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Abstract

Europeana is a digital library of Europe’s cultural heritage, housing a large corpus of data representing

artworks, literature, historical locations and many culturally significant items. Europeana currently

relies of traditional text-matching retrieval, such as BM25, to facilitate their search and discovery

across millions of multilingual metadata-based records. However, these models are not capable of

semantic understanding and require additional treatments to facilitate multilingual retrieval which

costs Europeana resources, these treatments entail translating queries and data from other language

into English and enriching content by adding entities from linked open data. Europeana’s current

methodology is ultimately limited in its ability to provide semantically relevant multilingual search

results.

This thesis investigates the application of Neural Information Retrieval (NIR) to enhance Europeana’s

search capabilities. This investigation aims to assess the impact of NIR on multilingual retrieval and

retrieval performance while also determining the value of existing translation and enrichment processes.

To support this investigation, we contribute by developing a structured and preprocessed dataset

specifically for NIR, as no such dataset previously existed for NIR. We conduct an extensive evaluation

of NIR models, analyzing the impact of fine-tuning, query treatments, and document treatments on

retrieval quality. Additionally, we assess the computational requirements, scalability, and practicality of

deploying NIR, identifying trade-offs in retrieval efficiency and resource consumption, to provide an

idea of an infrastructure Europeana would need to implement NIR.

This research required meticulous planning across all stages—from data collection and formatting to

model training and evaluation—since applying Neural IR at this scale for metadata search is new for

Europeana. Therefore, research not only provides insights into the viability of NIR as a replacement or

enhancement to Europeana’s existing search system but also lays the foundation for future advancements

in multilingual retrieval for Europeana.

Through this thesis, we found that Neural IR models can offer promising improvements in multilingual

retrieval and semantic search, reducing reliance on exact term matching. Our analysis suggests that not

all of Europeana’s current preprocessing treatments are necessary for NIR models, as they inherently

capture cross-lingual relationships more effectively than BM25, though the benefits vary depending on

the model and configuration used. Overall, we recommend that a hybrid retrieval system that leverages

both lexical and neural approaches may be the most practical solution for Europeana and warrants

further exploration.

The integration of NIR presents several challenges, particularly in terms of infrastructure and evaluation.

NIR models are sensitive to changes in document structure and content, requiring careful consideration

of indexing and fine-training. Furthermore, while these models improve semantic search, they may

struggle with entity-based queries, where BM25’s exact matching approach remains valuable.

A major limitation of this study was the absence of explicit relevance judgements in our dataset,

which constrained our ability to make definitive conclusions about retrieval effectiveness. Future work

should prioritize the development of a comprehensive evaluation framework, incorporating expert and

user-based relevance assessments, to enable a more robust analysis of NIR’s impact.
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1
Introduction

1.1. Multilingual search in Europeana
Europeana is a digital library aggregating cultural heritage content from libraries, archives, and museums

across Europe, providing access to a vast and diverse collection. This collection contains various media

types, languages, and metadata quality, often enriched with additional entity-based information from

supplemental sources like Wikipedia, and in some cases data is also translated into English; coming

from the Europeana Translate project
1
. Europeana stands as a platform for showcasing Europe’s shared

cultural heritage. By digitizing and aggregating content from diverse institutions, Europeana empowers

researchers, educators, and individuals to learn about and explore Europe’s rich history and culture.

Currently, Europeana is powered by the Solr engine with the BM25 algorithm as its current search

method. While being able to handle large-scale indexing and retrieval efficiently, the Solr engine with

BM25 has limitations when addressing multilingual data. BM25, primarily a keyword-based search

algorithm, struggles to account for semantic relationships, contextual understanding, and multilingual

retrieval [35], which are critical for a collection as diverse as Europeana’s. This creates challenges

in delivering highly relevant and nuanced search results, especially when queries involve different

languages or lacks explicit keyword matches. Exploring more advanced methods, such as Neural

Information Retrieval (NIR) models, could potentially overcome these limitations and provide a more

accurate search experience for diverse users.

Europeana’s metadata is presented in more than 40 languages, from around Europe. The collection’s

heterogeneity extends to varying metadata quality types
2
. Many items are classified into content tiers

(0 to 4) and metadata tiers (A to C) based on the level of detail in the data. These tiers help standardize

and differentiate the depth of information.

Metadata files contain details such as media type, dimensions, color components, orientation, language

labels, creation dates, and links to related resources. Items are also enriched with entities such as names,

dates, and geographical locations. This rich metadata enables more meaningful and context-aware

retrieval within Europeana’s collections. All data is standardized through the Europeana Data Model

(EDM)
3
. Figure 1.1 illustrates an example of the raw Europeana metadata.

Europeana conducts two types of augmentations on their data: They enrich some of the metadata

fields from sources such as Wikipedia; these are entity based, such as adding names, places, locations,

etc identified in the object in other languages. Additionally some other fields are even translated into

English, if it is another language. These methods are quite costly to Europeana as they have over 62

million documents and the need to enrich and translate all of them would cost time and considerable

resources.

1
https://pro.europeana.eu/project/europeana-translate

2
https://pro.europeana.eu/post/publishing-framework

3
https://pro.europeana.eu/page/edm-documentation

1
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1 <ore:Proxy rdf:about="http://data.europeana.eu/proxy/europeana/2021672/
resource_document_mauritshuis_670">

2 <dc:date rdf:resource="#1665%2F1665"/>
3 <dc:identifier >resource_document_mauritshuis_670 </dc:identifier >
4 <dcterms:medium rdf:resource="http://data.europeana.eu/concept/2728"/>
5 <edm:europeanaProxy >true</edm:europeanaProxy >
6 <ore:proxyFor rdf:resource="http://data.europeana.eu/item/2021672/

resource_document_mauritshuis_670"/>
7 <ore:proxyIn rdf:resource="http://data.europeana.eu/aggregation/europeana/2021672/

resource_document_mauritshuis_670"/>
8 <ore:lineage rdf:resource="http://data.europeana.eu/proxy/provider/2021672/

resource_document_mauritshuis_670"/>
9 <edm:type>IMAGE</edm:type>

10 </ore:Proxy>
11 <ore:Proxy rdf:about="http://data.europeana.eu/proxy/provider/2021672/

resource_document_mauritshuis_670">
12 <dc:creator>Johannes Vermeer </dc:creator>
13 <dc:date >1665 - 1665</dc:date>
14 <dc:description xml:lang="nl-NL">Meisje met de parel is het beroemdste schilderij van Vermeer

. Het is geen portret, maar een tronie : een fantasiekop. Tronies beelden een
bepaald type of karakter uit, in dit geval een meisje in exotische kledij, met een
oosterse tulband en een onwaarschijnlijk grote parel in het oor. Vermeer was de meester
van het licht. Hier is dat te zien aan het zachte in het meisjesgezicht , de glimlichtjes
op haar vochtige lippen. En aan de glanzende parel.</dc:description >

15 <dc:description xml:lang="en-GB">Girl with a Pearl Earring is V e r m e e r s most famous
painting. It is not a portrait, but a tronie a painting of an imaginary figure.
Tronies depict a certain type or character; in this case a girl in exotic dress, wearing
an oriental turban and an improbably large pearl in her ear. Johannes Vermeer was the
master of light. This is shown here in the softness of the g i r l s face and the glimmers
of light on her moist lips. And of course, the shining pearl.</dc:description >

16 <dc:format >65 cm</dc:format>
17 <dc:format >39 cm</dc:format>
18 <dc:format >44.5 cm</dc:format>
19 <dc:format >74 cm</dc:format>
20 <dc:identifier >670</dc:identifier >
21 <dc:title xml:lang="nl-NL">Meisje met de parel</dc:title>
22 <dc:title xml:lang="en-GB">Girl with a Pearl Earring </dc:title>
23 <dc:type xml:lang="nl-NL">schilderij </dc:type>
24 <dc:type xml:lang="en-GB">painting </dc:type>
25 <dcterms:medium xml:lang="nl-NL">doek</dcterms:medium>
26 <dcterms:medium xml:lang="en-GB">canvas </dcterms:medium>
27 <edm:europeanaProxy >false</edm:europeanaProxy >
28 <ore:proxyFor rdf:resource="http://data.europeana.eu/item/2021672/

resource_document_mauritshuis_670"/>
29 <ore:proxyIn rdf:resource="http://data.europeana.eu/aggregation/provider/2021672/

resource_document_mauritshuis_670"/>
30 <edm:type>IMAGE</edm:type>
31 </ore:Proxy>

Figure 1.1: Example of Europeana XML metadata of "Girl with a Pearl Earring" by Vermeer

1.2. Background
1.2.1. Information retrieval
Information Retrieval (IR) is the task of finding relevant information or documents from an extensive

collection based on a user’s query [38]. The primary objective of IR systems is to rank documents in

order of their relevance to the query. IR has been foundational to search engines, recommendation

systems, and knowledge discovery platforms, among other applications. Traditional IR approaches use

lexical matching, statistical methods, and heuristic-based algorithms to connect queries with relevant

documents. These systems typically compare the terms in a query with those in the document collection

to measure relevance. However, such methods are inherently limited in understanding the semantics of

queries and documents, mainly when dealing with natural language queries and multilingual data.
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1.2.2. Mono-, Cross-, Multilingual-Information retrieval
Monolingual Information Retrieval (IR) refers to the retrieval of information where both the query and

the documents are in the same language [28]. It is the traditional form of IR, where models are trained

and optimized to handle and rank documents written in a single language.

Cross-lingual Information Retrieval (CLIR) involves retrieving documents written in a different language

than the query. This approach is crucial in scenarios where users may need to access information

in multiple languages but can only query in one language. CLIR systems often rely on translation

mechanisms, such as neural machine translation, to bridge the language gap between queries and

documents, enabling users to retrieve relevant information from a multilingual corpus [28].

Multilingual Information Retrieval (MLIR) extends this concept further by enabling the retrieval of

documents across multiple languages, regardless of the query language. MLIR systems are designed to

simultaneously understand and process queries and documents in various languages, often leveraging

multilingual large language models like multilingual-BERT or XLM-Roberta. These systems can handle

multiple languages within the same retrieval process, providing a more inclusive and comprehensive

search experience for users [28].

1.3. Document search at Europeana
Europeana’s current search functionality is primarily monolingual, relying on the BM25 algorithm

for keyword-based retrieval. To address the multilingual nature of its collection, Europeana has

implemented a pilot project on its Spanish portal only available to registered users
4
, utilizing English as

a pivot language. It is important to note that the enrichment process is always done, but the translation

has been done only on a part of the collection (in the framework of a specific project). In this approach,

user queries in other languages are translated into English to retrieve documents with English metadata,

aiming to surface relevant results that might not be available in the original language of the query.

However, this method introduces challenges:

• Noisy Query Translations: Translating queries without sufficient context can lead to inaccuracies,

resulting in less relevant search results.

• Costly and Incomplete Document Translations: Translating the extensive and ever-growing

collection is resource-intensive, and incomplete translations can hinder the retrieval of important

information.

• Contextual Limitations: When using a lexical matching algorithm such as BM25, context is

not captured, and this is amplified by translating words into English, leading to potential

misinterpretations.

These issues were highlighted in a study [22] by Europeana which evaluated the effectiveness of the

pivot language approach and identified areas for improvement.

The core research challenge is to explore how Europeana’s search functionality can be enhanced to more

effectively handle its multilingual collection. This investigation will focus on introducing end-to-end

multilingual NIR models to the Europeana dataset and evaluate their efficiency and effectiveness

compared to Europeana’s current approach based on BM25. This study will assess the impact of the

metadata enrichment’s and english-translations on retrieval quality while determining whether if NIR

can improve search and reduce Europeana’s reliance on these costly methods. Additionally, the research

will examine the trade-offs between these models’ efficiency and effectiveness while providing insights

an infrastructure that is well suited for this task. It is important to note that although there is full-text

included in the Europeana collection for some types of items (e.g. newspapers), the data we will

be dealing with contains only metadata because the search on this type of data is the main service

Europeana provides.

By leveraging the semantic understanding capabilities of NIR, the thesis aims to investigate a more

effective solution for managing and searching Europeana’s collection.

4
https://www.europeana.eu/es
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1.4. Research Scope
1.4.1. Objectives
The primary objective of this project is to explore how NIR approaches can be used for the search

functionality of Europeana’s digital library. This involves investigating various NIR models and

techniques, experimenting with various approaches, assessing their applicability within Europeana’s

needs, evaluating their performance against the current BM25-based method, and examining whether

the enrichment’s and translations can be made redundant using NIR.

Furthermore, this investigation serves as Europeana’s initial step into NIR. Since their current data

structure is not optimized for NIR, a key aspect of this research will be developing a methodology for

transforming Europeana’s XML documents (as seen in figure 1.1) into a format suitable for indexing,

training, and querying with NIR models. This will involve structuring and curating the dataset to align

with the requirements of modern retrieval techniques while preserving the integrity and richness of

Europeana’s metadata.

Therefore, in this study we will:

• Investigate various state-of-the-art NIR models and the application of these models into Euro-

peana’s extensive collection.

• Examine the applicability of these models and analyse the results in terms of efficiency and

identify the requirements needed to scale the specific approaches tested to the Europeana use case

• Evaluate the performance of NIR for Europeana’s collection, as the focus will be on assessing

its effectiveness in terms of multilinguality, relevance, and the impact of Europeana’s query and

data augmentation. This analysis will help determine how well NIR models handle Europeana’s

diverse, multilingual content and whether enrichments and translations are necessary to improve

search with NIR.

• Building a dataset for NIR: Europeana’s existing data is structured for Solr, which is not directly

compatible with NIR models. To enable indexing, training, and querying with NIR, a key objective

of this investigation is to develop a methodology for processing and reformatting the dataset for

N. This includes extracting relevant fields, structuring passages for embedding-based retrieval,

aligning queries with corresponding documents, and ensuring multilingual consistency.

1.4.2. Research questions
To guide this exploration, the following research questions(s) will be addressed:

How can NIR improve Europeana’s search by handling multilingual and diverse metadata more

effectively than the current BM25-based approach?

The following subquestions will be addressed throughout the investigation to thoroughly answer

the main research question.

Subquestions:

• Subquestion 1 pertains to quality of search: How do different NIR models and treatments—particularly

the use of translation, enrichment stages, and fine-tuning on Europeana’s dataset—impact retrieval

performance compared to the BM25-based approach?

• Subquestion 2 pertains to the implementation of NIR within Europeana: What are the infrastruc-

tural and efficiency considerations for implementing NIR in Europeana?

1.4.3. Contributions
Overall, our contributions include:

• Development of structured datasets for NIR in Europeana, along with a methodology for extracting

and preparing these datasets for indexing, training, and querying.

• Evaluation of NIR models concerning model selection, fine-tuning strategies, query augmentations,

and document augmentations, assessing their impact on retrieval quality.
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• Examination of the effectiveness and efficiency of deploying NIR models, including an analysis of

computational requirements and infrastructure needs for implementation in Europeana.



2
Literature

2.1. Search in Information retrieval
Search in information retrieval involves retrieving relevant documents from a collection based on user

queries. The core principle underlying IR is the representation of queries and documents in a form that

enables an efficient similarity computation. The choice of representation and similarity function varies

between classical and neural approaches, leading to distinct retrieval mechanisms and performance

characteristics.

2.1.1. Classical
Data representation in classical IR
Classic IR systems rely on lexical representations, where documents and queries are represented based

on their explicit word occurrences. These representations do not consider word meanings and focus on

the frequency and distribution of terms within a document.

One of the most fundamental lexical representations is the Bag-of-Words (BoW) model [38], which treats

each document as an unordered set of words, disregarding syntax and word order. This simplistic

representation enables computational efficiency but loses contextual and semantic information.

To refine lexical representations, weighting schemes like Term Frequency-Inverse Document Frequency

(TF-IDF) [33] are applied. TF-IDF assigns importance to terms based on two factors:

• Term Frequency (TF): Measures how often a term appears in a document.

• Inverse Document Frequency (IDF): Downweights common terms by assigning higher importance

to rare but meaningful words.

TF-IDF enhances retrieval by prioritizing distinguishing terms over common ones, making it a cornerstone

of traditional IR ranking techniques.

To facilitate efficient search, classical IR relies on inverted indexes, a data structure that maps terms to the

documents in which they appear. This indexing strategy significantly accelerates retrieval by allowing

systems to directly access relevant documents without scanning the entire corpus. However, due to

their reliance on exact term matching, inverted indexes struggle with challenges such as synonymy

(different words with the same meaning) and polysemy (words with multiple meanings), leading to

retrieval limitations.

Another representation of queries and documents in classic IR is the Vector Space Model (VSM) [24].

In such systems, both queries and documents are represented as TF-IDF weighted vectors, and their

relevance is determined by measuring the similarity of the vectors. This ensures that documents with

similar term distributions rank higher, regardless of length differences.

6
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Search and similarity in Classical IR
Lexical matching forms the backbone of classical IR systems. It involves matching query terms to

document terms based on their surface forms, making it straightforward and computationally efficient.

Cosine similarity [37] is a fundamental in classical IR, particularly in Vector Space Models (VSM), where

both queries and documents are represented as high-dimensional vectors. It calculates the cosine of the

angle between these vectors, determining how similar they are based on term overlap and distribution.

One of the most widely used lexical matching algorithms is BM25 (Best Match 25) [34], a probabilistic

ranking function that scores documents by considering TF-IDF, and document length normalization.

BM25 calculates the relevance of a document 𝐷 to a query 𝑄 using the following formula:

Score(𝐷, 𝑄) =
∑
𝑡∈𝑄

IDF(𝑡) · 𝑓 (𝑡 , 𝐷) · (𝑘1 + 1)

𝑓 (𝑡 , 𝐷) + 𝑘1 ·
(
1 − 𝑏 + 𝑏 · |𝐷|

avgdl

) ,
where 𝑓 (𝑡 , 𝐷) is the term frequency of t in 𝐷, |𝐷| is the document length, avgdl is the average document

length in the collection, and 𝑘1 and 𝑏 are tunable parameters. The Inverse Document Frequency (IDF) is

used to penalize terms that appear in many documents, reducing their influence.

2.1.2. Neural
While classical IR techniques like TF-IDF and BM25 provide strong baselines, they rely on exact

term matching and cannot capture contextual or semantic relationships between words. As a result,

they struggle with synonyms, polysemy, and multilingual search. NIR addresses these challenges

by leveraging deep learning models to create representations that capture semantic meaning beyond

surface-level term matching.

Data representation in NIR
An embedding in natural language processing (NLP) is a technique that represents words, phrases, or

entire texts as vectors of real numbers in a continuous vector space [6]. This representation captures

deeper semantic information allowing words with similar meanings or functions to be positioned close

to each other in this space.

Embeddings are fundamental in NLP and IR as they enable machine learning models to process and

understand text data more effectively by converting text into a numerical form that models can interpret.

Embedding generation approaches have significantly advanced with integrating deep learning models,

particularly those based on transformers like BERT (Bidirectional Encoder Representations from Trans-

formers) [12]. These models operate on tokens, which are the fundamental units of text representation.

A token can be a word, subword, or even a character, depending on the tokenization method used.

Tokenization breaks text into these smaller units before converting them into vector embeddings.

BERT has revolutionized IR by learning contextual relationships between words through bidirectional

processing, capturing the full context of a word by considering the words that come before and after

it [12]. DistilBERT is a streamlined version of BERT, designed to be smaller, faster, and more efficient

while retaining much of BERT’s capabilities [36].

Vector storage systems such as Milvus and Faiss are designed to store embeddings in a manner that

allows them to be retrieved at scale.

Milvus is an open-source vector database that supports various index types and metrics, making it ideal

for handling large-scale data with real-time query performance. Milvus can manage high-dimensional

vectors (up to 32,000+ dimensions), which benefits Europeana’s extensive collection.

FAISS, developed by Meta AI, excels at high-dimensional vector similarity searches, especially with GPU

acceleration. It is most suitable for tasks where efficiency is paramount, such as multi-vector searches.

While FAISS has no fixed upper limit on vector dimensions, its performance and scalability is primarily

determined by the available memory and computational resources of the machine(s) it is running on.

To facilitate quick searches, indexes are created that organize vectors in a way that allows the system to

rapidly find and compare them. Techniques like Approximate nearest neighbor (ANNs) algorithms
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are used to enhance efficiency by reducing search complexity and enabling fast similarity comparisons

in high-dimensional spaces [30]. Instead of exhaustively comparing a query vector with all stored

embeddings, ANN methods approximate the nearest neighbors by first partitioning the search space

and then searching only the most relevant regions.[30].

Search and similarity in NIR
Vector search involves comparing vectors to determine their similarity to one another. Given a textual

query, the query is first embedded using the same embedding model as the indexed data. The search

process then finds vectors in the database that are most similar to the query vector based on a similarity

measure such as cosine similarity, inner product, or Euclidean distance [41].

As mentioned earlier, cosine similarity measures the angle between two vectors, making it useful for

text-based retrieval where magnitude differences are less relevant. A higher cosine similarity score

indicates that two vectors point in the same direction, meaning they are semantically similar. Inner

product similarity, on the other hand, directly measures the dot product between vectors, emphasizing

magnitude and direction. This makes it useful when vector norms carry meaning, such as ranking

document relevance in neural retrieval models. [41].

ANN algorithms play a crucial role in optimizing this process. Instead of comparing the query vector to

every vector in the dataset, ANN techniques group similar vectors into clusters using similarity metrics.

At search time, the system narrows down the search space to a cluster of vectors likely to be relevant to

the query, significantly speeding up the retrieval process while maintaining acceptable accuracy [30].

A crucial ranking function in NIR is MaxSim, a method often used in neural retrieval. Unlike traditional

retrieval methods that compare entire document embeddings, MaxSim operates at the token-level,

identifying the most relevant passage by maximizing the similarity between individual query and

document token embeddings. This fine-grained approach enhances retrieval precision, especially in

cases where different parts of a document contribute differently to relevance.

The combination of efficient vector storage, optimized search techniques, and fine-grained ranking

methods enables modern NIR systems to handle large-scale, high-dimensional data efficiently.

Sparse and dense embeddings
Sparse embeddings represent text using high-dimensional vectors with many zero entries, tradition-

ally generated through TF-IDF methods [38]. These embeddings are computationally efficient and

interpretable, making them well-suited for traditional IR tasks. However, sparse embeddings struggle

to capture the semantic relationships between terms, as they rely solely on the frequency of word

co-occurrence within a document or corpus [27].

