a LOESS
model. Ribbons indicate 95% confidence intervals.
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Table 4.3: Same as Table 4.2, but user groups defined by Sim scores instead of test nDCG in the baseline model.

MovieLens 1M BeerAdvocate
med- med- med- med-

Overall low low med high high Overall low low med high high
FM .5531 .3284 .4621 .5753 .6613 .7388 .6887 .4144 .6051 .7301 .8132 .8809

Si
m

x5 .5465 -0.62 -0.97 -1.16 -1.34 -1.58 .6792 -1.4 -1.39 -1.43 -1.34 -1.35
x10 .5437 -0.84 -1.42 -1.63 -1.87 -2.31 .6734 -2.23 -2.4 -2.23 -2.14 -2.16
x20 .541 -1.19 -1.83 -2.12 -2.35 -2.96 .6666 -3.42 -3.54 -3.17 -2.95 -3.06
x50 .5376 -1.49 -2.35 -2.71 -3.02 -3.84 .6588 -4.71 -4.74 -4.31 -3.92 -4.2
x80 .5359 -1.76 -2.68 -2.95 -3.32 -4.19 .6548 -5.34 -5.29 -4.83 -4.46 -4.91

U
ti

l

x5 .5567 +1.5 +0.99 +0.53 +0.32 +0.26 .6846 -0.46 -0.5 -0.51 -0.66 -0.72
x10 .5574 +2.05 +1.24 +0.67 +0.33 +0.2 .6807 -1.11 -1.16 -1.1 -1.19 -1.22
x20 .5579 +2.52 +1.59 +0.71 +0.27 +0.08 .6762 -1.85 -2.03 -1.79 -1.73 -1.72
x50 .5579 +2.92 +1.8 +0.64 +0.12 -0.16 .6722 -2.66 -2.85 -2.53 -2.13 -2.05
x80 .5577 +3.12 +1.86 +0.61 +0.01 -0.33 .6715 -2.92 -3 -2.65 -2.15 -2.05

Amazon Digital Music Amazon Musical Instruments
med- med- med- med-

Overall low low med high high Overall low low med high high
FM .3456 .2324 .2695 .3145 .3828 .5289 .3606 .2348 .2772 .3276 .4085 .5552

Si
m

x5 .3395 -0.04 -0.61 -1.37 -2.16 -4.05 .3581 +0.01 -0.16 -0.52 -0.89 -1.65
x10 .3368 0 -0.86 -2.03 -3.18 -5.71 .3577 +0.26 -0.08 -0.53 -1.14 -2.11
x20 .3347 -0.05 -1.15 -2.52 -4.01 -6.97 .3576 +0.24 -0.11 -0.57 -1.16 -2.14
x50 .3328 -0.17 -1.42 -3.01 -4.67 -8 .3576 +0.24 -0.09 -0.58 -1.18 -2.16
x80 .3316 +0.03 -1.52 -3.34 -5.18 -8.87 .3576 +0.23 -0.1 -0.59 -1.18 -2.17

U
ti

l

x5 0.3454 +0.12 +0.11 -0.16 +0.07 -0.3 0.3607 -0.01 +0.06 0 -0.04 +0.12
x10 0.3453 +0.13 +0.06 -0.11 +0 -0.43 0.3607 0 +0.12 +0.01 -0.06 +0
x20 0.3454 +0.11 +0.06 -0.06 +0.15 -0.5 0.3607 0 +0.14 +0.05 -0.08 +0.01
x50 0.3458 +0.19 +0.07 +0.13 +0.22 -0.3 0.3608 +0.16 +0.23 -0.03 -0.05 -0.04
x80 0.346 +0.23 +0.09 +0.15 +0.29 -0.18 0.3608 +0.16 +0.21 +0.01 -0.02 -0.06

izations in our experiments. Curve segments above 0 represent an improvement by the
cost-sensitive models, while segments below 0 represent a loss. We can confirm that the
cost-sensitive approach indeed makes the models focus on the non-mainstream users,
as shown by the nicely smooth correlation between observed utility and relative im-
provement, moderated by the contrast in the cost function. As expected though, this
focus on the non-mainstream users comes at the cost of a utility loss for the mainstream
users on the right-hand side of the plots. Nevertheless, when using Util the relative loss
for those users is generally much smaller than the gain for the very non-mainstream
users, which are our main target. The figure also shows that the actual relation be-
tween improvement and utility varies across datasets, as reflected by the different curve
shapes. This is explained by the differences in the shape of their nDCG distributions
(see Fig. 4.3); recall that we use the ecd f of the scores. In a side-by-side comparison be-
tween Sim and Util, we see that Util offers better performance nearly everywhere along
the x-axis, but especially for the non-mainstream users.