Dense embeddings, on the other hand, leverage neural network models to encode text into continuous

vector representations [38]. These vectors are more detailed and capture more information than sparse

vectors. Dense embeddings enable IR systems to retrieve documents based on semantic similarity rather

than exact keyword matches, allowing for more nuanced and accurate retrieval [38].

The shift from sparse to dense embeddings has marked a significant paradigm shift in IR, enabling

models to understand deeper relationships within text. NIR methods build on this foundation by

combining dense embeddings with advanced deep learning architectures to enhance search results’

relevance and diversity.

While dense embeddings provide superior semantic understanding, sparse embeddings remain widely

used due to their interpretability, efficiency, and effectiveness in resource-constrained environments.

Many modern IR systems employ hybrid models, combining sparse and dense representations for

improved retrieval performance [1].

Quantization for Dense and Sparse Vectors
Quantization techniques are employed to reduce memory usage and improve computational efficiency

during vector search. Product quantization (PQ) is used for dense vectors, which compresses vectors by

dividing them into smaller subspaces, significantly enhancing search speed without compromising

accuracy. Both Milvus and FAISS support PQ, allowing them to handle extensive collections of high-

dimensional vectors effectively. In addition, sparse vectors, such as those used in some of the neural
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models, are indexed using sparse inverted indexing methods in Milvus - a feature not supported on

FAISS. These methods ensure that the many zero values in sparse data are efficiently managed, allowing

for faster retrieval.

2.1.3. Monolingual NIR models
The NIR models discussed earlier—dense embeddings, ANN-based retrieval, and fine-grained rank-

ing—are instantiated in advanced retrieval architectures such as SPLADE and ColBERT. These models

exemplify how modern retrieval systems extend beyond classical lexical matching by leveraging deep

learning to redefine data representation and similarity search.

A significant monolingual IR model is SPLADE (Sparse Lexical and Expansion model) [14]. SPLADE is

an extension of sparse representations that incorporates neural contextualization while maintaining

compatibility with classical IR indexing techniques. SPLADE addresses the limitations of traditional

Bag-of-Words (BOW) models and dense embedding approaches by predicting the importance of terms

in documents using logits from BERT’s masked language modeling (MLM). The model generates sparse

vectors for documents and queries, which can be efficiently indexed using inverted indexes—a technique

reminiscent of traditional IR systems. At search time the encoded query is used by an inverted index to

match terms between the document and the query [14].

ColBERT (Contextualized Late Interaction over BERT) exemplifies the dense embedding paradigm by

structuring retrieval around fine-grained token-level embeddings [15]. Unlike other NIR techniquess,

which ranks documents based on the entire document representations, ColBERT encodes each token in

the query and document separately into dense vectors. This aligns with the token-level embeddings

described earlier in NIR, where embeddings are not fixed but instead context-dependent. The pipeline

begins by separately encoding the query and document using a BERT-based encoder. Each token is

transformed into a high-dimensional vector, capturing its contextual meaning. These token-level vectors

are then stored for documents in a pre-computed, indexed format, which allows for efficient reuse during

retrieval. When a query is processed, ColBERT uses its MAXSim operator to compute the maximum

similarity (via inner product) between each query token vector and all document token vectors. During

the search, ColBERT performs an initial retrieval stage to identify a candidate set of potentially relevant

documents using approximate nearest neighbor (ANN) techniques on the pre-computed embeddings.

These candidate documents are then reranked using ColBERT’s late interaction mechanism, which

evaluates fine-grained token-level similarities between the query and document embeddings via inner

product. This reranking step ensures that ColBERT refines the relevance ranking by focusing on

token-level matches critical for precise retrieval.

2.2. Multilingual search in Information retrieval
2.2.1. Classical approaches
Classical approaches to multilingual search in IR primarily rely on lexical-based methods that adapt

traditional IR techniques to handle multiple languages. These methods are typically designed to

either create separate indexes for different languages or translate queries and documents to a common

language before performing retrieval. While effective in structured multilingual environments, these

classical approaches still struggle with semantic mismatches, translation errors, and resource constraints

in low-resource languages.

Language-specific indexing entails creating separate indexes for each language present in a corpus of data

[9]. Queries are processed in their original language and are then matched against the corresponding

language index. In this method, separate indices are created for each language, with each index

configured with language-specific analyzers tailored to the characteristics of that particular language.

At search time, queries are directed to the appropriate language-specific index based on the identified

language of the query, ensuring that the search leverages the correct linguistic processing for accurate

retrieval.

Query or Document translation approaches typically involve translating into a target or pivot language of

the documents collection using bilingual dictionairies or machine translations systems (which involves

neural learning models to translate but not for retrieval).An example of this is by Fujii et al. [13]. In

this paper, the authors address the challenge of retrieving English documents using Japanese queries.
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They employ a method where Japanese queries are translated into English using a combination of

dictionary-based translation and transliteration techniques. The translated queries are then used to

perform retrieval on an English document collection utilizing traditional lexical matching methods.

2.2.2. Neural approaches
Unlike classical methods that rely on explicit translation or separate indexes, neural approaches directly

encode multilingual text into a shared representation space. These methods can be categorized into

multilingual embeddings and neural retrieval techniques.

Multilingual Pretrained Language Models (MPLMs) are common methods to generate embeddings for

data in a multiple language and represent them in the same latent space. MPLMs learn cross-lingual

representations to facilitate search and retrieval across different languages. Models such as mBERT,

XLM, and XLM-R have significantly advanced cross-lingual understanding in IR tasks by encoding

semantic relationships across languages:

• mBERT: A multilingual extension of BERT, mBERT is trained on a masked language modeling

objective across 104 languages using a shared vocabulary. This training allows it to learn language-

agnostic representations, supporting effective cross-lingual transfer tasks such as translation and

retrieval [20].

• XLM: Building on mBERT, XLM introduces a translation language modeling (TLM) objective,

which aligns representations between languages by training on parallel sentence pairs. This

approach improves the model’s performance on tasks requiring cross-lingual understanding,

including retrieval and machine translation [17].

• XLM-R: A more advanced model, XLM-R is trained exclusively on monolingual corpora from a

significantly larger and more diverse dataset. This enables it to achieve superior performance

across multilingual tasks, particularly in low-resource languages, by generalizing better across

diverse linguistic contexts [10].

Once text is embedded in a multilingual vector space, NIR systems use various retrieval methods; vector

database enabled retrieval and dense vector search to find the most relevant documents.

• Jina-Colbert v2 [2]: Built on XLM-R, this ColBERT-style model extends multilingual retrieval

without using language-specific adaptations or embeddings. Uses separate query/document

encoding followed by late interaction matching via inner product similarity, improving precision

on multilingual retrieval tasks [2].

• Splade-X [3]: Adapted for Cross-Language Information Retrieval (CLIR) from SPLADE, this model

generates sparse vector representations for documents and queries while leveraging multilingual

BERT (mBERT) . By expanding terms based on BERT’s masked language modeling (MLM)

predictions, SPLADE-X reduces noise and enhances retrieval efficiency.

• TranslateDistill [39]: Combines machine translation (MT) and knowledge distillation to train

dense retrieval models for CLIR without direct translation during retrieval . Machine translation

standardizes data, allowing documents in multiple languages to be mapped into a common

representation space. A teacher-student distillation approach transfers knowledge from a larger

teacher model to a lighter, faster student model optimized for retrieval.

Neural approaches to multilingual IR focus on learning cross-lingual representations and optimizing

retrieval through vector search techniques. Multilingual Embeddings ensure text from different

languages is represented in a unified vector space. Neural Retrieval Techniques (Jina-ColBERT-v2,

SPLADE-X, TranslateDistill) utilize these embeddings and apply to enable scalable and accurate

multilingual search and reduce reliance on explicit translations.

The effectiveness of these multilingual embeddings and retrieval techniques depends not only on their

architecture but also on how they are trained. Different training strategies influence a model’s ability

to generalize across languages, directly impacting retrieval performance in multilingual settings. For

instance, English Training (ET) trains models exclusively on English data but often lacks the linguistic

diversity needed for robust cross-lingual performance. In contrast, Multilingual Translate Training

(MTT) directly exposes models to the same data in multiple languages during training, improving their

ability to handle diverse queries. MTT can be implemented using mixed-language batches (MTT-M) or
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single-language batches (MTT-S). Research shows that MTT-M, which immerses the model in diverse

linguistic contexts, generally outperforms MTT-S and ET, demonstrating the effectiveness of a truly

multilingual training environment in enhancing retrieval performance across languages [18].

2.2.3. Training and fine-tuning
NIR models require both initial training and fine-tuning to achieve optimal performance in multilingual

settings. Training typically involves learning general retrieval representations from large-scale datasets,

while fine-tuning adapts pre-trained models to specific tasks or domains with data that closely aligns

with the intended use case. In multilingual IR, fine-tuning is crucial for improving cross-lingual

generalization and retrieval performance.

Negative sampling
To conduct training and fine-tuning, having positive and negative references for a query is essential

because they help the model distinguish between relevant and irrelevant examples. This contrastive

learning approach enables the model to weigh the importance of various features to determine relevance.

In information retrieval, sampling negatives are often done using a baseline model such as BM25.

For negative sampling, the simplest approach is to take results beyond the top-K retrieved passages as

negatives. For instance, negatives are sampled from positions K+1 onward, ignoring the highest-ranked

results, which are more likely to overlap with the query in terms of lexical features. While effective, this

method risks biasing the model against documents with high query-term overlap [4]. Another strategy

focuses on sampling passages that match query tokens but do not contain the correct answer or are

contextually dissimilar to the query. To identify these passages, cosine similarity between the query and

potential negatives can be calculated, selecting the least similar passages as stronger negatives [29].

Negative sampling strategies tailored for multilingual settings include [44]:

• Mixed-Language Batches: By combining passages in different languages within the same batch,

models are trained to rank cross-lingual pairs effectively. This approach has been particularly

successful in training multilingual NIR models .

• Single-Language Batches: Alternatively, some strategies focus on sampling negatives from a

single language per batch to isolate the effect of language-specific training. While less effective

in generalizing across languages, this method can reduce computational overhead and memory

requirements.

• Round Robin Strategies: This approach repeats the same query with passages in various languages,

creating multilingual triples. While effective, memory limitations often constrain the number of

queries that can be processed in a single batch.

One popular technique in training NIR models is the use of in-batch negatives [25], where negative

examples for a query are sampled from the results retrieved for other queries in the same batch. This

method involves running a batch of queries, retrieving results using BM25, and constructing a similarity

matrix (e.g., via cosine similarity). The top result for a query serves as the positive example, while all

other results are considered negatives.

Training NIR models
Training typically begins with large-scale unsupervised pair training using in-batch negatives, followed

by smaller-scale triplet fine-tuning [2]. This two-step process significantly improves performance

compared to training on triplet data alone. Additionally, incorporating synthetic translated data during

training enhances the model’s multilingual capabilities

• Single-Vector Models: Training typically begins with large-scale unsupervised pair training

followed by smaller-scale triplet fine-tuning. This two-step process significantly improves

performance compared to training on triplet data alone. Additionally, incorporating synthetic

translated data during training enhances the model’s multilingual capabilities [2].

• Multi-Vector Models: Approaches such as ColBERT use multiple smaller embeddings for tokens

instead of a single large vector for queries and passages. These models benefit from techniques

like cross-encoder distillation, self-mined hard negatives, and multilingual batching [2].
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• Negative Sampling Techniques: Different strategies exist for obtaining negatives, such as BM25-

based negatives, hard negatives, and in-batch negatives, each providing distinct advantages for

model training [25].

Fine-Tuning NIR Models for Multilingual Retrieval
Fine-tuning is the process of adapting a pre-trained NIR model to a specific task or domain by continuing

training on a smaller, task-specific dataset.

For multilingual settings, several approaches to fine-tuning have been explored:

• Language-Mixing Strategies: Mixed-language batching strategies, such as Multilingual Translate-

Train (MTT), expose the model to documents and queries in multiple languages within the same

batch. This method, referred to as MTT-M, has been shown to outperform single-language

batching (MTT-S) in terms of cross-lingual retrieval performance by reducing language bias and

improving the alignment of multilingual semantic spaces [18].

• Data Language Composition: Some models construct training triples exclusively in a single

language, avoiding cross-language pairs within individual triples. In contrast, other approaches,

such as “mix passages” and “mix entries,” introduce diversity by allowing passages in a triple to

be in different languages, which directly trains the model to handle cross-lingual ranking [18][2].

• Multilingual Datasets: High-quality multilingual training datasets can be generated via machine

translation or human annotation. While machine-translated datasets provide scale, human-

generated datasets tend to deliver higher quality and contextual relevance [7].

2.2.4. Evaluating fine-tuned models
Research [19] indicates that models fine-tuned on specific data formats perform optimally when

evaluated in the same format. Here format refers to the structure or type of data present in the corpus. In

the context of Europeana’s metadata this would encompass the document enrichments or translations.

For instance, a study on instruction tuning (a technique for fine-tuning LLMS on a labeled dataset of

instructional prompts and corresponding outputs) found that maintaining format consistency between

training and evaluation data is crucial for optimal performance. Additional literature [42] emphasizes

the importance of data quality and consistency in training datasets.

2.3. Multilingual neural models
By combining the strengths of multilingual embeddings, semantic retrieval techniques, and advanced

training strategies, neural systems have made significant strides in providing multilingual search

experiences. Some state-of-the-art multilingual neural models include: Jina-ColBERT-v2, BGE-M3,

Multilingual SBERT, SPLADE-X, and TranslateDistill,

Jina-Colbert-v2
Jina-ColBERT-v2 is an advanced model designed for multilingual and code-switched information

retrieval. It builds on XLM-Roberta, extending its capabilities without introducing language-specific

adaptations or embeddings [2]. This design allows Jina-ColBERT-v2 to handle code-switching seamlessly,

as it does not modify its behavior based on language detection during the embedding phase. The

model introduces key enhancements, including flash attention and rotary positional embeddings

(RoPE). Flash attention provides a faster and more memory-efficient mechanism for identifying the

most relevant parts of a sentence or document when processing a specific word, improving performance

on large-scale datasets. RoPE improves the model’s understanding of word order in sentences, allows

it to handle longer contexts effectively [2]. Like the original ColBERT framework, Jina-ColBERT-v2

performs separate encoding of queries and documents, followed by a late interaction step to calculate the

similarity between encoded query vectors and document vectors. This efficient architecture, combined

with its enhancements, makes Jina-ColBERT-v2 highly suitable for mixed-language retrieval scenarios

without requiring explicit language adapters or modifications[2]. This variant of colbert also has the

added benefit of having much larger input sequence length of 8192 tokens which is well suited for the

document sizes Europeana has. Jina-ColBERT-v2 utilizes ColBERTv2’s centroid-based encoding, which

represents each token embedding vector (𝑣) as the sum of its nearest centroid (𝐶𝑡) and a quantized
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residual vector (𝑟). Specifically, the vector is encoded as:

𝑣 ≈ �̃� = 𝐶𝑡 + 𝑟

where 𝐶𝑡 is the closest centroid from a predefined set 𝐶, and 𝑟 is the quantized approximation of the

residual vector:

𝑟 = 𝑣 − 𝐶𝑡

This encoding significantly reduces storage requirements by storing only the index of 𝐶𝑡 and the

quantized residual 𝑟, with 𝑟 being compressed into 𝑛-bit representations per dimension, ensuring

compactness while preserving retrieval performance.

BGE-M3
BGE-M3 [1], short for Multi-Linguality, Multi-Functionality, Multi-Granularity Embedding, is a highly

versatile model tailored for multilingual information retrieval across over 100 languages. It stands

out by supporting three retrieval functionalities—dense retrieval, sparse retrieval, and multi-vector

retrieval—while accommodating inputs ranging from short queries to long documents with an input

sequence length of 8192 tokens. - making it well-suited for Europeanas data. The model leverages

a novel self-knowledge distillation approach, integrating relevance signals from different retrieval

methods to enhance training quality. BGE-M3 is trained on a diverse dataset comprising unsupervised

multilingual corpora, fine-tuned labeled data, and synthetic long-document retrieval examples, resulting

in a robust embedding space for both multilingual and monolingual retrieval tasks. Its hybrid retrieval

framework combines dense and sparse vector scores for re-ranking, enabling superior performance

across multilingual benchmarks such as MIRACL and MKQA. BGE-M3’s comprehensive design makes

it a state-of-the-art choice for scalable and high-quality multilingual retrieval systems.

SBERT: Multilingual DistilUSE
Sentence Embeddings encompass various models that map sentences and paragraphs to an n-

dimensional space and are used for clustering and semantic search. Sentence-BERT (SBERT) models

[32], specifically the Multilingual DistilUSE model [31][32], is a notable state of the art model that

accomplishes this task. SBERT adapts the BERT architecture, employing siamese and triplet network

structures to generate semantically meaningful sentence embeddings. This design enables the computa-

tion of cosine similarity between sentence embeddings, significantly enhancing the efficiency of tasks

like semantic textual similarity and paraphrase identification [31]. The Multilingual DistilUSE model

extends these using DistilBERT to support multiple languages via a smaller and cheaper transformer

model. It maps sentences from various languages into a shared semantic space, facilitating cross-lingual

retrieval and semantic similarity tasks. Multilingual DistilUSE is trained on a diverse, multilingual

corpus, enabling it to capture semantic nuances across different languages and perform effectively in

multilingual information retrieval scenarios [31]. This SBERT model has a much smaller input sequence

length of 128 as it is primarily meant for sentence-level embeddings.

SPLADE-X
SPLADE-X is a model adapted for Cross-Language Information Retrieval (CLIR) based on the SPLADE

architecture [3]. SPLADE-X leverages multilingual BERT (mBERT) to handle documents and queries in

different languages. It generates sparse vector representations for documents and queries, focusing on

the most relevant terms to reduce noise and enhance retrieval efficiency [3].

Translate-Distill
Translate-Distill combines machine translation and knowledge distillation to train dense retrieval models

specifically for CLIR without direct translation during the retrieval process [39]. The approach starts

with machine translation to standardize the data, followed by knowledge distillation from a teacher

model to a more efficient student model [39]. Optimized for faster retrieval, this student model captures

the essence of the query-document relationships learned from the teacher model, making it suitable for

scalable and efficient multilingual IR tasks [39].

Model summary
The following tables contain a summary of the models discussed.
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Model Dimensions Languages Multilingual Approach Level

Jina-ColBERT-v2 Multivector 100+ XLM-R based, late interac-

tion

Token-level (Late interac-

tion)

BGE-M3 1024 100+ Hybrid: dense, sparse,

multi-vector

Sentence & Document-

level - Multi grandular

Multilingual SBERT 512 50+ Siamese/Triplet BERT Sentence-level

SPLADE-X 10+ Sparse vector expansion

with mBERT

Sentence-level

TranslateDistill MT + knowledge distilla-

tion

Document-level

Table 2.1: General Model Properties

Model Datasets Trained On Software Seq Length

Jina-ColBERT-v2 Mr-Tydi, MIRACL,

mMARCO

FAISS 8192

BGE-M3 MIRACL, MKQA Milvus (model built into

milvus)

8192

Multilingual SBERT Stanford Natural Lan-

guage Inference (SNLI)

translated with google

translate

Sentence-Transformers,

Milvus

128

SPLADE-X MIRACL

TranslateDistill NeuMarco mMarco 180 token

sliding win-

dow

Table 2.2: Training and Retrieval Details

Splade-X and TranslateDistill do not have any models available currently so we were unable to get

complete information for them.

2.4. Code switching in Multilingual-IR
Code-switching refers to the phenomenon where speakers alternate between two or more languages

within a single conversation. In the context of text-based information retrieval, code-switching is the

case where queries or documents include elements from multiple languages within a single instance [21].

This presents unique challenges for traditional Information Retrieval (IR) systems, as these multilingual

models need to generalize multiple languages within a single block of text. In the context of this project,

code-switching is particularly relevant due to the multilingual nature of Europeana’s dataset due to

translations and enrichments.

Multilingual NIR models, such as mBERT, XLM-R, or BGE, offer a promising approach to handle

code-switched data effectively. These models are trained on multilingual corpora and can represent text

in a shared semantic space, making them inherently capable of processing mixed-language inputs. The

authors of XLM-R state that they "do not use language-specific embeddings, which allows the model to

better deal with code-switching."[10].

However, code-switching introduces additional complexity, as the models need to understand not only

different languages but also the relationship between languages within a single input. Research indicates

that code-switching can challenge multilingual models, as they may struggle with the dynamic nature of

language switching [43]. Moreover, the scarcity of code-switched data for training further complicates

the development of models capable of handling such inputs [45]. Addressing these challenges is crucial

for enhancing the performance of multilingual IR systems in processing code-switched data.
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2.5. Applications of MLIR
Cross-lingual and Multilingual Information Retrieval approaches have been increasingly applied in

diverse domains, offering innovative solutions to bridge language barriers in information retrieval.

2.5.1. Cultural Heritage
The Nasjonalmuseet’s semantic search prototype [26] represents a sophisticated application of CL/ML-IR

in the cultural heritage sector. This system uses OpenAI’s GPT-4 Vision API to extract rich, descriptive

texts from digital images of artworks, capturing not only the pictorial content but also the thematic and

emotional nuances of the art pieces. These descriptions are transformed into numerical embeddings

using OpenAI’s Embeddings API, enabling semantic search capabilities that transcend traditional

keyword-based retrieval. By utilizing MongoDB Atlas’s Vector Search with a K-nearest neighbors (KNN)

algorithm, the system can efficiently match user queries—entered in any language—with the most

relevant artworks, thus making the museum’s collection accessible to a global audience.

Another significant application of CLIR is demonstrated in "A Cross-Language Approach to Historical

Document Retrieval," [16] where researchers tackle retrieving documents in the cultural heritage domain

similar to Europeana’s use case, precisely, historic Dutch documents using modern Dutch queries. The

system automatically constructs translation resources for the landmark language by comparing phonetic

sequence similarity, consonant and vowel sequence frequencies, and character n-gram frequencies

between historic and modern Dutch. This approach effectively bridges the gap between the archaic

language of historical documents and contemporary language, enabling more accurate retrieval.

2.5.2. Other domains
In the legal domain, the paper "Translating Justice: A Cross-Lingual Information Retrieval System for

Maltese Case Law Documents" [5] details a CLIR system designed for Maltese legal case documents.

This system addresses the challenges posed by the Maltese language’s status as a low-resource language

in Natural Language Processing (NLP) by employing Neural Machine Translation (NMT) to translate

Maltese legal documents into English. The system enables dual-language querying, allowing users to

search in Maltese and English, and presents results in both languages.