In summary, we see that our cost-sensitive approach brings better balance across
users, thus helping in the mitigation of the mainstream bias. In addition, we confirm
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Figure 4.6: Same as Fig. 4.5, but plotted against ecdf(mu ) by Sim instead of ecdf(test nDCG) in the baseline
model.
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that an implicit quantification of mainstreamness like Util works better than an explicit
quantification like Sim in steering the learning process towards better recommendations
for the users that receive low utility from the baseline model. In addition, we note that
the mitigation effect via Util does not decay with increasing data sparsity (refer back to
Table 4.1).

One could be tempted to argue that Util should obviously offer better results than Sim
when analyzing test nDCG because it is based on validation nDCG scores; test and vali-
dation scores should be highly correlated (we will come back to this in Section 4.5). After
all, both Table 4.2 and Fig. 4.5 analyze results by test nDCG . The argument made above
is that differences between mainstream and non-mainstream users can be immediately
identified by test scores, but for the sake of clarity and to avoid potentially unfair assess-
ment towards Sim, Table 4.3 reports the same results but separating users by Sim, while
Fig. 4.6 does so by plotting against Sim. While the results are less clear with this partition
of users, the table confirms that models trained with Sim are generally better at miti-
gating the bias than those trained with Util. In particular, results for the BeerAdvocate
dataset show that higher contrasts even lead to worse performance for the lower user
groups, suggesting that Sim is perhaps not properly identifying non-mainstream users.
The figure shows that Util improves over the baseline across all levels of mainstreamness
in the Amazon datasets, further suggesting that Sim identifies as non-mainstream users
that are probably not. In summary, and even though this comparison could in turn be
considered favorable to Sim (note that previously we assessed against test nDCG , not
against the validation nDCG calculated by Util), the results again support the use of Util
to quantify user mainstreamness and mitigate the bias.

4.5. DISCUSSION
A key assumption of our approach based on Util is that we can reliably use utility, mea-
sured as the accuracy on a validation set, to determine the weight that each user should
have in the training process. This implies that the accuracy on the validation set is a
good estimate of the accuracy on the test set, which is where the effect will ultimately
be assessed. If there was a low correlation between validation and test accuracy, the loss
function would apply high weights for users that do not really need it, limiting or even
altogether canceling the potential of our approach.

Intuitively, how well validation and test scores correlate is mainly determined by the
amount of data. If only a few interactions are involved in the calculation of accuracy, the
resulting scores will bear a high degree of noise or random error, thus lowering the cor-
relation. In principle, we would therefore use as much data as possible in the validation
and test sets. However, we would generally prefer to use all that data to actually train the
model, but we note that the validation scores are somehow part of the training process
itself, because they determine the weights.

A balance is therefore necessary, so we need to study the strength of the validation-
test scores correlation as a function of the number of interactions in their data partitions.
We did this by running the baseline FM model on different data partitions with varying
minimum numbers of relevant items in the training set (3, 4, 5 and 10), and validation
and test sets (1, 2, 3, 4 and 5 each). The actual split was conducted maintaining pro-
portions (i.e. for the combination of 4/3/3 minimum items per set, a user has 40% of
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Figure 4.7: Correlation between validation and test scores as a function of the amount of data used for training,
validation, and testing, for two sample datasets (most and least dense).

their relevant items for training, 30% for validation, and 30% for testing). We then mea-
sured the strength of the validation-test correlation via the RMSE of the scores and their
Spearman ρ correlation.

Fig. 4.7 shows that, as expected, the correlation increases (low RMSE, high ρ) with the
number of relevant interactions used in the validation and test sets. More interestingly, it
shows that the amount of training data has a much smaller and varying effect, so despite
it being a major factor to maximize model performance, it is not so to robustly assess
that performance. The plots indicate that requiring only one or two interactions in the
validation set would lead to noisy scores; four interactions seem the bare minimum. As
for the training set, the usual practice of having at least as much data as for validation
and testing still applies in this context of non-time-aware recommendation.

All in all, our suggestion for this line of research on mainstream bias that works at
the individual user level, is to have no less than four items per user in each of the three
standard data partitions. Because the strength of the correlation is a key factor in our
approach, we decided to require at least five to be on the safe side. In fact, we also ob-
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served that the effect of cost-sensitive learning in the validation sets is similar to what is
reported in Figs. 4.5 and 4.6.

4.6. CONCLUSIONS AND FUTURE WORK
In this paper, we tackled the challenge of mainstream bias in CF-based recommenda-
tion. The main aspect we focused on is to steer the process of mitigating this bias di-
rectly by the utility resulting from the recommendation model and data at hand. For this
purpose, we proposed an approach that assigns each user an importance weight during
training, with these weights defined in a cost-sensitive manner. By choosing to steer the
model directly towards the users that receive low utility, and not towards those that ap-
pear to be non-mainstream, we avoid the model to focus on users that already receive
high utility even if they were not expected to. This way, the model does focus on the
niche users that suffer from the bias.

Empirical results show that such models produce a more effective balance of the
recommendation utility among the mainstream and non-mainstream users, in a way
that is consistent across datasets with varying properties. In addition, we provide sug-
gestions regarding the minimum number of interactions to require when partitioning
datasets. Without enough interactions, research on mainstream bias at the level of indi-
vidual users might produce unreliable results.

For future work, we will first explore other ways to quantify mainstreamness. In the
implicit measurement sense, an evident question is whether other metrics such as AP ,
or even the combination of multiple metrics, work better at identifying niche users. Ad-
ditionally, we can think of ways to make the validation-test correlation robust to issues
like sample selection bias, for example via inverse propensity scoring. Another line is to
explore more principled approaches for an explicit quantification through an extensive
study of the factors that influence mainstreamness, such as the temporal dynamics.

Regarding our cost-sensitive learning approach, we will explore its generality, to see
how it works for underlying models other than FM or other ranking frameworks such as
pairwise and listwise. We will also investigate the combination of cost-sensitive and ad-
versarial learning strategies to mitigate mainstream bias: cost-sensitive to tell the model
where to focus on, and adversary to tell how.

Finally, we note that our focus in this paper has been on the effect of mainstream
bias mitigation on the users, but one could wonder about what effect it has on the items.
One hypothesis is that non-mainstream users are better served because the less popu-
lar items are now more likely to be recommended, so it would be interesting to study
whether mitigating one bias amplifies or mitigates other biases, such as popularity or
position.
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5.1. REFLECTION
We started this thesis by discussing user satisfaction as the prerequisite for the successful
deployment and exploitation of recommender systems. While a typical recommender
system involves multiple stakeholders, like product vendors and platform operators,
whose commercial interests also needs to be met, none of these interests can be met
without a solid user base satisfied with the recommendation service and therefore re-
turning to the platform for new transactions. We then also discussed the multi-faceted
nature of user satisfaction and concluded that recommendation accuracy is the precon-
dition of user satisfaction. We refer to accuracy as the ability of the system to push the
most relevant items for the user to the top of the recommendation list, where the term
relevant stands for the items that would match the preference profile of the user. Further
analysis focused on the consequences of the fact that training a recommender system is
essentially a machine learning task, the success of which critically depends on the crite-
rion to optimize for and the presence of imbalance in training data. This analysis led to
the definitions of two research questions that steered the research reported in this thesis.