These applications demonstrate the broad potential of CL/ML-IR systems across different domains,

from enhancing cultural heritage exploration and legal research to facilitating the retrieval of historic

documents. Each case underscores the value of leveraging cross-lingual capabilities to make information

more accessible and relevant in multilingual contexts, thereby overcoming linguistic barriers and

expanding the reach of digital content.



3
Methodology

3.1. Systems
System configurations
The selection of models and retrieval strategies for this investigation was guided by multiple considera-

tions related to Europeana’s multilingual metadata. This required examining key decisions in model

selection, fine-tuning, query handling, and document representation, particularly in relation to existing

practices at Europeana.

Europeana currently relies on BM25 in Solr for retrieval, which does not leverage neural embeddings.

To explore potential improvements, we selected various retrieval models to assess their retrieval

effectiveness and multilingual support.

While some models might perform well out-of-the-box, others might require fine-tuning. The purpose

of fine-tuning is to train the models not only on Europeanas domain but to also teach the model about

Europeanas multilingual code-switched data. Helping the models better handle queries and documents

that mix languages, ensuring improved retrieval performance across Europeana’s diverse multilingual

collections. .

In their pilot project Europeana translates non-English queries into English for BM25 retrieval. We will

examine whether this approach is necessary for neural models or if multilingual embeddings could

retrieve relevant documents directly in multiple languages.

For documents, Europeana’s metadata includes multiple layers of augmentation on top of the provided

data, such as enrichment and translations. In the current Solr-based system, these augmentations are

indexed alongside the original metadata. We investigated whether neural retrieval models benefit from

indexing only the provided metadata or if using enriched and translated content leads to better retrieval

performance. This decision impacts model efficiency, storage requirements, and retrieval accuracy.

Overall, these are the considerations we take into account when deciding what models to use, their

configurations, and how to structure the dataset we need to experiment with.

3.1.1. BM25 in SolR
BM25 is used as a baseline model for evaluation. This method will provide a benchmark against which

the performance of NIR models can be compared. Using this model provides a robust baseline for

comparison, as it mirrors Europeana’s production environment. The performance of NIR model will be

evaluated against this standard to assess the potential benefits or limits.

3.1.2. Jina Colbert V2
ColBERT uses token-level representations. This token-level granularity is particularly beneficial for

Europeana’s diverse and metadata-rich documents, where different sections of a document (e.g.,

provided metadata, enriched metadata, translations) may be relevant to different queries. Instead of

16
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compressing all document information into a single dense vector, ColBERT retains finer distinctions

between words and phrases, improving retrieval accuracy in heterogeneous metadata scenarios.

ColBERT’s multilingual embedding space aligns well with Europeana’s multilingual queries and

documents. Since Jina-ColBERT-V2 is based on XLM-R, a model trained on over 100 languages, it

provides strong cross-lingual retrieval capabilities without requiring explicit query translation. This

contrasts with BM25, which relies on translated queries to work in multilingual settings. Using ColBERT’s

token-level embeddings, the system can possibly retrieve relevant documents in the original language of

the query, making it a more effective solution for Europeana’s multilingual and code-switched retrieval

needs.

The Jina-ColBERT-V2 demonstrates strong multilingual retrieval performance across benchmarks

like BEIR, LoTTE, MIRACL, and mMARCO [2], outperforming BM25 and zero-shot mDPR while

maintaining competitive results against fine-tuned models. Thus its possible that ColBERT performs

well out-of-the-box, but fine-tuning can help adapt it to Europeana’s domain-specific metadata.

Jina Colbert V2 was implemented using Stanford-FutureData’s colbert library which has inbuilt indexing,

search, and training functionality. This library will utilise Jina-AI’s Colbert V2 multilingual checkpoint

available through huggingface. This checkpoint is also compatible with Stanford-Futuredata’s library.

The library’s indexing uses FAISS-GPU to store the computed vectors in the users’ local directory.

Although Milvus was the primary consideration as the vector database for this investigation, we use

FAISS due to its integration within the Stanford-FutureData library. Furthermore, Milvus is not used

for Colbert because it is not currently designed to handle ColBERT’s multivector embedding structure,

which involves token-level embeddings rather than a single dense vector per document.

To facilitate indexing, the data was prepared in a TSV format, where each line contains a numeric ID and

its corresponding passage text. This format is required by the ColBERT indexer to map documents to

their token-level embeddings efficiently. Since Europeana IDs are alphanumeric, a mapping was created

to convert these IDs into numeric primary keys, ensuring compatibility with the ColBERT framework.

The indexing process leverages FAISS-GPU to store the computed vectors, allowing for scalable and

efficient similarity searches.

The indexing configuration was carefully tailored to optimize performance. The nbits=1 parameter

defines the residual vectors in Colberts compression scheme. This setting ensures that the storage

footprint is significantly reduced without compromising retrieval accuracy. The kmeans_niters=2

parameter controls the number of iterations for k-means clustering during the indexing process, chosen

to reduce computation time while maintaining adequate cluster quality for effective token-level retrieval.

These decisions were made to align with the high-dimensional, large-scale nature of the Europeana

dataset, ensuring efficient storage and retrieval for subsequent querying. Finally, we used product

quantization (PQ) because it reduces memory usage and improves computational efficiency during

similarity searches without compromising retrieval accuracy.

The querying process for ColBERT utilizes the Searcher class from Stanford-FutureData’s ColBERT

library, enabling efficient retrieval with support for both original and translated queries.

3.1.3. BGE-M3 - Hybrid model
Along with a fine-grained multi-vector dense embedding model, we also chose to test a hybrid dense-

sparse embedding model. Europeana’s metadata consists of structured text fields, enriched descriptions,

and multilingual metadata, possibly making a purely dense or purely sparse approach insufficient.

While BM25-based lexical search excels at exact term matching, it lacks semantic understanding.

Conversely, dense embeddings provide strong semantic matching but can miss exact keyword-based

retrieval cues, especially for proper nouns, entity terms, and specific metadata fields. By combining

dense and sparse representations, the BGE-M3 hybrid model aims to leverage the strengths of both

approaches.

BGE-M3 was chosen because it is designed for retrieval and provides both dense and sparse embeddings

natively. A Dense vector (1024 dimensions) captures contextual meaning in multilingual metadata,

while a sparse vector enhances retrieval of specific terms missing in dense representations.
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Results from the dense and sparse searches are merged using Reciprocal Rank Fusion (RRF), which

combines rankings from the two modalities by assigning higher scores to top-ranked results from

each list. RRF is a rank aggregation method that combines the ranked lists from multiple searches by

assigning higher weights to documents that rank higher in either list. Specifically, the RRF score for a

document 𝑑 is calculated as:

𝑅𝑅𝐹(𝑑) = ∑𝑛
𝑖=1

1

𝑘+𝑟𝑎𝑛𝑘𝑖 (𝑑)

where 𝑛 is the number of input ranked lists, 𝑟𝑎𝑛𝑘𝑖(𝑑) is the rank of document 𝑑 in the 𝑖-th ranked list (or

a large value if 𝑑 is not present in that list). This ensures a balanced integration of semantic and lexical

relevance. The implementation supports flexible querying, including handling translated and original

queries, with RRF dynamically merging their results to improve retrieval accuracy for multilingual and

heterogeneous datasets.

BGE-M3 is implemented using Milvus as the vector storage solution. Milvus is used for storage

because it supports hybrid search between sparse and dense vectors, something which FAISS does not

natively support. Furthermore, the BGE-M3 model is supported by and built into milvus, making its

implementation simpler and suitable for Europeana’s high-dimensional vector data.

The schema for the index is designed to accommodate the specific requirements of Europeana’s dataset.

The primary key is defined as the Europeana ID, which can be an alphanumeric string. This ensures

compatibility with Europeana’s unique identifiers. The schema includes a dense vector of size 1024,

generated by BGE-M3, to represent the semantic embedding of the document, capturing its contextual

meaning, and a sparse lexical vector to facilitate hybrid retrieval, combining the precision of lexical

matching with the semantic richness of dense embeddings. The sparse vector does not require a

predefined dimensionality, reflecting its adaptable structure for encoding keyword-based information.

The actual document text is stored as a separate field, allowing for direct access during retrieval and

evaluation.

For indexing, product quantization (PQ) is employed for the dense vector using the IVF_PQ index type,

with inner product (IP) as the similarity metric. PQ is chosen because it reduces memory usage and

enhancing retrieval speed without compromising too much on retrieval accuracy. The sparse vector

is indexed using the SPARSE_INVERTED_INDEX, which enables efficient keyword-based retrieval.

This hybrid schema and indexing strategy provide a robust foundation for handling Europeana’s

multilingual and heterogeneous data, offering scalability, high retrieval performance, and optimal

resource utilization.

3.1.4. SBERT: Multilingual DistilUSE
The previous models (ColBERT and BGE-M3) are quite resource-intensive, requiring large embeddings

to handle complex token-level or hybrid retrieval. While they maximize retrieval effectiveness, they also

increase computational cost and storage requirements.

The SBERT model, specifically Multilingual DistilUSE, was chosen as a much lighter model allowing us

to test whether a smaller dense embedding models can still achieve competitive retrieval performance.

This model is well-suited for sentence and document-level retrieval, which aims to match queries with

semantically similar texts rather than relying on exact term matches. SBERT also supports multilingual

retrieval and can be fine-tuned for specific datasets, which allows it to adapt to Europeana’s multilingual

metadata challenges.

SBERT supports multilingual retrieval, meaning queries in different languages can be matched to

relevant documents without explicit translation. If SBERT performs sufficiently well, it presents a

computationally cheaper and possibly faster alternative, making neural retrieval more feasible and cost

effective for Europeana.

The SBERT model is implemented using Milvus as well. The model is made available through the

sentence transformers library via Huggingface. The SBERT indexing pipeline is implemented using

Milvus as the vector storage system, with embeddings generated by the lightweight, multilingual

distiluse-base-multilingual-cased-v2 model from SentenceTransformers. The schema is designed to

include a alphanumeric primary key for unique identifiers, the document text, and a dense vector of

size 512 for semantic representations.
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As previously mentioned, this model can only process input of up to 128 tokens. To handle longer

texts and improve retrieval granularity, documents are chunked into smaller segments using a custom

chunking strategy that balances context preservation and token limits. We split each passage into chunks

of at most 512 characters. According to research by OpenAI, the approximate conversion rate of 1 token

4 characters
1

means that a 512-character chunk generally corresponds to around 128 tokens. Following

this estimation we can see that the tokenized input remains within the model’s limits, minimizing

truncation while maintaining sufficient context for effective retrieval. Each chunk is assigned a unique

identifier based on the original document ID, allowing precise mapping during retrieval. While this

estimation provides a useful guideline, it is important to note that the exact token count may vary

depending on the tokenizer used. Different tokenization algorithms and SentencePiece, segment text

differently based on vocabulary size and tokenization rules.

The SBERT querying process leverages Milvus for dense vector search, incorporating chunk-level

retrieval to handle long documents effectively. Queries are embedded using the SBERT model and

queried against the dense_vector field in Milvus using inner product (IP) similarity. To account for

chunked documents, results are retrieved for individual chunks and aggregated at the document level

using averageP method [8] which gives a score to a document based on its average chunk score from the

number of chunks that found for that document based on the top k results.

Overall, this approach ensures scalable, and semantically rich retrieval, aligning with Europeana’s

dataset requirements.

3.1.5. System Identifiers
To systematically reference different retrieval system configurations in this investigation, we define a

notation using the syntax:

⟨model⟩⟨finetune⟩ − ⟨qaug⟩ − ⟨daug⟩

where:

• ⟨model⟩ represents the retrieval model:

– B – BM25 (Solr-based retrieval)

– C – ColBERT (Jina-ColBERT V2)

– H – Hybrid (BGE-M3 dense + sparse retrieval)

– S – SBERT (Multilingual DistilUSE)

• ⟨finetune⟩ represents the fine-tuning condition:

– Z – Zero-shot (pretrained model, no fine-tuning)

– F – Fine-tuned on Europeana-specific data

– (Empty for BM25, as fine-tuning does not apply)

• ⟨qaug⟩ represents query augmentation:

– O – Original queries only

– OT – Original + Translated queries

• ⟨daug⟩ represents document augmentation:

– P – Provided metadata only

– PE – Provided + Enriched metadata

– PT – Provided + Translated metadata

– PET – Provided + Enriched + Translated metadata

For example:

1
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-themh34 𝑓 2𝑏50𝑏𝑎𝑏
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• CZ-O-P – ColBERT, zero-shot, original queries only, provided metadata.

• HF-OT-PET – Hybrid BGE-M3, fine-tuned, original and translated queries, provided, enriched,

and translated metadata.

• SZ-O-PE – SBERT, zero-shot, original queries only, provided and enriched metadata.

• B-O-P – BM25, original queries only, provided metadata.

We explicitly outline all 56 systems in table 3.1

3.2. Dataset
For this investigation, Europeana did not provide any data for us to use for our experiments. We were

provided access to their API and an FTP server from which we could download their raw xml-structured

data, however, a dataset suitable for NIR was not available.

Therefore, a crucial task for this thesis was to design a methodology for constructing a dataset suitable for

NIR. This involved extracting and structuring documents and queries, ensuring multilingual consistency,

and preparing the dataset for indexing, training, and querying. Developing this methodology was

essential not only for conducting our experiments but also for establishing a foundation for future NIR

research within Europeana.

For this investigation, we utilize need two essential datasets, from which we can gather all the necessary

information for the follow stages of the investigation, namely the Document and Click dataset. The

Document dataset comprised of Europeana documents for indexing and retrieval with the selected

retrieval models. This dataset comprises metadata-rich records that serve as the foundation for search

and ranking experiments. The click dataset comprised user queries and click interactions. This includes

query logs, clicked document records, and supplementary metadata. The Click Dataset is used for

fine-tuning retrieval models and evaluating search performance, offering insight into real-world user

interactions. And the queries found from the click data were used to query the indexed document data

and conduct the experiments.

These datasets serve distinct but complementary roles: the Document Dataset provides the retrieval

corpus, which is indexed using the models, while the Click Dataset supplies the queries we use for

retrieval and query-document relational data which provides us with relevance signals for training and

evaluation.

3.2.1. Documents
Data collection methodology
As outlined earlier the document dataset did not exist and was not provided by Europeana. Therefore,

when we are building the dataset we have to consider the factors which we will be analysing for this

investigation, which we outlined in section 3.1. So considering the document specifciations outlined (the

enrichments and translations), we need to build a dataset that can allow us to isolate these components

so we can observe the effects of NIR retrieval with and without them.

The document in Europeana primarily consists of provided documents, which are metadata records as

supplied by data providers. This dataset serves as the core collection for indexing and retrieval across

all experiments, forming the foundation upon which search models operate.

A crucial aspect to recognize is that enrichments and translations are not inherent properties of the

dataset but rather a design choice applied once the documents are given by the provider. Europeana’s

data processing pipeline enriches all of the data they recieve adding entity related data from external

knowledge sources such as Wikipedia, while translation efforts have been applied to a subset of the

collection to facilitate multilingual access. However, these augmentations do not alter the fundamental

nature of the Provided dataset. Instead, they act as additions that Europeana may choose to incorporate.

By maintaining a clear distinction between the raw dataset and the augmentations applied to it, we

ensure consistency across our evaluation. This approach allows for a controlled investigation into the

impact of different document augmentations on retrieval effectiveness without conflating them with the

core dataset itself.
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Model Query Augmentation Document Augmentation Fine-tuning
BM25 O O N/A

BM25 O O + E N/A

BM25 O O + T N/A

BM25 O O + E + T N/A

BM25 O + T O N/A

BM25 O + T O + T N/A

BM25 O + T O + E N/A

BM25 O + T O + E + T N/A

Colbert O O Zeroshot

Colbert O O + E Zeroshot

Colbert O O + T Zeroshot

Colbert O O + E + T Zeroshot

Colbert O + T O Zeroshot

Colbert O + T O + T Zeroshot

Colbert O + T O + E Zeroshot

Colbert O + T O + E + T Zeroshot

Colbert O O O

Colbert O O + E O + E

Colbert O O + T O + T

Colbert O O + E + T O + E + T

Colbert O + T O O

Colbert O + T O + T O + T

Colbert O + T O + E O + E

Colbert O + T O + E + T O + E + T

Hybrid O O Zeroshot

Hybrid O O + E Zeroshot

Hybrid O O + T Zeroshot

Hybrid O O + E + T Zeroshot

Hybrid O + T O Zeroshot

Hybrid O + T O + T Zeroshot

Hybrid O + T O + E Zeroshot

Hybrid O + T O + E + T Zeroshot

Hybrid O O O

Hybrid O O + E O + E

Hybrid O O + T O + T

Hybrid O O + E + T O + E + T

Hybrid O + T O O

Hybrid O + T O + T O + T

Hybrid O + T O + E O + E

Hybrid O + T O + E + T O + E + T

SBERT O O Zeroshot

SBERT O O + E Zeroshot

SBERT O O + T Zeroshot

SBERT O O + E + T Zeroshot

SBERT O + T O Zeroshot

SBERT O + T O + T Zeroshot

SBERT O + T O + E Zeroshot

SBERT O + T O + E + T Zeroshot

SBERT O O O

SBERT O O + E O + E

SBERT O O + T O + T

SBERT O O + E + T O + E + T

SBERT O + T O O

SBERT O + T O + T O + T

SBERT O + T O + E O + E

SBERT O + T O + E + T O + E + T

Table 3.1: Model configurations for query augmentation, document augmentation, and fine-tuning.
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It is important to note that these processes are not uniformly applied across Europeana’s entire dataset.

Not all documents undergo successful translation. Due to this variability we decided to look into the

subset of Europeanas data which was translated successfully. While enrichments are always applied to

Europeanas data.

Thus, for the document dataset, we decided to create 4 iterations each with different augmentations

allowing us to isolate for and determine the impact of each. Following our system identifiers, the four

datasets we created are:

• Provided only (P): The original data given by the providers

• Provided and Enriched (PE): Original data with Enrichments

• Provided and Translated (PT): Original data with Translations

• Provided, Enriched, and Translated (PET): Original data with both enrichments and translations.

These iterations will comprise of the same data just with varying degrees of augmentation, which simply

captures additional information for the data. This ensures that any observed differences in retrieval

performance can be attributed to the presence or absence of enrichments and translations.

Europeana’s complete dataset contains over 60 million total records, represented in 40 different

languages from around Europe. The collection exhibits significant diversity in metadata quality, with

items categorized into content tiers (0 to 4) and metadata tiers (A to C) based on the level of detail

provided. These classifications help standardize and distinguish the richness of information available for

each item. The quality and completeness of translations also vary. Therefore, to create a dataset suitable

for our retrieval experiments, we chose to focus on the subset of documents which were translated

successfully and that had a content tier of 1 or higher (which is what Europeana does in production).

According to Europeanas logs from their translation process, 40,783,067 documents were successfully

translated. These documents also had the enrichment process done on them; as with all data that

Europeana retrieves. Through these logs we were able to identify the document ids of these 40 million

documents and the ids of the datasets where they are stored.

Given that we have 40 million documents which were translated and enriched we clearly could not

use all of them to conduct experiments with as it would be infeasible to store and run. Therefore, we

decided to make some decisions pertaining to the number of documents and number of languages.

Regarding the documents, we decided to stratify by each dataset to take 10% of the documents in that

dataset. This would result in a much smaller representative set but would still be more manageable to

use than all 40 million documents. However, we also had to be careful about the which documents

we would take as we want a representative dataset, for our experiments, which closely resembles the

multilingualism of Europeanas translated data (of 40 million documents).
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Figure 3.1: Language distribution of the full datasets

We analyzed the language distribution of documents across these translated documents and we chose the

20 most prominent languages with sufficient representation, excluding underrepresented languages such

as Maltese. These languages include: English, Bulgarian, Czech, Danish, German, Spanish, Estonian,

Finnish, French, Croatian, Hungarian, Italian, Lithuanian, Dutch, Polish, Portuguese, Romanian, Slovak,

Slovenian, and Swedish. As shown in figure 3.1, which illustrates the language distribution of the full

dataset. We have the highest representation for English documents followed by other ’major’ European

languages such as German, French, Dutch, and Spanish. For all of these documents we have their

document ids and the ids of the datasets where they are stored.

Overall this process would provide us with a representative set of data which resembles the multilingual-

ism of the original set, contains documents which allow us to isolate for augmenations to conduct our

experiments, and is of a manageable size for our experimentation with NIR. Allowing our experiments

to appropriately give insights which can be extrapolated to the larger dataset.

Data collection process - technical aspects
The process of constructing these dataset required significant effort to collect, filter, and sample in

a manner that aligns with both Europeana’s multilingual scope and the practical constraints of our

experimentation. Europeana’s collection is structured into datasets based on different data providers,

with each dataset containing records from a specific institution or collection. Accessing these records

required downloading them from an FTP server, where each dataset is stored under a codified name

corresponding to its provider. Since the dataset is multilingual and spans over multiple languages, it was

also essential to ensure that our sample was representative of Europeana’s actual language distribution.

This process involved several key steps: first, we downloaded metadata records per dataset from the

FTP server. The raw data downloaded from the server is shown in figure 1.1. Next, we filtered for

documents that had been successfully translated, using logs provided by Europeana that indicated

which records had undergone translation successfully. Additionally, we restricted our selection to

documents which were part of our set of 20 and documents with a content tier of 1 or higher, aligning

with the filtering criteria used in Europeana’s production search system. Finally, to manage dataset size
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while preserving representativeness, we randomly sampled 10% of the available data, ensuring that the

language distribution remained consistent with the full dataset.

For each document, we retained technical metadata such as the Europeana ID, content tier, metadata

tier, and document type (e.g., image, painting, manuscript). We also extracted all metadata fields that

map to Solr-BM25’s “text” field, which includes descriptive information such as provider, creator, title,

description, language, publisher, and current location. These fields contain rich textual content that is

integral to document ranking and retrieval, ensuring that our dataset aligns as closely as possible with

the data used in Europeana’s production system. In the end each document which we downloaded has

the Europeana id and the ’text’ metadata.

To create the different dataset iterations (P, PE, PT, PET), we needed to separate the provided, enriched,

and translated sections based on specific identifiers in the original XML structure. These identifiers

allowed us to distinguish between the provided and the different augmentation levels applied to the

metadata:

• <ore:Proxy rdf:about="http://data.europeana.eu/proxy/provider. . . > for the provided data

• <ore:Proxy rdf:about="http://data.europeana.eu/proxy/europeana> for the enriched data

• <ore:Proxy rdf:about="http://data.europeana.eu/proxy/europeana xml:lang=“en”> for the trans-

lated data.

By leveraging these identifiers, we systematically extracted the relevant sections from each document

and assigned them to their respective dataset iterations. This approach ensured that each dataset variant

was constructed with the appropriate level of augmentation while maintaining a consistent document

structure for comparative analysis

After filtering, downloading, and structuring, the resulting representative dataset maintained a language

distribution that closely reflects Europeana’s actual multilingual dataset. Figure 3.2 shows the language

distribution of the downloaded dataset.

Figure 3.2: Language distribution of the representative datasets
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The final dataset statistics are summarized in Table 3.2, comparing the original dataset size with the

sampled dataset.

Original dataset count 1,488

New dataset count 1,290

Percentage of datasets after sampling 86.69%

Number of documents in original dataset 47,243,909

Number of documents in new dataset 4,072,603

Table 3.2: Comparison of Original and Sampled Dataset

By structuring the dataset in this way, we ensure that all retrieval models operate on the same underlying

document collection, making it possible to conduct fair comparisons between different augmentation

strategies. This setup allows us to investigate the impact of different augmentation strategies while

keeping the underlying dataset constant, ensuring that results reflect the true effects of document

enrichment’s and translations rather than differences in the data itself. In the end our representative

dataset has around 4 million documents from 1290 datasets. The difference from the original dataset

count may be due to the fact that these datasets did not successfully translate the data.

Document representation

1 <add>
2 <field name="europeana_id">/39/DDU</field>
3 <field name="timestamp_update">2019-03-20T10:12:38.352Z</field>
4 <field name="proxy_edm_type">TEXT</field>
5 <field name="contentTier">3</field>
6 <field name="metadataTier">A</field>
7 <provided_data >
8 <field name="provider_aggregation_edm_dataProvider">
9 <value lang="en">Opera Institute of the Italian Vocabulary </value>

10 <value lang="it">Istituto Opera del Vocabolario Italiano </value>
11 </field>
12 <field name="provider_aggregation_edm_provider">
13 <value lang="en">CulturaItalia </value>
14 <value lang="it">CulturaItalia </value>
15 </field>
16 <field name="proxy_dc_subject">
17 <value lang="en">Critical editions </value>
18 <value lang="it">Edizioni critiche </value>
19 </field>
20 <field name="proxy_dc_title">
21 <value>Sovrana ballata piacente </value>
22 </field>
23 </provided_data >
24 <enriched_data >
25 <field name="proxy_dc_title">
26 <value lang="it">Sovrana ballata piacente </value>
27 </field>
28 </enriched_data >
29 <translated_data >
30 <field name="proxy_dc_title">
31 <value lang="en">Great nice ballad </value>
32 </field>
33 </translated_data >
34 </add>

Figure 3.3: Example of Processed Europeana XML metadata
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1 {
2 "id":"/39/DDU",
3 "text":"timestamp_update:2019-03-20T10:12:38.352Z type:TEXT content tier:3, data provider:

Opera Institute of the Italian Vocabulary data provider:Istituto Opera del Vocabolario
Italiano provider:CulturaItalia provider:CulturaItalia subject:Critical editions
subject:Edizioni critiche title:Sovrana ballata piacente, title:Sovrana ballata
piacente , title:Great nice ballad"

4 }

Figure 3.4: Example of Processed Europeana metadata for neural models

After this process, we get documents as shown in Figure 3.3. We can see that this document is now

split into provided, enriched, and translated sections. However, this representation is only used for

our instance of Solr-BM25, following Europeana’s configuration. Solr operates on structured XML

metadata, indexing various metadata fields separately. The neural models, as we configure them,

require the data to be structured as free text, as they cannot take xml data as input. Unlike BM25, which

retrieves documents based on discrete metadata fields, neural models work by learning dense vector

representations of text. These models expect semantically meaningful passages, rather than individual

metadata fields stored in separate index entries [23]. This is shown in figure 3.4

For example, for the PET dataset we merge the provided, enriched, and translated data into one cohesive

textual field, to ensure that the model can capture the full context and complementary information

offered by each segment. This unified representation enables the neural model to learn dense vector

embeddings that encapsulate nuances from the metadata sources. We also chose to add field names

to the data in a “field:data” structure. This provides explicit context that could possibly help neural

models distinguish between different types of information. As opposed to simply concatenating the

data, which can blur the semantic boundaries between fields—this approach preserves the inherent

structure of the original metadata by clearly marking the purpose of each text segment. By labeling data

elements the model can possibly better understand the semantic role of each component.

Efficiency experiment for final sample size
Given that we have around 4 million documents in our representative set, we still need to figure out if

working with this amount is feasible. And so we conduct a series of experiments, given the resources

we have at Europeana and at TU Delft, to determine the final sample size.

The efficiency experiment evaluates the feasibility of implementation and scalability of the models by

measuring indexing time, index size, and query performance across increasing collection sizes. This

helps assess how well each model scales with available computational resources and provides insights

into the infrastructure required to support NIR workloads in a production setting.

The experiment is conducted on the PET document augmentation, which contains the largest amount of

data in terms of both size and content. This choice ensures that the results provide an upper-bound

estimate of computational requirements.

For the experiments, we measure:

• Indexing time as the number of indexed documents increases in increments of 1,000, 10,000,

100,000, 250,000, 600,000, and 1,000,000 documents.

• Index size for each of these collection sizes.

• Query time by executing 100 random queries (sampled from the click dataset), each retrieving

1,000 documents from the indexed collections.

Starting with a maximum of 1 million documents served as an appropriate upper bound for evaluating

the scalability and performance of the models under experimental conditions.

Europeana RND-3:
We did the first round of experiments using Europeana’s RND-3 server which is an internal system

meant for testing.
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Since we were using Docker to create the milvus databases it was difficult to measure the size for each

collection individually because Docker’s containerized environment abstracts storage usage, making it

challenging to directly monitor and attribute disk space consumption to individual collections. This

limitation hindered tracking of the storage overhead for each indexed collection, which is critical for

assessing scalability and resource utilization in Milvus. Therefore for this set of experiments we were

unable to get any data on the size of the collections.

When conducting the experiments in RND-3 we ran into another issues. The rnd-3 could not load the

Jina-Colbert v2 model because one of the components of the model required a GPU with an Ampere

architecture and the GPU on the server was based on the Pascal architecture (NVIDIA GeForce GTX

1080), which lacks support for features required by Ampere-based models, such as Tensor Cores

optimized for mixed-precision computations. Thus we were unable to conduct the experiment for the

Colbert model.

From the experiments conducted on the RND-3 we could only obtained results for the BM25, Hybrid,

and Sbert models for their indexing and querying times. We could not calculate the index sizes.

Figure 3.5: Index time vs number of documents
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Figure 3.6: Average query time for 1000 docs vs number of documents

The Hybrid model, while demonstrating consistent and fast query performance, proved to be highly

infeasible for large-scale indexing on the RND-3 infrastructure. Indexing 1 million documents took

nearly an entire day, making it impractical for real-world use on this level of infrastructure. In contrast,

the SBERT model, which leverages chunking, allows faster indexing, but the increased index size

resulting from chunking significantly impacts query performance, causing slower retrieval times. BM25

which is the baseline system clearly works well within this infrastructure as it only takes 90 minutes to

index 1000000 documents and the query times are very fast.

These findings highlight that, for scalable and efficient experimentation at Europeana, a stronger

computational infrastructure is essential. The RND-3 server lacks the necessary GPU capabilities and

processing power to support the Colbert model, limiting the feasibility of conducting large-scale NIR

experiments within this infrastructure.

Delft AI Cluster
Since it was infeasible to run ColBERT on Europeana’s infrastructure we switched to the Delft AI Cluster

(DAIC) to conduct the same experiments. DAIC provides a significantly more capable infrastructure,

including modern GPUs (Nvidia A40s A100s etc) and larger memory, which are essential for supporting

Neural Information Retrieval (NIR) running ColBERT. By conducting the experiments on DAIC, we

aimed to demonstrate the performance of NIR models on a much stronger infrastructure than RND-3.

In DAIC we were unable to run Milvus GPU via docker since its an HPC, and had to resort to Milvus

Lite. This would potentially impact the rate of indexing and retrieval, but provided us the ability to

measure the sizes of the indices
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Figure 3.7: Index time vs number of documents

Figure 3.8: Average query time for 1000 docs vs number of documents
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Figure 3.9: Index size vs number of documents

From the plots above we can see that DAIC queries and indexes faster than the RND-3 server even with

its limitations for Milvus. Also we are able to run Jina-Colbert v2 without any issues in this environment.

In figure 3.7 we can see that the indexing times for Hybrid and SBERT models are significantly faster at

50000 seconds and 10000 seconds to index 1 million documents each. The Colbert model takes more

time than the other two models, 65000 seconds for a million documents. This can be attributed to its

large input size and its more fine-grained nature as it computes an embedding for each token in the

input. Figure 3.8 shows us the upper limit for querying for 1000 documents and we can see that it is on

par with the querying on RND-3, meaning that the querying for these models would be similar for an

infrastructure between RND-3 and DAIC. Finally, figure 3.9 shows us the increase in size which goes up

till 10GB for a million documents for ColBERT, 8GB for hybrid, and 5GB for a million documents for

SBert. Overall, while ColBERT offers strong retrieval performance, its higher indexing times and larger

index size can be attributed to its more complex representation. In contrast, SBERT and the Hybrid

model demonstrate faster indexing and a smaller footprint.

Based on these results, indexing and querying 1 million documents across all models is feasible within

the DAIC setup, providing a good foundation for experimentation. The manageable indexing times,

query speeds, and index sizes ensure that this scale effectively balances computational efficiency with

meaningful evaluation. Therefore, 1 million documents serve as an appropriate sample size for our

experiments.

We obtain the 1 million documents by going over the representative set, and randomly sampling by

25%, stratifying by dataset to ensure a similar language distribution as 3.2.

3.2.2. Queries
Queries dataset
Once again, none of the queries and click data we used for the experiment were available before the

investigation or were handed directly to us. Instead, with the help of the supervisor at Europeana, who

provided the click data logs we were able to create a dataset for the queries.

Thus, for this investigation, we distinguish between two types of query augmentations: original queries

(as issued by the user) and translated queries (translated into English). As outlined in section 3.1. This
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distinction is particularly important in the context of multilingual retrieval, as it allows us to explore

how translation of queries affects retrieval effectiveness; whether including the translation allows for

more language diverse and relevant results. By leveraging these translations, we can assess whether

translated queries improve search performance compared to their original counterparts. If translated

queries lead to better retrieval outcomes, it suggests that translations serve as a useful mechanism for

improving search interactions with Europeana’s document collection.

The click logs was provided by Europeana and contains approximately 46000 query-document pairs.

Each pair represents a user-issued query and the document that the user clicked on in response. In

addition to the clicked document, the dataset includes information such as the rank at which the

document appeared in the search results, the dataset to which the document belongs, and its item ID.

To complement the click logs, Europeana also provided additional query metadata. The queries

metadata includes the query ID, the language of the query, and the number of search results returned

for that query within the click logs. Meanwhile, the click logs itself contains the clicked document’s ID

along with the document language.

We used this metadata to align the query languages with the document languages which we specified

in section 3.2.1, where we only included queries in that were of a language specified in our list of 20.

From the click logs, after filtering for language, there are 23,000 unique queries, of which approximately

15,000 were originally issued in languages other than English and subsequently translated into English.

We see the distribution in the following figure 3.10.

Figure 3.10: Distribtion of languages for the queries; retrieved from click logs

These translated queries were provided by Europeana, with translations generated using the Google

Translate API as part of a pilot project for their Spanish portal. As a result, we were able to create two

query files: an original query file and a translated query file. The original query file contained only the

query ID (qid) and the query text, while the translated query file included the qid, the query text and an

English translation for the non-English query. If a query was already in English, its translated field was

marked as ‘NaN’, indicating that no translation was applied.
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3.2.3. Judgements
A fundamental way of evaluating search systems is using relevance judgements, explicit labels, indicating

which documents are relevant to which queries. In our investigation, we do not have any such labeled

data. In an ideal scenario, Europeana would provide expert-curated relevance assessments allowing for

a precise evaluation of retrieval performance.

In their absence, we adopt click logs as a proxy for relevance judgements. This method assumes that

clicked documents are relevant to the query, while non-clicked documents are irrelevant. However, this

assumption introduces significant uncertainties and potential biases.

There are several key limitations to consider. Clicks do not necessarily indicate true relevance. Users may

click on a document for various reasons. Conversely, a highly relevant document might go unnoticed if

its not been clicked. Search result rankings influence user clicks. This means that clicks are not purely

a reflection of document relevance. The dataset only includes clicked documents, meaning that any

document that was not clicked is implicitly treated as non-relevant. However, there could be many

highly relevant documents that users simply did not encounter or click on. Furthermore, the click data

aggregates interactions across multiple users and sessions.

Despite the limitations and biases associated with using click data as a proxy for relevance judgements,

it remains a pragmatic choice for this investigation. Click data, though imperfect, directly reflects

real-world user behavior, capturing how users interact with search results in a live system. This makes

it valuable for evaluating practical retrieval performance.

In the end we create a qrel file based on the click logs. The qrels file is created by using the Clicks dataset.

The data set contains all query-document pairs which represent clicks. We use this to create a file which

is formatted as: <query_id> 0 <document_id> <relevance>. To ensure consistency and relevance, we

filtered the click dataset to include only queries that were in one of the 20 selected languages (as outlined

in Section 3.2.1). After filtering, the final qrel file contains around 45,000 query-document interactions.

It is important to acknowledge that the conclusions drawn from this study are conditioned on

the assumption that clicks, despite their imperfections, contain useful signals of relevance. The

broader implications of these limitations are revisited in later sections when discussing the evaluation

methodology and the interpretation of results.

3.2.4. Data splits
In order to obtain the fine-tuning data we must first create a train-evaluation split from the query-

document pairs from the click data, using the training queries to collect positive and negative samples,

and finally form training triples with those samples.

Training-evaluation split
To construct the training triples, we first split the Clicks dataset into a training and evaluation set. The

split was designed to ensure a balanced and representative distribution of multilingual data while

preventing any overlap between training and evaluation queries.



3.2. Dataset 33

Figure 3.11: Total distribution of clicks per language

When looking at the distribution of languages per clicks we see that there is a huge bias towards english

queries and thus possibly, english documents; as seen in figure 3.11. We had to be careful when forming

the train and eval sets because the objective for the fine-tuning is to not only teach the model about

Europeanas domain but also to tune them to Europeanas multilingual code-switched documents.

Thus we had to ensure that the training data did not have an over-representation of English documents

as it might bias the model towards English and reduce its effectiveness on lower-resource languages. To

mitigate this, we ensured that the training set maintained a diverse representation of language pairs

while allowing the evaluation set to include as much multilingual data as possible.

This process was guided by a targets.csv file provided by the supervisors, which specified the desired

number of queries and clicks for each query-document language pair (Q-lang, D-lang) in the evaluation

set. The training set was then formed from the remaining queries that were not assigned to evaluation.

This target file ensured that English queries-doc pairs, which were very dominant in the click dataset,

would be randomly down-sampled to avoid bias in the training.

Unlike a traditional fixed 80-20 random split, the assignment of queries to the evaluation set was done

incrementally, prioritizing queries that helped meet the predefined targets for each language pair. If a

query contained clicks that contributed to an underrepresented language pair, it was included in the

evaluation set until the target was met. In cases where a language pair had very few clicks, at least one

click was always assigned to evaluation to ensure that no language combination was entirely missing

for evaluation.

Since queries were assigned based on language-specific target fulfillment rather than a strict percentage,

the final split did not always result in an exact 80-20 ratio. Some language pairs with more available

data may have had a higher proportion allocated to training, while others with fewer available clicks

may have had a larger percentage allocated to evaluation in order to meet the predefined targets.

This approach ensured that low-resource languages were sufficiently included in evaluation, while

high-resource languages remained well-represented in training.
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Figure 3.12: distribution of clicks per language for train data

Figure 3.13: distribution of clicks per language for eval data

By following this method, we maintained linguistic diversity while adhering creating non english biased
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datasets for model training and evaluation. We plot the distributions of the training and eval data

per language in figure 3.12 and figure 3.13. We see that the English clicks in the traning set are not as

skewed as they were in the clicks dataset. The evaluation set does have a large bias towards English; we

account for this in the Evaluation.

Negative sampling and creating triples for fine-tuning
Given the data splits, the positive and negative samples were obtained using the Click data and BM25.

The positives were taken from the click data where every document clicked on by the user for a specific

query is taken as a positive sample.

We indexed the entire document dataset into Solr using the Europeana schema figure 3.3 for the negative

samples. We only index the provided and enriched segments into the dataset as we do not want to bias

the BM25 retrieval based on English with the translations. For this purpose, we deployed a different

instance of Europeana’s Solr-BM25. This alternative setup utilized a logical OR operator for query terms

(instead of the typical AND operator used in production) ensuring a broader retrieval of potentially

related documents. This approach increases the likelihood of retrieving documents loosely associated

with the query while maintaining some lexical relevance.

Using this tailored BM25 instance, we executed the queries and sorted the results by ascending relevance

scores. By taking the top 10% of these results (i.e., the documents with the lowest relevance scores), we

effectively identified the least relevant documents retrieved by BM25 for the given query. We then select

for each query a negative example from each of the 20 languages, if it existed. Finally, we form a triple

by combining all positives with all negatives.

For a given query 𝑄 with 𝑁 positive samples derived from the click data, and 𝑀 negative samples

retrieved by querying Solr, we construct 𝑁 × 𝑀 triples per 𝑄.

Overall, the objective of fine-tuning was to train the model on Europeana’s domain and multilinguality.

Our approach is effective because positive samples were derived from user click data, ensuring alignment

with real-world relevance judgements within the cultural heritage domain. This guarantees that the

model learns to rank documents based on actual user preferences and interactions. For negative

sampling, selecting one negative example for each target language, the model is exposed to multilingual

examples, possibly compelling it to develop robust representations that can generalize across languages,

especially with code-switched data. This strategy can reinforce the model to navigate Europeana

code-switched multilingual datasets while learning to differentiate between positive and negative

examples.

An important consideration for fine-tuning is the alignment between the data used for fine-tuning

and the data used for evaluation, as emphasized in the literature. In this investigation, we ensure this

alignment with respect to the document dataset augmentations: provided, enriched, and translated.

Specifically, we use fine-tuning triples with the same data augmentation structure for each document

augmentation indexed into a model. For instance, when evaluating a model with the PT (provided

and translated) document augmentation, the fine-tuning triples for that model includes only provided

and translated data. This approach ensures consistency between the fine-tuning and evaluation phases,

allowing us to accurately assess each model’s performance under specific augmentation scenarios.

To clarify, only the provided and enriched document augmentations are queried into the alternate

Solr-BM25 instance and used during triple selection, while the documents comprising the triples can

include all augmentations. This is because the P and E augmentations encompass all of the data within

the documents - the translations are repetitions of some of the existing fields from the provided or

enriched sections simply translated into English. Which we do because excluding the translated data

during triple creation avoids introducing an English bias when querying for negatives.

3.3. Implementation
This section outlines the technical choices for the final implementation.

Vector Databases
Milvus and FAISS were chosen for storing and indexing the vectors generated by the neural models. A

benefit of both tools is that they support GPU acceleration, significantly enhancing the speed of vector
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indexing and querying, especially for large-scale datasets.

In this project, Milvus is prioritized for its ability to handle large-scale real-time queries and high-

dimensional vectors in models like BGE-M3 and SBERT. FAISS is only used for Colbert due to its superior

handling of token-level embeddings and it being pre-built into the ColBERT library. Milvus is not ideal

for multi-vector embeddings because it lacks efficient support for token-level granularity.

Milvus was initially implemented using Milvus-GPU using a docker container and was later transitioned

to Milvus-Lite in an Apptainer environment on the DAIC cluster. This change was necessary we could

not run Milvus-GPU on the cluster. And so GPU-accelerated Milvus was unavailable.

Model specifications and parameters
Europeana’s implementation of Solr-BM25 will be used with their same configuration set to create the

baseline collections. As previously stated, the same data used on the other models will also be used

for Solr-bm25. However, the data will not be formatted the same but instead will follow Europeana’s

schema compatible with Solr as shown in 1.1. This schema reflects the structured metadata format used

in Europeana’s existing Solr setup.

Jina-ColBERT v2 is implemented using Stanford-FutureData’s ColBERT library with the Jina-AI ColBERT

V2 multilingual checkpoint. FAISS-GPU is used for indexing due to its built-in integration with ColBERT

and support for token-level embeddings. Data is indexed in TSV format with numeric IDs to ensure

compatibility. Product quantization (PQ) is applied to optimize memory usage, with parameters set

to nbits=1 and kmeans_niters=2 for efficient token-level retrieval. Queries are processed using the

ColBERT Searcher class, supporting retrieval in both original and translated queries. Another major

decision pertained to the max_doclen parameter, which determines the maximum number of tokens

the model can process. While Jina-ColBERT v2 supports sequences up to 8192 tokens, this caused

GPU memory exhaustion during indexing and retrieval. To ensure stable performance, we lowered the

max_doclen to 2048 which just fit into the GPU’s memory. This is a significant reduction that results in

very large documents being truncated. However, given that our dataset does not contain very large

documents, this adjustment may mitigate the impact on retrieval effectiveness. Nonetheless, reducing

the max_doclen to 2048 was necessary to ensure the feasibility of using ColBERT within available GPU

resources.

Hybrid BGE-M3 is implemented using Milvus, as it supports hybrid retrieval of sparse and dense

vectors. The model produces a 1024-dimensional dense vector for semantic retrieval and a sparse lexical

vector for keyword-based matching. The indexing strategy employs IVF_PQ with inner product (IP) for

the dense vector and SPARSE_INVERTED_INDEX for the sparse vector. Reciprocal Rank Fusion (RRF) is

used to merge retrieval results from both modalities, ensuring balanced integration of semantic and

lexical relevance.

SBERT is implemented using Milvus for dense vector storage. The model generates 512-dimensional

dense embeddings via distiluse-base-multilingual-cased-v2 from SentenceTransformers. Due

to its 128-token input limit, documents are chunked into smaller segments while preserving context.