Our first main research question (RQ1) was defined as follows: In order to achieve
the best possible accuracy for a broad population of users, should we optimize a recom-
mender system for the criterion we would evaluate it on? This question addresses an
important aspect of the process of learning to recommend, namely that it tries to opti-
mize a given criterion in order to maximize the accuracy across the users. Traditionally,
the choice for optimization is aligned with the metric for evaluation, with the hypothesis
that such alignment will lead to the model that maximizes the final goal. In Chapter 2, we
challenge this hypothesis in the context of ranking-oriented recommender systems with
binary user feedback. We look into several popular ranking-oriented evaluation met-
rics in information retrieval, namely nDCG , AP , RR and RBP , and use them directly as
the optimization target in two different learning paradigms, namely pairwise and list-
wise recommendation. For RBP , which has been largely overlooked in recommender
systems research, we further propose an effective method to optimize for it. Empirical
results show that it is indeed not necessary to make the alignment of the optimization
and evaluation criteria. Compared to directly optimizing for the metric used for eval-
uation, it could be more effective to optimize for some other metrics. In addition, the
results show that among all four metrics for optimization, optimizing the RBP-inspired
loss achieves the highest scores regardless of the metric used for evaluation. While the
superiority over other optimization alternatives is not always significant, RBP still pro-
vides a promising alternative metric to optimize for in ranking-based recommender sys-
tems. With the results indicating that the advantage in optimizing for RBP is achieved
for all users, but even more for those who are already well served, RBP could be an ideal
optimization target in many recommendation use cases focusing on user loyalty. How-
ever, if balanced recommendation service quality across the user population is desired,
this optimization approach may result in losing the users from the long tail.

A recommender system ideally provides recommendation service optimally tuned
to the preference profile of every user. However, the results from Chapter 2 show, once
again, that maximizing average accuracy does not guarantee that all users are served
sufficiently , even if the best possible optimization criterion is selected. Bias in train-
ing data makes it challenging to achieve this balance without extra intervention in the
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model. Among multiple sources of bias, the mainstream bias is an important reason for
causing the accuracy imbalance across the user population. This is because the pref-
erence information of the users with more data points (e.g., by being more active and
sharing preferences with other users) dominates in steering the process of learning the
recommendation mechanism. For achieving balanced recommendation quality over the
user population, we therefore conducted a dedicated investigation focusing on the im-
balance in training data and guided by our second main research question (RQ2): How
to mitigate the mainstream bias in recommender systems, so that different users or user
groups share a more balanced recommendation accuracy?

In Chapter 3 we design the process of learning the recommendation mechanism in
a way such that it aims, not only to maximize the recommendation accuracy, but also to
ensure a good representation of the intrinsic features of the user profiles independently
of the amount of interaction data. The rationale is that, by forcing the model into such
improved representation, it creates conditions for the recommendation mechanism to
serve underrepresented users better. In order to achieve this, we rely, next to the stan-
dard user-item interaction data, on extra information containing intrinsic user features
to enhance the user profiling. More specifically, we propose NAECF, which deploys the
process of reconstructing user review features as an adversary to collaborative filtering.
As such, this model learns both the traditional rating-based recommendation and aims
at retaining the intrinsic user features. Empirical results show that the proposed method
indeed has the accuracy-balancing effect we look for, that is, it helps non-mainstream
users more than the mainstream ones.

While Chapter 3 showed the potential of an adversarial mechanism, which focuses
on better user representations, in the mitigation of the mainstream bias. However, ask-
ing the model to optimize these representations is not sufficient to achieve the desired
balance in recommendation accuracy. In order for the model to focus on the users that
should receive better recommendations, we need to point it explicitly to them. To that
end, in Chapter 4 we test the idea of cost-sensitive learning from imbalanced data. We
now consider recommendation accuracy as an implicit but direct proxy for mainstream-
ness, and use it to directly intervene by weighing users proportionally to their non-
mainstreamness, thus making the cost of failing to serve them well higher in another run
of the training process. Next to the fact that the empirical results show the effectiveness
of this approach, this investigation also points to its other advantage, namely of being
contextualized within the recommendation model being learned. Since the mainstream
bias is rooted in training data, it may exhibit itself differently in different recommenda-
tion contexts. Therefore, instead of proposing a model-agnostic method relying on some
generic hypotheses on mainstreamness, we make a case in this chapter for coping with
mainstreamness dependent on the data and model at hand.