Retrieval is performed using inner product (IP) similarity, and chunk-level results are aggregated at the

document level using the averageP method. To mitigate retrieval bias, we retrieve k×3 results per query

before aggregation and select the top 100.

To summarize, we have the following table:
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Model Indexing Method Vector Dim. Retrieval
Strategy

Quantization Notes

BM25 Inverted Index N/A Lexical BM25

retrieval

N/A Follows Europeana’s

Solr schema

ColBERT FAISS-GPU Multivector Token-

level embeddings

Inner Product

(IP)

PQ (nbits=1,
kmeans_
niters=2)

max_doclen = 2048

Hybrid Milvus lite 1024 (Dense) + Sparse Inner Product

(IP)

IVF_PQ and

Sparse In-

verted Index

quantization

RRF fusion for dense

+ sparse retrieval

SBERT Milvus lite 512 (Dense) Inner Product

(IP)

VF_PQ

(dense)

Chunk aggregation

using avgP, retrieves

k×3 before aggrega-

tion

Table 3.3: Model specifications and parameters

Fine-tuning specifications
For the fine-tuning of our retrieval models, we adopted tailored approaches for each model based on

their documentation.

Jina-Colbert v2 utilized the Standford library’s built-in trainer, we fine-tuned only the model component,

excluding the ranker, which is managed by a separate class not involved in this process. The training

data comprised of a triples.jsonl, collections.csv, and queries.csv. We ensured that alphanumeric IDs

were appropriately mapped, aligning line indices with passage IDs (pids). Each triple was structured

as [qid, pid+, pid-]. Given that the library is designed specifically for retrieval and triple training, we

adhered to the default triple loss function (which was not customizable).

For the Hybrid model we employed distributed training via PyTorch’s torch.distributed.run utility. In

this process only the model is fine-tuned not the ranker, Milvus, which is not involved in this training.

The fine-tuning process focused on adapting the BAAI/bge-m3 model using triples consisting of a

query, a list of positive passages, and a list of negative passages. The triple data was formatted as [qid,

pos_doc_list, neg_doc_list]. The library, being tailored for retrieval and triple training, employed its

default loss function: m3_kd_loss.

For SBERT we leveraged the Sentence Transformers library’s trainer for fine-tuning. Similar to the

hybrid training, in this process only the model is fine-tuned not the ranker. Triples were formatted using

a dataset dictionary from the Datasets python library, as required by the transformer library, structured

as [qid, positive_doc, negative_doc]. This training utilized triplet loss, where, given a triplet of (anchor,

positive, negative), it minimizes the distance between the anchor and positive while maximizing the

distance between the anchor and negative. The loss is computed as: loss = max(||anchor - positive|| -

||anchor - negative|| + margin, 0).

To summarize, we have the following table:

Model Training Framework Training Data Format Loss Function Notes
Jina-ColBERT v2 Stanford ColBERT

Trainer

[qid, pid+, pid-] Default triplet loss (non-

customizable)

Fine-tunes model

only, excludes ranker

Hybrid BGE-M3 PyTorch Distributed

Training

[qid,
pos_doc_list,
neg_doc_list]

m3_kd_loss Fine-tunes model

only, excludes Milvus

(ranker)

SBERT Sentence Transformers

Trainer

[qid,
positive_doc,
negative_doc]

Triplet loss:

loss = max(||a - p||
- ||a - n|| + margin,
0)

Fine-tunes model

only, excludes ranker

Table 3.4: Fine-tuning specifications per neural model
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Overall, each model has a different method of fine-tuning, but all use the same triples data.

Result collection
As outlined in Section 3.1.5, we evaluate 56 systems, where each system is defined by a model (zeroshot

or finetuned) the documents indexed with that model, and the queries used to search that index.

When querying, we choose the top 100 results because according to the click data, 80% of user clicks are

for documents are ranked within the top 100 results. This ensures that our evaluation focuses on the

range of documents most relevant to user interactions, providing a meaningful comparison of retrieval

effectiveness across the systems.

To store the top 100 results, we use the TREC run format [40]. The TREC run format is a standardized

structure used for storing retrieval results, making it suitable for benchmarking information retrieval

systems. The format is also compatible with libraries such as Pytrec_eval. By adopting this format,

we ensure compatibility with standard evaluation frameworks and facilitate a consistent and fair

comparison of our 56 systems.

Hardware
Europeana’s RND-3 server is equipped with an Intel Core i7-7700 CPU featuring 8 cores. It offers

62 GB of RAM and a 31 GB swap partition. The server also includes an NVIDIA GeForce GTX 1080

GPU with 8 GB of VRAM, supporting CUDA 12.2. While these resources are sufficient for general-

purpose testing and smaller-scale experiments, they may pose challenges for the implementation and

evaluation of advanced NIR models, which often demand high memory, GPU capabilities, and scalability.

Despite these potential limitations, conducting experiments on this infrastructure is critical to assess

whether Europeana’s current environment can support NIR effectively or if additional investments in

computational resources are required.

Because we faced these issues on the RND-3 server, it became clear that Europeana’s infrastructure was

already limited for NIR. Therefore, we conducted the experiment on DAIC as well to get an idea of

an infrastructure better suited for Neural Information Retrieval (NIR) tasks. DAIC provides a more

robust computational environment with advanced hardware capabilities, enabling us to evaluate how

these models perform when resource constraints are minimized. This comparison helps determine the

extent to which infrastructure limitations impact the feasibility and efficiency of implementing NIR at

Europeana. For our experiments we used nodes with the NVIDIA A40 gpu. Which each had 500gb of

ram, of which we used a maximum of 100gb for the largest model, Colbert.

While DAIC was used for NIR models, Solr-BM25 was only run on RND-3. This was due to administrative

restrictions, as setting up a Solr instance required admin access, which we had on RND-3 but not on

DAIC.

3.4. Results and Evaluation
3.4.1. Metrics
Given the absence of absolute judgements in the dataset, we adopt a three-step evaluation process. While

we assume that user clicks indicate relevance, we account for potential limitations in this assumption

by conducting additional qualitative analyses. The following evaluation methodology enables us to

assess system performance comprehensively by considering for each system the multilinguality, the

pseudo-relevance, and rankings compared to other systems. By addressing these dimensions, we aim to

understand the effectiveness of the separate system components.

Step 1: Language Distribution
The first step involves analyzing the language distribution of queries and retrieved documents. We

organize results into a matrix where rows represent the query language and columns represent the

document language. We compute these by using the 20 languages from section section 3.2.1 and

constructing a 20x20 matrix. Each cell in this matrix represents the language combination of a query-doc

pair. Using this matrix we are able to identify: pairs in the same language, pairs where the document is

always in English (English column) but the query is not, and the remaining pairs (where the query and

document are in different languages). The matrix is divided into three distinct regions:
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• Same-language pairs (Diagonal) : Cases where the query and document are in the same language.

• English retrieval (English Column): Cases where documents are in English but query is not

English.

• Other multilingual pairs (Remaining region): All other (different) combinations of query and

document languages.

This classification helps us assess the degree of monolinguality (via the diagonal region) and the degree

of multilingual retrieval (via the English and remaining regions).

Metrics for this step include:

• Counts: Number of results in a region.

• Percentage: Percentage of results in a region.

• Entropy: Diversity within each region to evaluate language distribution effectiveness.

Key expectations include:

• Counts and percentages: We expect higher counts in the "same language" region for baseline

systems (BM25) due to their reliance on lexical matching. In contrast, neural models are expected

to distribute counts more evenly across the "same language," "English," and "different language"

regions, particularly when query and document augmentations are applied. We anticipate the

multilingual capabilities of the neural models to enhance performance both with and without the

augmentations.

• Entropy: Entropy measures the diversity in language distribution, and we anticipate:

– 𝐻𝑠𝑎𝑚𝑒 : We expect 𝐻𝑠𝑎𝑚𝑒 to increase slightly with augmentations, as they improve the balance

of retrieval across languages.

– 𝐻𝑒𝑛 : We expect 𝐻𝑒𝑛 to increase for systems using document translation, as translations

enhance diversity in English-language retrieval by increasing the number of translated

documents, allowing for the systems to retrieve english documents even from non-english

queries.

– 𝐻𝑑𝑖 𝑓 𝑓 : We expect 𝐻𝑑𝑖 𝑓 𝑓 to rise with document enrichment and translation, reflecting improved

inclusion of documents in diverse languages.

Step 2: Rank comparison
The second step focuses on examining the ranking similarity between systems for every query. This

comparison evaluates the impact of individual augmentations—such as query augmentation, document

enrichment, fine-tuning, and model selection—on the rankings produced by the systems. The primary

metric for this step is: Rank-Biased Overlap (RBO)

RBO is a similarity measure designed to compare two ranked lists, accounting for elements in common

and emphasizing top-ranked items [11]. It is used for analyzing ranking differences in information

retrieval tasks, such as comparing rankings generated by different retrieval systems for the same queries.

For this analysis, we use an extended version of RBO [11], which handles ties effectively by treating

tied rankings as equal rather than uncertain. This is achieved by using the 𝑤 − 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 RBO, ensuring

that documents with the same score are treated fairly in the similarity calculation. Unlike traditional

ranking metrics, RBO accounts for incomplete or indefinite rankings and allows for partial matches,

making it well-suited for information retrieval tasks.

The calculation of RBO incorporates a persistence parameter (𝑝), which determines how much weight

is given to higher-ranked items. A higher 𝑝 value (commonly set to 0.95) places greater emphasis on

the top of the rankings, aligning with the idea that the highest-ranked documents are often the most

important. RBO is also robust to differences in ranking depths and can handle ties effectively. This

is useful for us since comparisons for query results between Solr-BM25 and neural models are often

between ranks of different lengths.

The RBO is calculated using the RBO library provided in[11]. We use the libraries 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑟𝑎𝑛𝑘𝑖𝑛𝑔
method which creates a ranking of results sorting by the score in descending order and items with the
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same score are grouped in a tie. We then use the 𝑟𝑏𝑜 function which computes the RBO between two

rank lists. We use the w parameter as in our case a tie represents equality of ranks and not uncertainty.

Key expectations include:

• Query Augmentations: RBO may reveal ranking shifts, especially for non-English queries, as

translations retrieve additional relevant documents.

• Document Augmentations: We expect RBO to show increased retrieval diversity. Enrichments

may boost English document rankings, while translations could make English results more

dominant.

• Fine-Tuning: Fine-tuned models might show higher ranking consistency, but RBO could highlight

divergence from BM25, reflecting a stronger semantic focus.

• Model Comparisons: RBO is likely to indicate major differences between BM25 and neural models,

with BM25 rankings closely following click data, while neural models retrieve a broader, more

diverse set of relevant documents.

Step 3: Click-Based Retrieval Metrics
In the third step, we evaluate retrieval performance using click data. Here we make a big decision in

taking clicks as pseudo-relevance judgements. We do this because it provides a user-centric perspective

on retrieval performance. Clicks indicate user interest and engagement with search results, making

them a valuable implicit signal of relevance.

The evaluation is conducted over the ranked list of retrieved documents for each query, using the

following metrics:

• Average Precision (AP): Measures the precision values at each rank where a relevant document

is retrieved for a single query. It reflects how well a system ranks relevant documents for that

specific query.

• Reciprocal Rank (RR): Evaluates the ranking of the first relevant (clicked) document in the

retrieved list. It is calculated as the reciprocal of the rank of the first clicked document:

• Recall: Measures the proportion of relevant (clicked) documents retrieved out of the total number

of relevant documents for a query. This metric captures how well the retrieval system identifies all

relevant documents, regardless of their ranking.

Click-based metrics provide insights into ranking quality and retrieval effectiveness, assuming clicks as

relevance judgements. The AP, RR, and Recall are calculated using the pytrec_eval library. This library

makes use of trec run files and qrel files to calculate IR metrics as outlined in section 3.3

In this situation, all the <relevance> fields will be set to 1, which is not an issue since the metrics

being calculated (AP, RR, and Recall) only require binary relevance judgements. These metrics do not

differentiate between varying degrees of relevance, as their focus is on whether a document is relevant

or not based on user clicks.

Using this binary relevance assumption aligns with the purpose of these metrics:

• Average Precision (AP): Evaluates how well the system ranks clicked documents by averaging

precision scores at ranks where clicked documents appear. A binary relevance value is sufficient

to determine whether a document contributes to precision.

• Reciprocal Rank (RR): Focuses on the rank of the first clicked document. Since only the presence

or absence of a click matters, binary relevance is adequate.

• Recall: Measures the proportion of clicked documents retrieved. Binary relevance ensures that all

clicks are considered equally for calculating the percentage of relevant documents retrieved.

The use of binary relevance simplifies the evaluation process and is consistent with the assumptions

underlying the metrics, making it appropriate for assessing system performance based on click data.

Key expectations include:
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• Average Precision (AP): We expect high AP to indicate that the system places clicked documents

closer to the top of the ranking. Neural models might show lower AP compared to BM25 due

to the latter’s alignment with the click data, but neural models may still surface relevant but

previously unseen documents.

• Reciprocal Rank (RR): We expect high RR to reflect that the system ranks at least one clicked

document very high, demonstrating good performance for queries where immediate relevance is

crucial.

• Recall: We expect high recall to show that the system retrieves all clicked documents, regardless

of their rank. We expect BM25 to have higher recall due to the bias of the data towards the ranks.

BM25’s bias stems from the click data being generated using a similar Solr-BM25 system, meaning users

interacted primarily with documents ranked highly by BM25. This bias implies that BM25 is likely to

outperform neural models on metrics like AP and RR because it is inherently optimized for the same

retrieval patterns that produced the click data. However, this does not necessarily mean BM25 provides

better overall retrieval quality.

For neural models, lower AP or RR may reflect their ability to retrieve documents that BM25 did not

surface but which could be relevant based on semantic similarity. As a result, while BM25’s alignment

with the click data gives it an advantage in precision-focused metrics, neural models may excel in recall,

demonstrating their capability to relevant content but possibly at lower ranks. This outlined why we

considering multiple dimensions, not only rank metrics, to evaluate the retrieval systems.

3.4.2. Collecting the results
For each system, we run all 9,100 queries from the evaluation set. In the case of the no query

augmentations (using the original queries) we simply run the singular queries on the models. In the

case of query augmentations, when we have to search with the original and translated queries, we

approximate Europeanas methodology of doing an ’OR’ search. For BM25 this entails formatting the

query as [{query_original} OR {query_translated}], which is how searches are conducted with logical

operators in Solr. For neural models a logical OR search is not possible since the vector databases

being used do not support search with logical operators, therefore, we launch two distinct searches and

combine the results using RRF. Although the Hybrid model already uses RRF (as outlined in section

3.1.3) we apply it again between the original query and the translated query results. By applying RRF,

we approximate the behavior of an "OR" search for neural models, allowing us to merge results from

the original and translated query searches while balancing their contributions based on rank.

For each query, we stored the top 100 results in this format. This means each system produced up to

910,000 results, representing the theoretical upper limit. BM25 usually returns far fewer than 100 results

or fail to retrieve any documents in extreme cases. Which is something we see happen often in our

BM25 results. In the end we had 910000 results for all of the neural systems, while for the Solr-BM25

systems we had between 150000 and 230000 results.

Per-query handling
For many metrics, we calculate an average over all queries. However, since there is a disproportionately

higher number of English queries compared to non-English queries as seen in figure 3.13, we stratify

this averaging process by separating English and non-English queries. This involves calculating the

metrics separately for English and non-English queries and then providing two distinct averages: _EN

(English) and _NEN (Non-English). The Non-english average is further stratified per language.

This stratification allows us to better understand how the retrieval systems perform across different

linguistic contexts. By distinguishing between English and non-English queries, we can identify

potential biases in the systems, such as whether they are disproportionately optimized for English

content. Additionally, it helps ensure that the evaluation metrics reflect the multilingual challenges of

the dataset rather than being dominated by the majority language. This stratified analysis provides more

granular insights into the systems’ performance across languages, aiding in assessing their effectiveness

in a multilingual information retrieval setting.

We apply this process this for the following metrics: AP, RR, Recall, and RBO.
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Results

4.1. Explanation of results
We analyze retrieval effectiveness using these metrics using two tables:

1. Absolute Metrics: Language distribution and click-based metrics, providing insights into overall

system performance to determine the best-performing system; done per system

2. Comparative Metrics: Comparing combinations of results from the Absolute table for each

system with respect to a specific type of model, augmentation, and finetuning. For example, we

would compare Solr-bm25 without query augmentation with Solr-bm25 with query augmentation

(keeping the fine-tuning and document augmentation identical), in order to gauge the impact of

query augmentation. We also include RBO in this table since it is comparative by default.

We perform comparisons to evaluate the effect of query and document augmentations, fine-tuning, and

retrieval approaches:

• Mode selection: Analysis of the performance differences across BM25, ColBERT, Hybrid, and

SBERT retrieval systems.

• Fine-Tuning: Comparison of systems with and without fine-tuning, evaluating the impact of

domain adaptation.

• Query Augmentation: Comparison of original queries ( Q ) versus translated queries ( Q+O ),

evaluating the impact of query translation on retrieval.

• Document Enrichment: Comparison of P (provided) or P+T (provided + translated) against

P+E (provided + enriched) or P+E+T (provided + enriched + translated), assessing the value of

enrichment.

• Document Translation: Comparison of P (provided) or P+E (provided + enriched) against P+T

(provided + translated) or P+E+T (provided + enriched + translated), evaluating the contribution

of translation.

For each comparison we perform the three-step evaluation to ensure a robust analysis of system

performance:

• Language Distribution: Reveals system behavior across multilingual contexts.

• Ranking Similarity: Highlights system consistency and alignment across configurations.

• Click-Based Metrics: Provides insights into user-relevant retrieval effectiveness.

By combining absolute and comparative metrics, this process provides a holistic evaluation of retrieval

systems, considering both domain-specific and multilingual retrieval challenges, while acknowledging

the challenges of not having concrete relevance judgements.

42
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4.2. Initial quantitative results
This section provides a sample from our quantitative analysis to illustrate the structure and nature of

the raw results. The complete results can be found in the appendix.

4.2.1. Absolute results

System N𝑠𝑎𝑚𝑒 N𝐸𝑁 N𝑑𝑖 𝑓 𝑓 pct𝑠𝑎𝑚𝑒 pct𝐸𝑁 pct𝑑𝑖 𝑓 𝑓 H𝑠𝑎𝑚𝑒 H𝐸𝑁 H𝑑𝑖 𝑓 𝑓

B-O-P 70131.00 68916.00 14067.00 45.80 45.01 9.19 2.46 0.67 6.16

B-O-PE 70403.00 74094.00 17041.00 43.58 45.87 10.55 2.45 0.70 6.29

B-O-PT 60528.00 108082.00 14781.00 33.00 58.94 8.06 2.72 0.84 6.22

B-O-PET 61291.00 110807.00 17707.00 32.29 58.38 9.33 2.70 0.88 6.31

B-OT-P 67394.00 86443.00 27219.00 37.22 47.74 15.03 2.39 2.33 6.71

B-OT-PE 68164.00 91530.00 29078.00 36.11 48.49 15.40 2.39 2.33 6.72

B-OT-PT 58989.00 118741.00 49604.00 25.95 52.23 21.82 2.66 2.23 6.78

B-OT-PET 60310.00 121608.00 50362.00 25.96 52.35 21.68 2.65 2.23 6.78

CZ-O-P 230634.00 463284.00 217282.00 25.31 50.84 23.85 2.67 1.79 6.86

CZ-O-PE 235488.00 461655.00 214057.00 25.84 50.66 23.49 2.70 1.70 6.84

CZ-O-PT 223877.00 468196.00 219127.00 24.57 51.38 24.05 2.72 1.79 6.86

CZ-O-PET 232548.00 465519.00 213133.00 25.52 51.09 23.39 2.74 1.70 6.84

CZ-OT-P 222067.00 467591.00 221542.00 24.37 51.32 24.31 2.63 1.91 6.87

CZ-OT-PE 225559.00 467003.00 218638.00 24.75 51.25 23.99 2.65 1.87 6.85

CZ-OT-PT 215802.00 470892.00 224506.00 23.68 51.68 24.64 2.68 1.89 6.87

CZ-OT-PET 223111.00 469643.00 218446.00 24.49 51.54 23.97 2.70 1.85 6.84

Table 4.1: Absolute results for all BM25 and Colbert systems: language distribution

System AP𝐸𝑁 AP𝑁𝐸𝑁 R𝐸𝑁 R𝑁𝐸𝑁 RR𝐸𝑁 RR𝑁𝐸𝑁

B-O-P 0.62 0.75 0.76 0.89 0.68 0.79

B-O-PE 0.63 0.76 0.77 0.90 0.69 0.80

B-O-PT 0.72 0.76 0.90 0.90 0.77 0.80

B-O-PET 0.73 0.78 0.91 0.91 0.78 0.81

B-OT-P 0.62 0.69 0.76 0.88 0.68 0.73

B-OT-PE 0.63 0.69 0.77 0.89 0.69 0.73

B-OT-PT 0.72 0.69 0.90 0.89 0.77 0.73

B-OT-PET 0.73 0.70 0.91 0.90 0.78 0.74

CZ-O-P 0.22 0.32 0.52 0.62 0.25 0.36

CZ-O-PE 0.23 0.34 0.54 0.64 0.27 0.38

CZ-O-PT 0.21 0.31 0.54 0.62 0.25 0.35

CZ-O-PET 0.23 0.34 0.56 0.65 0.27 0.38

CZ-OT-P 0.22 0.29 0.52 0.61 0.25 0.32

CZ-OT-PE 0.23 0.30 0.54 0.63 0.27 0.34

CZ-OT-PT 0.21 0.28 0.54 0.62 0.25 0.32

CZ-OT-PET 0.23 0.31 0.56 0.64 0.27 0.34

Table 4.2: Absolute results for BM25 and Colbert systems: performance metrics
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4.2.2. Comparative results
Model comparison results

system1 system2 dAP𝐸𝑁 dAP𝑁𝐸𝑁 dR𝐸𝑁 dR𝑁𝐸𝑁 dRR𝐸𝑁 dRR𝑁𝐸𝑁 RBO𝐸𝑁 RBO𝑁𝐸𝑁

B-O-P CZ-O-P -0.41 -0.43 -0.24 -0.27 -0.43 -0.43 0.24 0.34

B-O-PE CZ-O-PE -0.40 -0.42 -0.23 -0.26 -0.42 -0.41 0.25 0.35

B-O-PT CZ-O-PT -0.51 -0.45 -0.36 -0.28 -0.52 -0.45 0.23 0.33

B-O-PET CZ-O-PET -0.50 -0.43 -0.35 -0.26 -0.51 -0.43 0.25 0.35

B-OT-P CZ-OT-P -0.41 -0.40 -0.24 -0.27 -0.43 -0.41 0.24 0.30

B-OT-PE CZ-OT-PE -0.40 -0.39 -0.23 -0.26 -0.42 -0.39 0.25 0.32

B-OT-PT CZ-OT-PT -0.51 -0.41 -0.36 -0.27 -0.52 -0.42 0.23 0.29

B-OT-PET CZ-OT-PET -0.50 -0.40 -0.35 -0.26 -0.51 -0.40 0.25 0.31

Table 4.3: Difference in performance metrics for BM25 and Colbert

Query augmentation comparison results

system1 system2 dAP𝐸𝑁 dAP𝑁𝐸𝑁 dR𝐸𝑁 dR𝑁𝐸𝑁 dRR𝐸𝑁 dRR𝑁𝐸𝑁 RBO𝐸𝑁 RBO𝑁𝐸𝑁

B-O-P B-OT-P 0.00 -0.06 0.00 -0.01 0.00 -0.07 1.00 0.87

B-O-PE B-OT-PE 0.00 -0.06 0.00 -0.01 0.00 -0.07 1.00 0.87

B-O-PT B-OT-PT 0.00 -0.07 0.00 -0.01 0.00 -0.07 1.00 0.84

B-O-PET B-OT-PET 0.00 -0.07 0.00 -0.01 0.00 -0.07 1.00 0.85

CZ-O-P CZ-OT-P 0.00 -0.04 0.00 -0.01 0.00 -0.04 1.00 0.70

CZ-O-PE CZ-OT-PE 0.00 -0.04 0.00 -0.01 0.00 -0.05 1.00 0.71

CZ-O-PT CZ-OT-PT 0.00 -0.03 0.00 -0.00 0.00 -0.04 1.00 0.70

CZ-O-PET CZ-OT-PET 0.00 -0.04 0.00 -0.01 0.00 -0.04 1.00 0.71

Table 4.4: Difference in performance metrics for original and translated queries

Document enrichment comparison results

system1 system2 dAP𝐸𝑁 dAP𝑁𝐸𝑁 dR𝐸𝑁 dR𝑁𝐸𝑁 dRR𝐸𝑁 dRR𝑁𝐸𝑁 RBO𝐸𝑁 RBO𝑁𝐸𝑁

B-O-P B-O-PE 0.00 0.01 0.01 0.01 0.00 0.00 0.95 0.97

B-O-PT B-O-PET 0.01 0.01 0.01 0.01 0.01 0.01 0.96 0.97

B-OT-P B-OT-PE 0.00 0.00 0.01 0.01 0.00 0.00 0.95 0.96

B-OT-PT B-OT-PET 0.01 0.01 0.01 0.01 0.01 0.01 0.96 0.96

CZ-O-P CZ-O-PE 0.01 0.02 0.02 0.01 0.01 0.02 0.32 0.37

CZ-O-PT CZ-O-PET 0.02 0.03 0.02 0.03 0.02 0.03 0.31 0.36

CZ-OT-P CZ-OT-PE 0.01 0.02 0.02 0.01 0.01 0.02 0.32 0.35

CZ-OT-PT CZ-OT-PET 0.02 0.03 0.02 0.03 0.02 0.02 0.31 0.34

Table 4.5: DPerformance metrics across different models and augmentation strategies

Document translation comparison results

system1 system2 dAP𝐸𝑁 dAP𝑁𝐸𝑁 dR𝐸𝑁 dR𝑁𝐸𝑁 dRR𝐸𝑁 dRR𝑁𝐸𝑁 RBO𝐸𝑁 RBO𝑁𝐸𝑁

B-O-P B-O-PT 0.10 0.01 0.13 0.01 0.08 0.01 0.82 0.96

B-O-PE B-O-PET 0.11 0.02 0.13 0.01 0.09 0.02 0.83 0.97

B-OT-P B-OT-PT 0.10 0.00 0.13 0.01 0.08 0.01 0.82 0.87

B-OT-PE B-OT-PET 0.11 0.01 0.13 0.01 0.09 0.01 0.83 0.87

CZ-O-P CZ-O-PT -0.00 -0.01 0.02 -0.00 -0.00 -0.01 0.32 0.37

CZ-O-PE CZ-O-PET 0.00 -0.00 0.02 0.01 0.00 -0.00 0.36 0.41

CZ-OT-P CZ-OT-PT -0.00 -0.01 0.02 0.00 -0.00 -0.00 0.32 0.35

CZ-OT-PE CZ-OT-PET 0.00 0.00 0.02 0.01 0.00 0.00 0.36 0.39

Table 4.6: Performance metrics across different models and augmentation strategies
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4.3. Results Analysis
The following outlines the initial results of the experiments. Here, we have analysed the impact of each

component on the system to the distribution of the languages, the rankings, and the click metrics.

For the language distribution, we will examine the percentage of documents retrieved in the same

language as the query (pct_same), in English (pct_EN), and in a different language (pct_diff) than the

query. This will help us understand the impact of different models on multilingual retrieval.

For ranking behavior, we use the Rank-Biased Overlap (RBO) metric to measure the similarity between

ranked retrieval results. Specifically, we compare rankings between different system variations, such as

with and without query, fine-tuning, or document augmentations, as well as between BM25 and neural

models. A high RBO score indicates that the rankings remain relatively unchanged, suggesting that the

component in question has little effect on retrieval order. Conversely, a low RBO score implies that the

component significantly alters rankings, demonstrating a strong impact on retrieval behavior.

For click-based evaluation, we analyze differences in Average Precision (AP), Recall, and Reciprocal

Rank (RR) when system components are modified. This includes comparisons between BM25 and

neural models, as well as between different augmentation strategies. A negative difference in these

metrics suggests that the change has resulted in a decline in performance, while a positive difference

indicates an improvement. These results provide insight into how each component contributes to

retrieval effectiveness and whether neural models successfully enhance ranking quality over BM25.

It is important to reiterate that with the click metrics, we expect to see a large bias for the BM25 model

as outlined in Chapter 3.4.1. Furthermore, we do not have complete judgements since we base our

judgement of relevance for a document on the user’s click data and not on annotations.

4.3.1. Model choice
First, we look into the impact of the choice of model on the system’s performance, keeping all of the

other system components the same but only changing the model type.

Language distribution

Figure 4.1: Language distribution for all models

Figure 4.1 shows us the differences in the percentage of retrieved documents. For pct_same, we can see

that the BM25 and Hybrid models have the highest percentages between 30% and 40% on average. This

can be attributed to the lexical matching that both of these models rely on; completely for BM25 and only

partially for Hybrid. Colbert and Sbert have on average, similar percentages (Sbert does have significant

outliers) at around 25% count for documents retrieved in the same language as the query. For pct_EN,

BM25, ColBERT, and SBERT retrieve the highest percentage of English documents, both around 50-60%.

ColBERT retrieves slightly fewer English documents, with significantly less variation, while Hybrid

retrieves the lowest percentage of English documents ( 45%), indicating a stronger multilingual retrieval

performance. For pct_diff, SBERT has the highest variability, retrieving a broad range of documents in
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different languages ( 20-50%), while BM25 and Hybrid retrieve the fewest different-language documents

( 10-20%). ColBERT has a very stable distribution of around 25%, suggesting a balanced retrieval

strategy. The high pct_EN across models is likely due to the overrepresentation of English documents

and queries in the evaluation set, which increases the likelihood of retrieving English content.

(a) Language distribution for BM25 over all augmentations (b) BM25 entropy value per distribution metric

Figure 4.2: Language distribution for BM25

Figure 4.2 illustrates the language distribution of BM25 across all query and document augmentations,

highlighting their significant impact on retrieval patterns. Initially, BM25 retrieves 45% same-language

documents, 45% English documents, and 10% different-language documents. As augmentations

increase—through query translations, document enrichments, and document translations—the pro-

portion of different-language documents (pct_diff) rises to 50%, while English documents (pct_EN)

increase to 20%, reducing the same-language count to 25%. This indicates that BM25 relies heavily

on augmentations to improve multilingual retrieval, as augmentations lower monolingual search by

nearly 20%. Additionally, entropy analysis reveals that BM25’s same-language and English document

retrieval is concentrated around a few query types (likely English queries) as it is quite low 2.5,

while different-language retrieval is more widely distributed across queries, 7. This suggests that

augmentations help BM25 expand multilingual retrieval but may still be query-dependent in how

effectively it retrieves diverse-language documents.

Figure 4.3: Language distribution for pre-trained Neural models
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Figure 4.4: Language distribution for finetuned Neural models

Figures 4.3 and 4.4 show the distribution of the pre-trained and fine-tuned Neural models over

all augmentations, respectively. Unlike BM25, which exhibits a shifting language distribution with

increasing augmentations, Figure 4.3 shows us that the NIR models maintain a relatively stable proportion

of same-language, English, and different-language documents as augmentations are introduced. Colbert

and Sbert have similar distributions of 25% for same-language, 50% for english-language, and 25%

for different-language documents. While Hybrid has a higher same-language at around 40%, english-

language of 40%, and different-language documents of 20%. The higher hybrid same-count can be

attributed to its lexical matching.

Further analysis of the fine-tuned NIR models in Figure 4.4 reveals varying impacts of fine-tuning

on language distribution. ColBERT remains largely unchanged, maintaining a similar distribution

to its pretrained version, with no noticeable shifts in language distribution after fine-tuning. Hybrid

exhibits slight changes, particularly when translations are introduced, leading to a 5% decrease in

same-language document retrieval and a 3% increase in English-language retrieval. This suggests that

fine-tuning on translated data helps Hybrid better leverage translations for improved English retrieval.

SBERT also remains stable post-fine-tuning, except in two outlying cases when document enrichments

are present. In these cases, pct_diff increases significantly from 28% to 40%, while pct_EN drops

sharply from 20% to 1%, indicating a major shift in distribution only when enriched documents are

included.

Comparative analysis

Figure 4.5: average RBO scores with respect to model comparison: BM25 vs Neural

Figure 4.5 presents the RBO scores comparing the ranking similarity between BM25 and various neural

models while keeping all other system specifications constant. A high RBO score suggests that the
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rankings produced by BM25 and the neural model are similar, implying that switching models would

yield comparable rankings. Conversely, a low RBO score indicates a significant divergence in rankings,

meaning that changing the retrieval model alone substantially alters the results. The figure reveals

that, on average, RBO scores are low across all neural model comparisons with BM25, highlighting that

model selection strongly influences ranking behavior and retrieval outcomes. For Colbert and Hybrid

the scores are low at around 0.25-0.3 but the Sbert scores are much lower, close to 0, indicating that the

ranking between sbert and bm25 are completely different.

Figure 4.6: Difference in click metrics for English queries with respect to the Model augmentation from BM25 to Neural. A

negative difference indicates a decline in performance after switching from BM25 to a neural model, while a positive difference

suggests an improvement.

Figure 4.7: Difference in click metrics for Non-English queries with respect to the Model augmentation from BM25 to Neural. A

negative difference indicates a decline in performance after switching from BM25 to a neural model, while a positive difference

suggests an improvement.

To assess whether the significant ranking changes introduced by different models are beneficial, we

analyze the click-based metrics outlined in figure 4.6 and figure 4.7. These metrics include Average

Precision (AP), recall, and reciprocal rank, with the plots illustrating the average difference between

the neural models and BM25. A negative difference indicates a decline in performance after switching

from BM25 to a neural model, while a positive difference suggests an improvement. This analysis helps

determine whether the observed ranking shifts contribute to better retrieval effectiveness.

The plots show, on average, a reduction in score when changing from the BM25 to the neural model.

Between Bm25 and Colbert/Hybrid the reduction in metric scores are not as large as with Bm25 and

Sbert. For Colbert and Hybrid, the AP and RR are reduced by 0.45 but the recall is reduced by 0.2/0.3.

This indicates that while ColBERT and Hybrid models exhibit a drop in AP and RR compared to BM25,
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their recall remains relatively higher, suggesting that these models still retrieve a similar number of

relevant documents compared to BM25 but rank them differently than BM25. This could be because

the neural models are able to retrieve a lot more semantically relevant documents which, in our biased

evaluation system, are not judged properly.

The difference in performance between SBERT and BM25 is very big at 0.6/0.7, suggesting that SBERT

behaves very differently for this dataset and task. Its distinct ranking patterns and alignment with

user interaction metrics indicate that SBERT approaches retrieval in a way that contrasts with the other

models. We cannot conclude that it is bad nor ineffective since we do not have complete judgements

and the values we are using as judgements now are heavily biased towards BM25.

4.3.2. Fine-tuning impact
Now looking into the impact of fine-tuning the neural models on the system’s performance.

Language distribution

Figure 4.8: Language distribution for zeroshot and fine-tuned ColBERT model

Figure 4.9: Language distribution for zeroshot and fine-tuned SBERT model
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Figure 4.10: Language distribution for zeroshot and fine-tuned Hybrid model

Figures 4.8, 4.9, and 4.10 shows the language distribution over the zeroshot and fine-tuned models

for the same, English, and different language document metrics. We can see that the fine-tuning

has a noticeable impact with the multilingualism of the retrieval. For Colbert we can see a slight

increase in the same-count (monolingualism increasing) and a slight decrease in the different count

(multlilingualism decreasing). For Sbert and Hybrid we see larger shifts favouring multilingual retrieval

as the same-language count decreases by 9% and 5% respectively and the diff-language count increases

by by 7% and 3% respectively. This suggests that fine-tuning enhances multilingual retrieval for

SBERT and Hybrid models, allowing them to retrieve more diverse language results, whereas ColBERT

maintains a more monolingual bias post-fine-tuning.

Figure 4.11: Language distribution with respect to finetuning for Sbert with document enrichements only

When analyzing the distribution for each model separately, SBERT exhibits a much larger impact in

terms of improved multilingualism, along with significant outliers, as shown in Figure 4.9. Upon

faceting by document augmentations, we identify the primary outlier in the case of fine-tuned SBERT

with PE (provided + enriched) document data as shown in figure 4.11. This aligns with our findings

in the model language distribution, where fine-tuned SBERT with enrichment augmentations led to a

notable decrease in same-language retrieval and an increase in cross-language retrieval (as outlined in

section 4.3.1).

This behavior could be attributed to SBERT’s primary focus on semantic understanding, which may

make it more susceptible to overfitting entity-based enrichments compared to other models. When

fine-tuned on enriched data, SBERT appears to internalize these entity patterns too strongly, causing a

deviation from its usual balanced language distribution. Or it could highlight that something went

wrong in the fine-tuning this instance of SBERT as none of the other fine-tuned SBERT systems exhibit

this behavior.
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Comparative analysis

Figure 4.12: Mean RBO scores across all document augmentations for the Hybrid model

The RBO scores in Figure 4.12 measure the similarity between the rankings produced by the zero-shot

and fine-tuned variations of the same system, with higher scores indicating greater consistency between

the two. A higher RBO score suggests that fine-tuning has a smaller impact on the ranking behavior of

the model, while lower scores indicate more substantial shifts.

We observe that the RBO scores are all quite low at approximately 0.25 for English queries and 0.3

for non English queries, for ColBERT and Hybrid. The RBO values significantly lower for SBERT,

approaching 0.

This suggests that fine-tuning causes large changes in ranking for all models, with the most dramatic

shift occurring in SBERT. The near-0 RBO score for SBERT implies that fine-tuning changes the entire

ranking, likely due to its coarse semantic focus, which makes it more susceptible to overfitting to the

fine-tuning data.

Figure 4.13: Difference in click metrics with respect to the Finetuning for english queries. A negative difference indicates a decline

in performance after finetuning, while a positive difference suggests an improvement
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Figure 4.14: Difference in click metrics with respect to the Finetuning for non english queries. A negative difference indicates a

decline in performance after finetuning, while a positive difference suggests an improvement

Figure 4.13 and figure 4.14 show us the difference in the scores of model before and after finetuning,

with a positive result indicating that the finetuned model has a higher score. We see that for Colbert

the finetuning always results in an average increase of 0.05 in the scores for English and Non-English

queries. For SBERT we see a constant decrease in scores of 0.15 with all of the metrics suggesting that

finetuning actually harms SBERT performance. And for the Hybrid model we see that the average is

typically close to 0 with a few outliers that cause the score to increase slightly.

When we look deeper into those outliers for the Hybrid model we see that they are systems which

have the full document augmentations (PET). This is shown in figure 4.15 where as the augmentations

increase, we can see that the score of the finetuned model also increasing and for the AP and RR, scoring

higher than the pretrained model.
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Figure 4.15: Metrics Across Document Augmentations for Hybrid model
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4.3.3. Query augmentations
Language distribution

Figure 4.16: Language distribution with respect to Query augmentation

Figure 4.16 shows that query augmentation has minimal impact on language distribution for Neural IR

models. ColBERT and SBERT maintain similar distributions ( 25% same-language, 50% English-language,

25% different-language), while Hybrid remains stable at 40% same-language and English-language,

with 20% different-language retrieval. However, BM25 shows a notable shift, with same-language

retrieval decreasing by 10% and different-language retrieval increasing by 10%, highlighting its reliance

on augmentations for improved multilingual retrieval.

Comparative analysis

Figure 4.17: RBO with respect to the query augmentations per model for non-english queries only
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In Figure 4.17, for non-English queries, we still see relatively high RBO scores, suggesting that translation

does influence the rankings, but not drastically. The fact that the rankings remain fairly similar indicates

that, while translations introduce some variation, they do not significantly disrupt the overall retrieval

patterns. This suggests that the neural models preserve ranking consistency even when handling

translated queries, though some shifts occur, possibly due to differences in linguistic structure of the

query and document embeddings and semantic interpretation with the translated query.

Figure 4.18: Difference in click metrics with respect to the Query augmentation for all models

Examining non-English queries in Figure 4.18, we observe a slight decrease in Average Precision (AP) and

Reciprocal Rank (RR) ( 0.06) and a minor increase in recall ( 0.02). This suggests that query translation

has a limited impact on retrieval effectiveness. The drop in AP and RR may indicate that translations

slightly alter document rankings, either pushing relevant results lower or surfacing unjudged relevant

documents due to pseudo-judgement bias. Meanwhile, the increase in recall suggests that translation

helps retrieve additional relevant documents. Overall, retrieval models remain consistent, with query

translation affecting ranking behavior more than overall performance.

4.3.4. Document augmentations: Enrichment’s
Language distribution

Figure 4.19: Language distribution with respect to the enrichment augmentation: P vs PE
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Figure 4.20: Language distribution with respect to the enrichment augmentation: PT vs PET

Figures 4.19 and 4.20 demonstrate that enrichment augmentations have minimal impact on the overall

language distributions. Similarly, Figures 4.2a and 4.3 indicate that the enrichment’s do not significantly

alter retrieval behavior for either BM25 or Neural models.

Comparative analysis

Figure 4.21: Difference in RBO scores with respect to the enrichment augmentation

The RBO scores for document enrichment augmentations show that BM25 remains largely unaffected

(0.98–1), indicating near-identical rankings. ColBERT exhibits significant ranking changes, yet its

language distribution remains stable (Figure 4.3). Hybrid and SBERT show high RBO scores (0.8) in

their pretrained state but drop significantly after fine-tuning, with Hybrid at 0.4 and SBERT nearing

0 (Figure4.22), suggesting fine-tuning amplifies ranking shifts in these models with respect to the

document enrichments.
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Figure 4.22: Difference in RBO with respect to the enrichment augmentation for zeroshot and finetuned Hybrid and SBERT

Figure 4.23: Difference in click metrics with respect to the enrichments for english queries

Figure 4.24: Difference in click metrics with respect to the enrichments for non-english queries

The median scores for all metrics, as shown in Figures 4.23 and 4.24, indicate that, on average, the metric
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differences are close to 0 across all models. However, ColBERT and Hybrid models exhibit high variability,

suggesting that while some systems perform similarly with and without enrichment augmentations,

others experience notable improvements or declines in performance. In contrast, SBERT shows a highly

stable distribution, indicating that enrichment augmentations have minimal impact on its retrieval

effectiveness for all systems. A deeper analysis of ColBERT and Hybrid models reveals a more nuanced

trend. Specifically, pretrained ColBERT benefits from enrichment augmentations, achieving higher

metric scores, whereas fine-tuned Colbert and Hybrid performs worse when enrichment augmentations

are applied. This trend is illustrated in Figure 4.25. Overall the impact of enrichments on performance

is not very significant.

Figure 4.25: Colbert and hybrid scores separated by pretrained and finetuned versions

4.3.5. Document augmentations: Translations
Language distribution

Figure 4.26: Language distribution with respect to the translation augmentation: P vs PT
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Figure 4.27: Language distribution with respect to the translation augmentation: PE vs PET

The language distribution with respect to the translation does not change drastically, indicating the

distribution of retrieved document languages remains stable across different augmentation strategies.

However, there are much higher outliers present for the english count and when looking deeper we

see that this is for the BM25 model which has a significant rise in english document count. The neural

models are very stable and implies that they effectively integrate document translations.

Comparative analysis

Figure 4.28: Difference in RBO scores with respect to the Translation augmentation

When looking at the RBO scores with respect to the document translation augmentations in figure 4.28,

we can see that Bm25 is high and Colbert is low as with the other augmentations indicating that BM25

models rank similarly and the difference in rankings are the translations heping the model find english

documents based on the translation. Colbert has a low score, as seen with the previous augmentations.

For Hybrid and SBERT we notice a very high range - looking deeper we find out that this range is split

between the finetuned and petrained models. Pretrained models have high RBO scores for Hybrid and

SBERT and fientuend models have low scores. Colbert is the same regardless of finetuning.
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Figure 4.29: Difference in metrics with respect to the Translation augmentation for english queries

Figure 4.30: Difference in metrics with respect to the Translation augmentation for non-english queries

Based on Figures 4.29 and 4.30 we observe that, on average, the difference in scores for non-English

queries is 0 or positive across all three metrics. While the magnitude of the improvement is very small,

this trend suggests that document translations contribute to a modest but consistent enhancement in

retrieval performance.