5.2. FUTURE WORK

Based on the insights provided in this thesis, we now point out some ideas that can serve
as a basis for future research in the field of recommender systems. We describe these
ideas in the following, according to the main topics addressed in this thesis.
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5.2.1. ON THE CHOICE OF OPTIMIZATION TARGETS

In Chapter 2, we show empirically that optimizing for RBP is more effective than the
usual alternatives in maximizing the recommendation accuracy. Full understanding of
this effectiveness could, however, be helped by a theoretical analysis of the superiority of
RBP . Such analysis would not only further strengthen that choice as a strong optimiza-
tion target, but also steer the discussion and future development of new optimization
targets and evaluation metrics.

In addition, we note that the research presented in Chapter 2 is limited to the case
of binary relevance, motivated by the vast amount of implicit feedback in recommender
systems indicating the presence of an event such as a click or playback. However, multi-
level relevance, for instance via graded ratings, is still crucial in recommender systems
and provides more fine-grained data regarding user preferences. While training pro-
cesses for binary relevance are simpler, turning graded relevance into binary incurs a
loss of information. Moreover, the dichotomization of relevance may contribute noise to
the training process if items of low utility are treated as relevant [133]. Previous research
has already explored the optimization of Graded Average Precision [115] and Expected
Reciprocal Rank [116], but choosing the optimal target for training in the multi-level rel-
evance scenario is still an open question that may steer follow-up work.

5.2.2. ON OPTIMIZING FOR MULTIPLE TARGETS

In Chapter 2, we set our aim at investigating the effectiveness of optimizing for one sin-
gle target, which is an accuracy-oriented evaluation metric derived from information
retrieval. But even when a single metric like RBP appears to maximize accuracy, it is
still possible that optimizing for multiple metrics simultaneously achieves even better
performance either on average or across the user base, as different metrics consider dif-
ferent aspects of the recommendation list and they could therefore complement each
other.

While the optimization of accuracy was motivated by the hypothesis that it is a
prerequisite for user satisfaction, beyond-accuracy criteria such as novelty, diversity,
serendipity and self-actualization remain important as well. This evidence the necessity
to see even the optimization of user satisfaction only as a multi-objective optimization
problem in which different objectives may conflict with each other. With the power of
advanced machine learning methods such as adversarial learning and multi-arm ban-
dits, this line of research could be further extended to the search for a good balance be-
tween accuracy and beyond-accuracy criteria across different stakeholders. Given that
the ultimate goal of recommender systems is to satisfy the interests of everyone involved,
it would be worthwhile to investigate how, for example, maximizing the recommenda-
tion accuracy for the user can be combined with maximizing the diversity for the product
vendor (e.g., in order to make sure the whole product stock is offered on the market). In
addition, Chapter 3 made it evident that we also need to consider other factors like bias
in data, which are related to balancing the quality of the recommendations across users.
One of the interesting research directions would therefore be to investigate further how
to make this multi-objective optimization even more effective.
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5.2.3. ON UNDERSTANDING MAINSTREAMNESS
In chapters 3 and 4, we used the recommendation accuracy obtained per user in a given
context as a proxy of mainstreamness, but we did not investigate what causes the defi-
cient accuracy. The reason can lie in the deviating patterns of interacting with the items
in the past compared to the majority of the users, or in the deviating taste focusing more
on the long-tail items, or in the imbalances in data availability due to differences in activ-
ity, or in something else. Understanding the reasons for deficient recommendation ser-
vice would lead to a better understanding of mainstream bias, which would ultimately
help fine-tune the mitigation effort to the varying characteristics of non-mainstream
users. Furthermore, if we look at the dynamic recommendation scenario in which users
change their interaction behavior and taste over time, the distribution of mainstream-
ness also varies, which needs to be taken into account by updating the recommendation
mechanism over time.