4.4. Ranked list truncation
One of the key challenges encountered during the evaluation was the presence of numerous low-quality

results in the retrieved ranked lists. This issue arises because Neural Information Retrieval (NIR) models,

by design, assign scores to all documents in the collection and retrieve the top 𝑘 results based on those

scores, regardless of their actual relevance. As a result, the lower ranks of the retrieved lists often

contain documents with extremely low scores, which contribute little to the evaluation and may dilute

meaningful insights. We observed this in the previous section, where for some augmentations the

rankings would change substantially depending on the augmentations applied and the RBO values

would be quite low, but the overall effectiveness metrics would remain the same or exhibit only marginal

changes. This means that those augmentations would cause the documents at the top have changed

considerably.This suggests that a significant portion of the results—particularly those in the lower

ranks—are irrelevant or minimally impactful in terms of the system’s retrieval performance. These

irrelevant documents, often included due to augmentations introducing additional lexical or semantic

matches, not only add noise to the ranked lists but also make meaningful comparisons between systems

more challenging.

To better understand this issue, we analyzed the score distributions in the ranked lists and plotted the
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scores across the retrieved ranks. The plot reveals that scores for many models exhibit a sharp decline

initially and then plateau at low values. This pattern indicates that a significant portion of the retrieved

results consists of documents with poor semantic relevance to the query. While this phenomenon is

more pronounced in NIR models, it is also observed in BM25 for certain queries, likely due to scoring

artifacts caused by the presence of stopwords, subwords, or terms that are only marginally related to

the query context.

4.4.1. Method
Based on our observations, we propose dynamically truncating the ranked lists to exclude the low-quality

results that contribute little to the evaluation. By analyzing the score curves, we identified the "curve

point" where the scores begin to plateau. This point serves as a natural cutoff, allowing us to retain only

the results with meaningful scores.

To implement this, we used a simple heuristic approach:

• Compute the scores for all documents in the ranked list.

• Fit a curve to the score distribution to identify the inflection point where the slope changes

significantly.

• Use this inflection point as the cutoff rank, truncating the list at this point.

This method dynamically determines the truncation threshold for each query, ensuring that only the

most relevant results are retained while eliminating noise from the evaluation. For consistency, the

same process was applied to all retrieval models, including BM25 and neural models.

4.4.2. Truncated results
After applying the ranked list truncation process, we analyzed the impact on retrieval effectiveness and

language distributions. Overall, we observe that while the truncation has a notable effect on language

distributions, it does not substantially alter the rank similarity (RBO) or retrieval performance metrics

across models.

The language distribution analysis of the truncated results reveals shifts due to query and document

augmentations, particularly for BM25 and Hybrid models. This suggests that truncation helps isolate

the most relevant retrieved documents, allowing a clearer view of how different augmentation strategies

influence retrieval. Specifically, the truncation reduces noise introduced by irrelevant or low-score

documents, making it easier to observe systematic retrieval trends across different models.

However, despite these changes in language distribution, the overall rank similarity (RBO) and retrieval

metrics (AP, RR, Recall, etc.) remain relatively stable before and after truncation. This is expected

because RBO results weigh the top ranks more. Thus, the fundamental ranking behavior of the models

is preserved, reinforcing the idea that only the highest-ranked documents contribute meaningfully to

user experience and evaluation outcomes.

From these findings, we argue that truncating results provides a more realistic view of model performance

in practical search scenarios, where users typically focus on the first few retrieved documents. By

filtering out low-relevance results, truncation enhances our ability to assess how augmentations influence

retrieval effectiveness, particularly in multilingual settings, without introducing unnecessary noise into

the evaluation.

4.5. Qualitative analysis
While our quantitative evaluation provides, to some extent, insights into the behavior of the retrieval

models under different configurations, it is important to acknowledge that our evaluation is based on

biased pseudo-judgements towards BM25. As a result, while the trends we observe in the metrics are

informative, they are not necessarily fully reliable indicators of true retrieval effectiveness.

To address this limitation, a qualitative analysis is necessary to examine specific cases where retrieval

behavior diverges significantly. This allows us to assess whether the neural models are genuinely

underperforming or if their retrieval strategies simply do not align with our pseudo-judgement-based

evaluation.
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For each analysis, we identify a set of queries aligned with our focus and randomly sample 3-4 for manual

relevance annotation. We then compute their AP scores to assess retrieval effectiveness. Additionally,

we examine the retrieved documents to hypothesize about model behavior, recognizing that with a

limited qualitative sample, we cannot definitively prove underlying retrieval patterns but can gain

valuable insights.

4.5.1. BM25 vs Neural models
Our results show that neural models score lower on the metrics, raising the question of whether this

reflects worse retrieval or if they retrieve relevant documents overlooked by our biased evaluation.

Examining selected queries will help clarify their true effectiveness.

For this comparison we looked into the queries which had high AP scores for BM25 and low scores for the

neural models. We only looked into the models with full augmentations, as this represented the ’most

multilingual’ BM25; so all models with full query and document augmentations (<model>-OT-PET).

We then obtained the following queries - the information in the parenthesis are not part of the query

but to provide context:

• Latvian national archive

• grimming (refers to a mountain in Austria)

• escultura en grecia, Translated: sculpture in greece

• benvenuto cellini, Translated: welcome cellini (Benvenuto Cellini was an Italian sculptor)

After judging the results of these models for these queries ourselves we obtained the following results:

When looking at the overall scores among the models in table 4.8, we see that the neural models actually

System MAP
B-OT-PET 0.6698

C-OT-PET 0.7500

H-OT-PET 0.7500

S-OT-PET 0.1698

Table 4.7: Model comparison based on MAP and MRR scores.

perform better across these selected queries based on our judgements.

Query System Score: AP

Latvian national archive

B-OT-PET 0.0000

C-OT-PET 1.0000

H-OT-PET 1.0000

S-OT-PET 0.0000

Original: benvenuto cellini,Translated: welcome cellini

B-OT-PET 1.0000

C-OT-PET 1.0000

H-OT-PET 1.0000

S-OT-PET 0.0000

Original: escultura en grecia,Translated: sculpture in greece

B-OT-PET 0.6792

C-OT-PET 1.0000

H-OT-PET 1.0000

S-OT-PET 0.6792

grimming

B-OT-PET 1.0000

C-OT-PET 0.0000

H-OT-PET 0.0000

S-OT-PET 0.0000

Table 4.8: Model performance for selected queries across different systems.
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However when looking closely at the retrieved results and at the scores for each model for the respective

queries in table 4.8, we can see some differences across the queries for the scores and can infer some

interesting behavior about the models’ retrieval.

For the Latvian national archive query, Hybrid performs well, retrieving highly relevant documents.

ColBERT, while finding one correct document, also ranks many Lithuanian archives highly, likely due

to the presence of the language tag “lat” in metadata fields, causing it to associate them incorrectly.

SBERT behaves similarly to ColBERT but exhibits even greater misalignment in terms of country and

institution, making all results irrelevant. BM25, however, fails entirely, returning results from the French

national archive, suggesting that its strict reliance on term matching leads to incorrect associations and

it not being able to understand the user’ intent as they requested for documents from a specific source.

For grimming, a mountain in Austria, BM25 successfully retrieves relevant documents, whereas all

neural models fail. This may be due to tokenization effects, where the models misinterpret or associate

the term “Grimming” with other tokens like “Grym” or “Grim.” This highlights a potential weakness in

neural models for handling singular entity queries, where token-based confusion may degrade retrieval

effectiveness.

For escultura en grecia (“sculpture in Greece”), most models retrieve relevant results, though some

include Cypriot sculptures. BM25 likely retrieves Cypriot sculptures when the description explicitly

mentions Greece, whereas neural models may interpolate between Greece and Cyprus based on semantic

similarities. This suggests that neural models are influenced by implicit contextual relationships, whereas

BM25 follows a more explicit term-matching strategy.

For Benvenuto Cellini, the translation to “Welcome Cellini” is misleading. BM25 performs well, as the

original name still matches, but SBERT suffers the most, likely due to its sentence-level embeddings

misinterpreting the phrase. In contrast, ColBERT and Hybrid remain relatively robust, likely because

their token-level and lexical representations respectively allow them to disregard the incorrect translation.

These observations suggest that neural models struggle with "singular entity queries", likely due to

tokenization effects, whereas BM25 struggles with "user intent" and may rely too heavily on exact term

matching. Additionally, language tags may, which we include in the data, introduce noise for neural

models while aiding BM25, raising the question of whether they should be included in retrieval. Overall,

this qualitative analysis highlights the strengths and weaknesses of each approach, reinforcing the need

for evaluation beyond pseudo-judgements.

4.5.2. SBERT with enrichments and fine-tuning
Our results show that SBERT is highly sensitive to enrichments and fine-tuning, leading to drastic shifts

in language distribution and inconsistent retrieval performance. Unlike ColBERT and Hybrid models,

SBERT overfits to entity patterns and metadata, struggling to generalize across multilingual content.

Surprisingly, SBERT’s retrieval often declines after fine-tuning, suggesting it adapts too narrowly to

training data.

To explore this, we analyze queries where SBERT’s rankings change significantly with enrichments and

fine-tuning, assessing whether these shifts improve retrieval or indicate overfitting and loss of relevance

diversity. We found the following queries:

• altonaer nachrichten 16.10.1933 (A German newspaper)

• Sponge cake

• History of coffee

After judging these queries’ results before and after enrichment and fine-tuning for SBERT, we see the

following results.

From these results, we observe that SBERT with fine-tuning performs significantly worse, with MAP

scores dropping to 0.0000 when combined with enrichment data (SF-O-PE and SF-OT-PE). This suggests

either an issue with the fine-tuning process or that SBERT is inherently poor at leveraging enriched

metadata. In contrast, SBERT with fine-tuning and without enrichments (SF-O-P and SF-OT-P) maintains

non-zero scores indicating that within the top 5 its still able to find results.
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System MAP
SF-O-P 0.2778

SF-O-PE 0.0000

SF-OT-P 0.2685

SF-OT-PE 0.0000

SZ-O-P 0.8514

SZ-O-PE 0.8444

SZ-OT-P 0.9444

SZ-OT-PE 0.9185

Table 4.9: MAP scores for different system configurations.

When analyzing the results and scores per query, we observed no major differences across queries.

However, a closer examination of the retrieved documents revealed interesting retrieval patterns. For

Altonaer Nachrichten 16.10.1933, SBERT frequently retrieved other historical documents from the same

period, likely due to the prominence of the date in metadata. This suggests that SBERT model might

prioritize the occurrence of metadata promoting a document if something in it is repeated a lot, even if

they are not completely relevant. For Sponge cake, many results were about “sponge animals” rather

than the intended culinary term, highlighting SBERT’s difficulty with disambiguation in enriched

settings.

Overall these findings suggest that enrichments do cause a significant downgrade but only when

finetuned. Possibly indicating that the fine-tuning process for SBERT did not go well and must be

re-evaluated.

4.5.3. Zeroshot vs Finetuned models
fine-tuning significantly impacts retrieval performance, but its effects vary across models. To investigate,

we compare zeroshot and finetuned models on key queries, assessing whether fine-tuning improves

relevance or introduces retrieval errors.

We find queries where the RBO scores between the zeroshot and finetuned models are low, indicating

that the ranks are very different. We want to see what impact this has on the retrieval of the documents.

For this analysis we randomly obtained these queries:

• jacob van hulsdonck (Flemish painter)

• mulroy bay (place in Ireland)

• the girls of slender means (A book by Muriel Spark)

The queries we obtained from this selection are all entities. We then calculate the AP scores for the

retrieved documents per query: We see that for these specific queries, which are all entities, the AP

System MAP
CF-OT-PET 0.5111

CZ-OT-PET 1.0000

HF-OT-PET 0.7685

HZ-OT-PET 0.8056

SF-OT-PET 0.0000

SZ-OT-PET 0.2958

Table 4.10: Mean Average Precision (MAP) scores for different system configurations.

scores of the finetuned models decrease. This suggests that finetuned neural models may not be the

most effective at retrieving single-entity queries, as they likely rely more on contextual cues rather than

exact entity matches. For isolated entity queries, the lack of additional context may cause neural models

to misinterpret the intent or associate the entity with semantically related but non-relevant documents.
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This is evident in the retrieved results for the finetuned models, where instead of retrieving the exact

entity, they return documents related to “slender girls” for The Girls of Slender Means and other bays

(for example Hudson Bay) for Mulroy Bay.

When looking at the models we can see that the difference in scores between zeroshot and finetuned

colbert is quite significant but the difference between zeroshot and finetuned Hybrid is much smaller.

This could be because of the lexical retrieval of the hybrid model which helps keep retrieval to exact

matches, making it less sensitive to fine-tuning adjustments for entity queries. In contrast, ColBERT’s

token-level interactions are more susceptible to embedding shifts, causing greater variability in rankings

after fine-tuning.

This suggests that the dense embedding models rely more on broader semantic associations. One

possible explanation is that the document data does not provide strong entity-specific signals, leading

the models to favor conceptually related content over exact matches. fine-tuning, which optimizes

models for domain-specific patterns, might further reinforce this bias toward contextual relevance over

strict entity recognition, reducing retrieval effectiveness for entity-based queries, highlighting potential

limitations with neural models.



5
Discussion

5.1. Effectiveness: Results Discussion
Based on our quantitative and qualitative results we can gauge the impact of each treatment to the

system and how they impact performance, helping us answer the first sub-question:

How do different Neural IR models and treatments—particularly the use of translation, enrichment
stages, and fine-tuning on Europeana’s dataset—impact retrieval performance compared to the
BM25-based approach?

5.1.1. Model
From the language distribution analysis, we can observe that NIR models, particularly Hybrid and

ColBERT, show more balanced language distribution compared to BM25. This balanced distribution of

the neural models suggests that they are less impacted by the augmentations and are better equipped to

handle multilingual retrieval scenarios naturally. For BM25 we can observe that the query and document

augmentations do have a significant impact on the language distribution as they help expand the search

beyond same-language matches. The translations enable better matching with English document,

suggesting that augmentations are important to broaden BM25’s multilingualism. T

For the RBO and performance metrics we see that there is a huge difference in rankings between the

models which causes a negative impact on the perofrmance scores. This is largely influneced by the

pseudo-judgements we use. This biased-evaluation suggests that the neural models always perform

worse than the BM25 models. However in our qualitative analysis we were able to demonstrate that the

neural models were actually able to perform better than the BM25 and retrieve more relevant documents,

demonstrating their strength in semantic matching. Suggesting that our quantitative analysis does not

correctly capture the strength of the neural models.

Overall, while neural IR models may be more well suited for multilingual retrieval scenarios, careful

consideration must be given to conduct deeper evaluation that can better capture their actual performance

benefits.

5.1.2. Fine-tuning
From the language distribution analysis we can see the individual impact of fine-tuning for each model.

Since ColBERT independently compares query and document token embeddings, it is already well-suited

for multilingual retrieval, reducing the need for additional fine-tuning to capture language-specific

nuances. This could explain why fine-tuning has little effect on ColBERT’s language distribution.

In contrast, Hybrid models exhibit more sensitivity to fine-tuning in terms of language distribution.

This increased variability likely stems from the interaction between lexical matching and semantic

representations, where fine-tuning can shift the balance between these two mechanisms. As a result,

Hybrid models are more prone to language fluctuations based on fine-tuning.

For SBERT, fine-tuning has a strong impact on ranking distributions, but unexpected behavior emerges
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when documents are enriched. SBERT primarily relies on sentence-level embeddings, which capture

semantic similarity but lack fine-grained control over individual tokens. When exposed to enriched data,

it appears to overfit to entity patterns and linguistic structures present in the fine-tuning set, leading

to instability in language distribution. Our qualitative analysis supports this observation, showing

that fine-tuned SBERT performs poorly on enriched documents. While this suggests that entity-rich

augmentations negatively impact retrieval, it remains unclear whether the root cause is inherent model

sensitivity to entities or potential issues in the fine-tuning process. Further investigation is needed to

disentangle these factors. As observed in Zeroshot vs Finetuned qualitative analysis, fine-tuning has the

potential to improve retrieval, suggesting that the negative impact seen with SBERT is likely due either

a mistake in finetuning that system or an inherent sensitivity to enrichments. Further investigation is

needed.

Fine-tuning the models causes significant shifts in document rankings, as seen in the consistently low

RBO scores. This could be due to fine-tuning adjusting vector-level matching to Europeana’s data,

changing which words and passages the models prioritize. These shifts are influenced by model

architecture, with ColBERT focusing on token-level interactions, SBERT on sentence-level embeddings,

and Hybrid models balancing lexical and dense retrieval. Additionally, our document formatting

choices for NIR, including structuring metadata as free text with the field names (outlined in section

3.2.1), may have contributed to these ranking changes. The way the documents were structured could

have amplified certain retrieval biases, causing fine-tuned models to diverge significantly from their

pretrained rankings, aligning more with domain-specific patterns and user interactions.

When analyzing the performance, we observe that ColBERT and Hybrid models benefit from fine-tuning

under certain conditions, leading to improved performance. ColBERT shows consistent performance

improvements while maintaining language stability, regardless of augmentations, whereas Hybrid

benefits most from full document augmentations. However, SBERT does not exhibit any gains and

shows significant loss in performance, indicating that the finetuning was not done properly.

Overall, fine-tuning significantly impacts document rankings and retrieval performance, but its

effectiveness varies across models. Additionally, document formatting choices may have influenced

ranking shifts, amplifying retrieval biases. These findings highlight that fine-tuning must be carefully

tailored to each model’s architecture and data augmentation strategy to achieve optimal retrieval in

Europeana’s search system.

5.1.3. Query augmentation
The query augmentations have minimal impact on the inherent multilingual capabilities of neural IR

models, while providing some benefit to BM25 through translations. This is also seen in the RBO’s

which, compared to other treatments, are the highest indicating that the ranks do not change much with

the inclusion of translated queries.

The effectiveness varies by model architecture, with SBERT showing slight improvements in scores

due to enhanced semantic understanding in the query, while ColBERT and Hybrid models experience

minor degradation in scores due to potential query noise from less precise translations as seen in the

qualitative analysis; some translations were wrong and misleading the neural models.

This suggests that query augmentations is only valuable for traditional retrieval methods and doesnt

impact the neural models as much.

5.1.4. Document augmentations
Enrichments
In terms of language distribution, enrichment’s do not introduce any substantial changes across neural

models. However it does slightly improve the multilingual distribution for BM25 as shown in figure

4.2a.

For pretrained neural models, enrichment’s offer minor benefits, with ColBERT demonstrating the

most consistent improvements. The fine-grained token-level matching of ColBERT allows it to leverage

enriched metadata effectively, leading to better retrieval performance in some cases. However, once

finetuned, ColBERT’s performance declines when only-enriched data is introduced, suggesting that for
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enrichment’s only, the model starts to falter. This was also shown in our qualitative analysis where we

argued neural models might struggle with handling entities.

Overall, enrichments slightly improve BM25’s multilingual retrieval but have very minimal impact on

Neural IR models, both in terms of language distribution and performance. The language distribution

does not really change and the retrieval slightly decreases; probably due to entity based enrichments

not doing well with neural models.

Translations
For BM25, translations enhance multilingual retrieval capabilities, making it more effective at retrieving

documents in different languages. This improvement occurs because translated documents introduce

consistent English representations across the dataset, allowing BM25 to match to more terms.

For Neural IR models, the influence of translations is more nuanced. ColBERT and Hybrid models

show minimal changes in language distribution, suggesting that multilingual embeddings and dense

representations already account for cross-lingual variations, reducing the need for additional translation-

based augmentation. However, SBERT exhibits improved stability when transitioning from enriched to

enriched-translated settings (PE → PET), indicating that translations help reinforce semantic consistency

in its sentence-level embeddings. This suggests that SBERT, which lacks fine-grained interaction

mechanisms, benefits more when translations create uniform representations across languages, helping

to mitigate inconsistencies caused by multilingual variation.

Overall, translation-based document augmentations do not have a negative impact across models. The

effect is either neutral or positive, but on its own, it remains limited. While translations introduce

English-aligned representations that could aid cross-lingual matching, their benefit depends on the

model’s ability to leverage them effectively. In our results, improvements in metrics are minimal,

suggesting that translations alone do not significantly enhance retrieval performance for most neural

models.

5.1.5. Other observations
Something we notice throughout the various configurations and augmentations is the sensitivity of

ColBERT. For all of the aforementioned configurations we see that when the respective change is applied,

either to the zeroshot or fintuned models, the RBO scores are always indicating that no matter what

change is made ColBERT rankings change drastically. This could be because of how fine-grained the

model is. Even minor modifications, such as reformatting passages, altering sentence boundaries, or

changing tokenization, it changes where and how tokens are stored in ColBERT’s per-token embedding

index. Consequently, any structural adjustments affect how query tokens interact with document tokens,

potentially amplifying ranking changes, even when the underlying content remains the same.

We notice this further with document augmentations, where SBERT and Hybrid models exhibit high

RBO scores with respect to the document enrichments and translations, before fine-tuning but experience

a significant drop afterward. The consistently low RBO scores for ColBERT, even in its pretrained state,

contrast with the behavior of SBERT and Hybrid models and can be attributed to ColBERT’s fine-grained

token-level interaction mechanism.

In contrast, SBERT and Hybrid models initially have high RBO scores with respect to enrichments and

translation, before fine-tuning, suggesting that their pretrained ranking behavior remains relatively

stable as document augmentations increase. This stability arises because SBERT processes information

at the sentence level, creating dense embeddings that capture overall semantic similarity, rather than

focusing on specific token interactions. Similarly, Hybrid models balance lexical and dense retrieval

mechanisms, which mitigates the effect of minor textual modifications in the absence of fine-tuning.

However, after fine-tuning, these models become more sensitive to enriched and translated content,

leading to a drop in RBO scores. This is agani probably due to the finetuning changing the way the

models represent embeddings, changing the similarity space and leading to shifts in document rankings.

We see in the qualitative analysis for zeroshot vs finetuning that this might result in a deterioration in

performance.
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5.2. Efficiency: Infrastructure considerations
Based on our investigation, we have identified key hardware requirements and efficiency constraints for

running Neural IR models at scale, helping us answer the second sub-question:

What are the infrastructural and efficiency considerations for implementing Neural IR in Europeana?

Our experiments on Europeana’s RND-3 server highlighted severe computational limitations, while

tests on DAIC provided insights into the resources needed for scalable indexing and retrieval.

One of the most critical limitations in our experiments on RND-3 was the GPU hardware. The NVIDIA

GTX 1080 (8GB VRAM, Pascal architecture) GPU could not run the Jina-ColBERT v2 model. This

showed us that to support modern Neural IR approaches, Europeana requires high-memory GPUs,

such as the NVIDIA A40 (48GB VRAM) or A100 (40GB/80GB VRAM) GPU’s available on DAIC.