5.2.4. ON MITIGATING THE MAINSTREAM BIAS
In chapters 3 and 4, we contributed to the research on mitigating the mainstream bias
from two different perspectives: one method focusing on the identification of the users
who should receive better recommendations, and the other one mainly on how to help
the model produce those better recommendations. The next intuitive step would be
combining both in a unified framework to benefit from the expected synergy. Sec-
ond and more importantly, our contributions focus more on recommendation mod-
els, which is the in-processing stage in getting recommendations. However, this is not
necessarily the only choice. With bias being rooted in data and models incorporating
the interventions to mitigate this bias, it could be productive to manipulate the data
prior to training, resulting in less imbalanced data. With the emergence of fairness-
aware [29] and self-supervised data augmentation [143], designing such data manipu-
lations to compensate the original imbalance would offer more freedom than design-
ing model architectures. For the follow-up research, a possible direction is to first see
whether, and how much data augmentation could help the underrepresented users, for
which it would be useful to now what the source of under-representation is, as pointed
out in the previous section. If it comes from users being less active, then synthetic data
could help enhance the existing user-item interaction data. However, if the reason lies in
taste difference, even a full user-item matrix would bias the model, because for a small
group of users with deviating tastes insufficient neighboring users could be found for
reliable collaborative preference modeling. It is therefore worth investigating when to
do data pre-processing and when to do model-based in-processing for mainstream bias
mitigation, or even when and how to combine both effectively.
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SUMMARY

Recommender Systems have drawn extensive attention in recent decades, because they
are a powerful tool with the potential to help several business stakeholders –including
end users, sellers, and platform providers– through personalized recommendations. The
most important factor to make a recommender succeed is user satisfaction, which is
largely reflected by the recommendation accuracy. Therefore, one primary question in
recommender systems research is how to make all users enjoy good recommendation
accuracy. This thesis dives into this question from two different perspectives that, un-
fortunately, are at tension with each other: achieving the maximum overall recommen-
dation accuracy, and balancing that accuracy among all users.

The first part of this thesis focuses on the first perspective, that is, maximizing the
overall recommendation accuracy. This accuracy is usually evaluated with some user-
oriented metric tailored to the recommendation scenario, but because recommendation
is usually treated as a machine learning problem, recommendation models are trained
to maximize some other generic criteria that does not necessarily align with the crite-
ria ultimately captured by the user-oriented evaluation metric. Recent research aims at
bridging this gap between training and evaluation via direct ranking optimization, but
still assumes that the metric used for evaluation should also be the metric used for train-
ing. We challenge this assumption, mainly because some metrics are more informative
than others. Indeed, we show that models trained via the optimization of a loss inspired
by Rank-Biased Precision (RBP) tend to yield higher accuracy, even when accuracy is
measured with metrics other than RBP. However, the superiority of this RBP-inspired
loss stems from further benefiting users who are already well-served, rather than help-
ing those who are not.

This observation inspires the second part of this thesis, where our focus turns to
helping non-mainstream users. These are users who are difficult to recommend to ei-
ther because there is not enough data to model them, or because they have niche taste
and thus few similar users to look at when recommending in a collaborative way. These
differences in mainstreamness introduce a bias reflected in an accuracy gap between
users or user groups, which we try to narrow.

Our first effort consists in using side data, beyond the user-item interaction matrix,
so that users and items are better represented in the recommendation model. This will
be of benefit specially for the non-mainstream users, for which the user-item matrix
alone is ineffective. We propose Neural AutoEncoder Collaborative Filtering (NAECF),
an adversarial learning architecture that, in addition to maximizing the recommenda-
tion accuracy, leverages side data to preserve the intrinsic properties of users and items.
We experiment with review texts as side data, and show that NAECF leads to better rec-
ommendations specially for non-mainstream users, while at the same time there is a
marginal loss for the mainstream ones.
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Our second effort consists in explicitly signaling to the training process what users it
should focus on, that is, the non-mainstream ones. In particular, we propose a mecha-
nism based on cost-sensitive learning that weighs users according to their mainstream-
ness, so that they get more attention during training. Here we argue for not quantifying
mainstreamness directly, but rather its effect, and therefore weigh users depending on
how well they are served by a vanilla recommendation model. The result is a recom-
mendation model tailored to non-mainstream users, that narrows the accuracy gap, and
again at negligible cost to the mainstream users.
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