CPU and RAM constraints also impacted indexing performance. The Intel Core i7-7700 (8 cores) and

62GB RAM on RND-3 proved inadequate for batch indexing and parallel document processing. Since

NIR models require high-memory vector indexing, insufficient RAM led to slow indexing times and

potential crashes. A more suitable configuration would include a system with at least 256GB–512GB

RAM, ensuring efficient batch processing and dense vector storage in memory.

Storage and scalability are also key considerations. Traditional BM25-based inverted indexes are

lightweight, but ColBERT and Hybrid models require significantly more storage. Our experiments

revealed that indexing 1 million documents required up to 10GB for ColBERT and 8GB for Hybrid

models. To scale indexing effectively, Europeana should look for a storage system of around 1TB or use

cloud-based solutions.

As for indexing time, our experiments demonstrated that Neural IR models require significantly longer

indexing durations compared to BM25. On DAIC, indexing 1 million documents took approximately

65,000 seconds ( 18 hours) for ColBERT, 50,000 seconds ( 14 hours) for Hybrid, and 10,000 seconds ( 2.8

hours) for SBERT. Given that indexing 60 million documents on a single high-end GPU would take

several weeks, Europeana would need a multi-GPU setup to reduce indexing time to a feasible range.



6
Conclusion

This research represents the first step in Europeana’s exploration of neural IR and its potential to improve

their search system by handling multilingual and heterogeneous metadata collections more effectively

than the current BM25-based approach. Our study aimed to assess the feasibility, challenges, and

benefits of adopting Neural IR models to enhance multilingual and heterogeneous metadata retrieval,

providing a foundation for future developments in Europeana’s search infrastructure.

6.1. Benefits and limits of neural IR
Based on this investigation and our quantitative/qualitative results, we cannot say that the performance

of the neural models is absolutely better or worse than Europeanas current BM25 set up. Mainly because

we do not have real judgements on the data, therefore, it is hard to state the absolute effectiveness of

these models and give an absolute outcome. However, despite this limitation, we can still answer the

main research question as our analysis highlights both advantages and challenges of integrating Neural

IR into Europeana’s search system:

Semantic retrieval performance
Based on our quantitative and qualitative analysis we can see that the neural IR models demonstrate

useful semantic retrieval capabilities. ColBERT and Hybrid models performed decently even within

a biased evaluation, suggesting their true effectiveness may be understated. Our qualitative analysis

further showed that Neural IR models were able to more appropriately retrieve relevant documents

However, Neural IR models may struggle with single-entity queries, as they rely on contextual

embeddings rather than exact term matches. This was evident in cases where BM25 outperformed

Neural IR in retrieving precise entity-based results. A hybrid approach, where BM25 assists with entity

matching while Neural IR enhances semantic retrieval, could mitigate this limitation.

Overall, Neural IR improves multilingual and concept-based retrieval but may need additional strategies

for entity-focused searches to fully optimize Europeana’s search.

Multilingualism
The quantitative analysis demonstrates that Neural IR models exhibit a more balanced and inherently

multilingual language distribution, remaining largely unaffected by query and document augmentations.

This suggests that Neural IR models are naturally better suited for cross-lingual retrieval compared to

traditional lexical-based methods like BM25.

Our findings indicate that Neural IR models consistently retrieve documents in multiple languages,

even without explicit translation or enrichment. Unlike BM25, which relies heavily on augmentations to

improve multilingual retrieval, Neural models appear to capture semantic relationships across languages

more effectively, making them more adaptable to Europeana’s diverse metadata collection.
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Saving costs on augmentations
The inherent multilingualism of the models means that Europeana can leverage Neural IR for multilingual

retrieval without the additional costs associated with enrichment and translations.

However, when assessing the current value of these processes, our analysis indicates that enrichments

and translations do help the current solr-BM25 method become more multilingual. And so, if Europeana

continues using Solr-BM25, maintaining and expanding translation and enrichment efforts will be

essential. In this case, investing in translating the remaining dataset, and expanding their pilot project

of translating queries as well, could further improve retrieval quality for non-English queries and

documents.

Adaptability with fine-tuning
Fine-tuning plays a crucial role in adapting Neural IR models to Europeana’s domain, offering significant

performance improvements and enhanced multilingual retrieval.

Our quantitative analysis shows that fine-tuning allows models to better align with Europeana’s diverse

metadata collection, optimizing search relevance while maintaining robust multilingual capabilities.

For ColBERT, fine-tuning enhances retrieval effectiveness without disrupting language balance. Hybrid

models also benefit from fine-tuning, particularly when combined with document augmentations, as

they improve in multilingualism and performance. However, given the relatively small improvements

observed, fine-tuning may not be strictly necessary for all configurations and should be weighed against

computational costs and complexity.

Sensitivity of neural models
Our analysis indicates that Neural IR models, particularly fine-grained models like ColBERT, are highly

sensitive to changes in document structure and contents. Due to their token-level matching approach,

even minor modifications in formatting or content can lead to significant shifts in retrieval results. This

sensitivity likely stems from how document embeddings are structured—small textual changes can

substantially alter the multi-vector representation, affecting ranking behavior.

Additionally, fine-tuned models exhibit notable ranking variations, as seen in our qualitative analysis.

In some cases, fine-tuning even results in worse performance, highlighting the importance of carefully

evaluating training data and model updates. Given that Europeana’s dataset is constantly evolving, this

sensitivity must be considered, as changes to documents and re-training can influence embeddings and

impact retrieval quality over time.

Neural IR in Europeana
Overall, to answer the main research question: Neural IR has the potential improve Europeana’s search

by enhancing multilingual retrieval, improving semantic search, and reducing reliance on augmentations

like translations and enrichment’s. Unlike BM25, which depends on exact term matching, Neural

IR models capture semantic relationships across languages, enabling better cross-lingual retrieval

without manual translations. Additionally, fine-tuning allows Neural IR models to adapt to Europeana’s

metadata, improving search relevance. While BM25 is better at single-entity queries, Neural IR offers

more concept-based retrieval. However, its sensitivity to data changes requires careful infrastructure

and evaluation planning for effective implementation.

6.2. Recommendation
Given our understanding of how Neural IR can be used to improve Europeanas search, we recommend

that Europeana further explore and research the Hybrid BGE-M3 model that combines the strengths of

lexical matching and Neural IR.

Given the limitations of the current evaluation framework, we cannot recommend a complete transition to

Neural IR at this stage. Instead, Europeana should continue investigating the feasibility and effectiveness

of a hybrid system, leveraging their current work on how to improve multilingualism in their current

systems.

Our analysis outlines that the Hybrid system is an ideal candidate for future research and development

as it has a lot of benefits of the neural approaches leveraging dense embeddings for semantic retrieval

while managing to avoid some of the pitfalls of pure dense retrieval models.
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Despite the pseudo-judgement-biased evaluation favoring BM25, the Hybrid model still performs well

in quantitative experiments as they have moderately high recall values of around 0.6-0.7. Furthermore,

our qualitative analysis affirms its effectiveness, showing that it retrieves relevant documents for queries

where our biased quantitative analysis suggests otherwise.

Regarding the treatments, fine-tuning the Hybrid model does improve its multilinguality. The query

augmentations do not have much of an impact on the retrieval of this model and are not necessary for

this system. However the document augmentations do help improve the performance by assisting with

the lexical matching.

The Hybrid model demonstrates greater stability and resilience, particularly in fine-tuning and handling

noisy data, as shown in the qualitative analysis. Unlike purely dense models, it maintains performance

consistency with the shifts in ranking caused by fine-tuning and changes in the document, making

it more reliable for Europeana’s evolving dataset. Additionally, by combining lexical and semantic

signals, the Hybrid model is less sensitive to metadata inconsistencies and noisy text, which are common

challenges in cultural heritage collections.

From a practical and implementation standpoint the Hybrid model also presents notable advantages

over the other neural models. While ColBERT and Hybrid support long input sequences, we did not

need to reduce the input length for Hybrid to fit within memory constraints, whereas ColBERT required

reducing token limit from 8192 to 2048 tokens to run in our infrastructure. Additionally, the Hybrid

model has a smaller index size and lower indexing time than ColBERT, making it a more feasible

option for large-scale indexing—especially if chunking strategies are applied. Another benefit is the

customization which milvus offers that ColBERT does not due to FAISS being in built into the Standford

library.

Overall, the fine-tuned Hybrid BGE-M3 model with full document augmentations shows strong potential

as an end-to-end retriever for improving multilingual retrieval and search performance in Europeana’s

search engine. Given its effectiveness, it warrants further exploration to assess its scalability and

integration within Europeana’s infrastructure.



7
Limitations and future work

7.1. Limitations
While our results provide valuable insights into multilingual retrieval, several implementation choices

also have influenced our findings. This section examines key aspects of our evaluation setup, dataset

construction, and implementation choices that could have shaped the observed trends, highlighting

both potential limitations and areas for future refinement.

7.1.1. Dataset
judgements
The most significant limitation of our investigation is the absence of ground-truth relevance judgements,

requiring us to rely on alternative approaches and additional analyses to compensate. While this does

not invalidate our quantitative and qualitative findings, it does mean that our results are not conclusive.

Instead, they should be interpreted as guiding insights rather than definitive answers. However, our

analysis provides a strong foundation for future research, helping to refine evaluation strategies and

inform the development of more robust neural IR models for Europeana.

Documents
The way we structured and formatted our dataset had a direct impact on retrieval performance and

the conclusions we can draw from our results. Several key factors, including document structuring,

language selection, and assumptions about enrichment and translation availability, likely influenced the

behavior of the models.

One important design choice was the document formatting. We opted for a structured format that

retained field names for the neural models. However, this may not have been the optimal decision,

as structuring documents as free text without the field names could have led to a more uniform

representation across models. The inclusion of field names may have added noise, particularly for

SBERT, which lacks fine-grained token interactions as shown in the qualitative analysis. It is also unclear

how retrieval performance would change if queries targeted specific fields. For example, a common

field present in nearly all documents is “data Provider”, and if a user were to query “provider”, the

neural system might prioritize this field rather than the contents of the field.

Language selection also played a significant role. Our dataset excluded low-represented languages

such as Maltese and Greek, raising questions about whether their inclusion would have influenced

multilingual retrieval effectiveness. Additionally, while some non-Latin scripts (e.g., Bulgarian Cyrillic)

were included, we did not explicitly evaluate their applicability within the neural models. Just to clarify,

these languages were not targeted, but part of documents with mixed languages (an effect of having

code-switched data). A possible extension of this work would be to focus on non-Latin languages

separately, rather than treating them within the same process as Latin-based languages.

Another key assumption in our dataset construction was that enrichments and translations were

universally available in Europeana’s data. However, in reality, not all documents are enriched or
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translated in Europeanas actual production environment, meaning our evaluation does not fully reflect

real-world retrieval conditions. Future investigations should consider how neural information retrieval

models perform in settings where enrichment and translation coverage is inconsistent, rather than

assuming a fully enriched and translated dataset.

Finally, the number of languages in our dataset may have influenced the training and inference of our

neural models. Typical MLIR studies focus on fewer languages, while our dataset included a mix of 20

different languages. This raises questions about whether a singular retrieval process is equally effective

for both high-resource and low-resource languages. A more refined approach might involve tailoring

retrieval strategies separately for high- and low-resource languages, rather than applying the same

process to all languages equally.

7.1.2. Model
When examining the implications of our implementation choices, we consider both the selection of models

and the specific setup configurations used. These decisions, including how models were configured

and and applied, had a significant influence on retrieval performance and overall effectiveness.

One key decision was not chunking documents for Hybrid and ColBERT models. Both models

support long input sequences, with ColBERT allowing up to 8192 tokens, but this caused GPU memory

exhaustion. To ensure feasibility, we lowered ColBERT’s max_doclen to 2048 tokens, which fit within

memory constraints. Hybrid, on the other hand, does not allow direct control over token limits but was

able to process documents up to 8192 tokens. However, for very large documents, truncation may have

occurred, potentially affecting retrieval effectiveness. The impact of this decision remains difficult to

measure objectively due to the bias introduced by our pseudo-judgements, making it unclear whether

chunking would have significantly improved results or simply changed ranking behavior.

Despite not chunking, we were still able to gain valuable insights into model behavior, particularly in

how Neural IR models handle multilingual metadata and retrieval across different document structures.

However, our findings were ultimately constrained by evaluation bias, which limits how conclusively

we can determine the full extent of chunking’s impact. Future work should explore chunking strategies

alongside more reliable evaluation methods to better assess the trade-offs between full-document

retrieval and passage-based approaches.

Additionally, our quantitative and qualitative analysis revealed that SBERT’s fine-tuning was likely not

done well, as its retrieval results were significantly worse than expected. Further investigation into the

fine-tuning procedure and alternative training configurations is necessary to assess whether SBERT can

perform better with the correct optimization.

7.1.3. Implementation issues
During our investigation, we encountered various implementation challenges that required us to develop

multiple workarounds to ensure progress.

Our initial plan was to conduct the indexing, fine-tuning, and retrieval on Europeana’s RND-3 server.

However, we encountered significant resource limitations, making it impractical to run Neural IR models

efficiently, ultimately costing us valuable time.

We faced serious issues with indexing the models on the server as it only had a 8 GB of GPU memory

and would crash upon loading the models and indexes. Diagnosing this issue was particularly difficult,

as the cause of the crashes was not immediately clear. Initial debugging suggested potential software

conflicts or model errors, but further investigation revealed that memory limitations were the primary

constraint.

This realization ultimately led us to transition to the Delft AI Cluster (DAIC), which provided significantly

better computational resources, allowing us to properly run and evaluate our Neural IR models. This

switch required modifications to our implementation.

On RND-3, we were able to use Docker to initialize and run Milvus-GPU, but DAIC’s HPC environment

did not support Docker, forcing us to use Milvus-Lite via Apptainer instead.

Overall, these infrastructure differences introduced additional complexities, requiring adjustments to
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our workflow across different systems costing a lot of time.

7.2. Costs and future work
Implementing Neural IR at scale within Europeana will require significant investment. As outlined

in our infrastructural analysis, scalable GPU resources, large storage capacity, and efficient indexing

pipelines are necessary to maintain Neural IR performance over time. Additionally, Neural IR models

require ongoing maintenance leading to higher operational costs compared to the current BM25 setup.

While FAISS and Milvus offer fast querying, scaling Neural IR to tens of millions of documents will

require careful optimization to ensure retrieval efficiency does not degrade as the collection grows.

Considering our primary recommendation of investigating a Hybrid approach, future work should

primarily entail forming a complete evaluation framework for judgements. This would provide a more

reliable measure of retrieval effectiveness and help assess the practical impact of Neural IR in Europeana.

And exploring adaptive retrieval strategies that dynamically balance lexical and neural retrieval based

on user intent. This could involve developing query classification techniques to determine when to

rely more on BM25 for entity-based searches and when to leverage dense embeddings for semantic

understanding, ultimately improving retrieval precision and efficiency.

Other aveneues for future work could focus on expanding fine-tuning experiments, and assessing

alternative architectures. Another promising direction is using Neural IR as a reranker, where a lexical

retriever (BM25) retrieves initial candidates, and a fine-tuned Hybrid model refines the rankings. Since

Europeanas collection is also always expanding and changing, looking into re-indexing strategies

in Milvus should also be considered. Additionally, exploring semantic chunking strategies could

enhance indexing efficiency while maintaining retrieval quality. Finally, future work can investigate

how low-resource languages, such as Maltese, can be better handled, ensuring that Europeana’s search

remains inclusive and effective for all users.
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A
Initial quantitative results

This section presents all of the results from our quantitative analysis

A.0.1. Absolute results

System N𝑠𝑎𝑚𝑒 N𝐸𝑁 N𝑑𝑖 𝑓 𝑓 pct𝑠𝑎𝑚𝑒 pct𝐸𝑁 pct𝑑𝑖 𝑓 𝑓 H𝑠𝑎𝑚𝑒 H𝐸𝑁 H𝑑𝑖 𝑓 𝑓

B-O-P 70131.00 68916.00 14067.00 45.80 45.01 9.19 2.46 0.67 6.16

B-O-PE 70403.00 74094.00 17041.00 43.58 45.87 10.55 2.45 0.70 6.29

B-O-PT 60528.00 108082.00 14781.00 33.00 58.94 8.06 2.72 0.84 6.22

B-O-PET 61291.00 110807.00 17707.00 32.29 58.38 9.33 2.70 0.88 6.31

B-OT-P 67394.00 86443.00 27219.00 37.22 47.74 15.03 2.39 2.33 6.71

B-OT-PE 68164.00 91530.00 29078.00 36.11 48.49 15.40 2.39 2.33 6.72

B-OT-PT 58989.00 118741.00 49604.00 25.95 52.23 21.82 2.66 2.23 6.78

B-OT-PET 60310.00 121608.00 50362.00 25.96 52.35 21.68 2.65 2.23 6.78

CZ-O-P 230634.00 463284.00 217282.00 25.31 50.84 23.85 2.67 1.79 6.86

CZ-O-PE 235488.00 461655.00 214057.00 25.84 50.66 23.49 2.70 1.70 6.84

CZ-O-PT 223877.00 468196.00 219127.00 24.57 51.38 24.05 2.72 1.79 6.86

CZ-O-PET 232548.00 465519.00 213133.00 25.52 51.09 23.39 2.74 1.70 6.84

CZ-OT-P 222067.00 467591.00 221542.00 24.37 51.32 24.31 2.63 1.91 6.87

CZ-OT-PE 225559.00 467003.00 218638.00 24.75 51.25 23.99 2.65 1.87 6.85

CZ-OT-PT 215802.00 470892.00 224506.00 23.68 51.68 24.64 2.68 1.89 6.87

CZ-OT-PET 223111.00 469643.00 218446.00 24.49 51.54 23.97 2.70 1.85 6.84

CF-O-P 242975.00 463918.00 204307.00 26.67 50.91 22.42 2.77 1.57 6.77

CF-O-PE 248822.00 461097.00 201281.00 27.31 50.60 22.09 2.75 1.61 6.74

CF-O-PT 246333.00 463239.00 201628.00 27.03 50.84 22.13 2.76 1.63 6.73

CF-O-PET 248360.00 460883.00 201957.00 27.26 50.58 22.16 2.73 1.62 6.73

CF-OT-P 231291.00 469637.00 210272.00 25.38 51.54 23.08 2.72 1.81 6.76

CF-OT-PE 237267.00 467096.00 206837.00 26.04 51.26 22.70 2.70 1.83 6.75

CF-OT-PT 234672.00 468242.00 208286.00 25.75 51.39 22.86 2.71 1.82 6.74

CF-OT-PET 237080.00 466627.00 207493.00 26.02 51.21 22.77 2.68 1.82 6.73

Table A.1: Absolute results for all BM25 and Colbert systems: language distribution
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System N𝑠𝑎𝑚𝑒 N𝐸𝑁 N𝑑𝑖 𝑓 𝑓 pct𝑠𝑎𝑚𝑒 pct𝐸𝑁 pct𝑑𝑖 𝑓 𝑓 H𝑠𝑎𝑚𝑒 H𝐸𝑁 H𝑑𝑖 𝑓 𝑓

SZ-O-P 246235.00 456429.00 208536.00 27.02 50.09 22.89 1.69 2.29 6.23

SZ-O-PE 250197.00 455666.00 205337.00 27.46 50.01 22.53 1.66 2.30 6.21

SZ-O-PT 234825.00 462230.00 214145.00 25.77 50.73 23.50 1.76 2.30 6.23

SZ-O-PET 247343.00 457067.00 206790.00 27.14 50.16 22.69 1.68 2.30 6.22

SZ-OT-P 251210.00 452212.00 207778.00 27.57 49.63 22.80 1.72 2.25 6.20

SZ-OT-PE 254903.00 451561.00 204736.00 27.97 49.56 22.47 1.69 2.26 6.17

SZ-OT-PT 239940.00 457657.00 213603.00 26.33 50.23 23.44 1.78 2.25 6.20

SZ-OT-PET 252108.00 452647.00 206445.00 27.67 49.68 22.66 1.71 2.26 6.19

SF-O-P 188236.00 468049.00 254915.00 20.66 51.37 27.98 1.49 2.38 6.38

SF-O-PE 16921.00 512119.00 382141.00 1.86 56.20 41.94 1.52 2.12 3.54

SF-O-PT 185851.00 473305.00 252044.00 20.40 51.94 27.66 1.40 2.41 6.46

SF-O-PET 166686.00 477967.00 266547.00 18.29 52.45 29.25 1.50 2.38 6.70

SF-OT-P 189916.00 463181.00 258103.00 20.84 50.83 28.33 1.53 2.32 6.42

SF-OT-PE 16986.00 513491.00 380704.00 1.86 56.35 41.78 1.56 2.35 3.60

SF-OT-PT 187368.00 465758.00 258074.00 20.56 51.11 28.32 1.43 2.34 6.51

SF-OT-PET 167622.00 473127.00 270451.00 18.40 51.92 29.68 1.52 2.33 6.73

HZ-O-P 357043.00 393714.00 160442.00 39.18 43.21 17.61 2.24 1.83 6.70

HZ-O-PE 364799.00 387912.00 158487.00 40.04 42.57 17.39 2.19 1.82 6.71

HZ-O-PT 345540.00 405103.00 160556.00 37.92 44.46 17.62 2.29 1.88 6.72

HZ-O-PET 356706.00 394857.00 159635.00 39.15 43.33 17.52 2.22 1.85 6.71

HZ-OT-P 336531.00 414181.00 160487.00 36.93 45.45 17.61 2.11 2.07 6.68

HZ-OT-PE 344582.00 409503.00 157113.00 37.82 44.94 17.24 2.07 2.06 6.69

HZ-OT-PT 326628.00 420001.00 164570.00 35.85 46.09 18.06 2.17 2.07 6.71

HZ-OT-PET 337585.00 413154.00 160459.00 37.05 45.34 17.61 2.11 2.06 6.69

HF-O-P 377678.00 389215.00 144307.00 41.45 42.71 15.84 2.24 1.84 6.55

HF-O-PE 362338.00 390768.00 158094.00 39.76 42.88 17.35 2.18 1.87 6.75

HF-O-PT 320163.00 431827.00 159210.00 35.14 47.39 17.47 2.53 1.91 6.57

HF-O-PET 316116.00 427825.00 167258.00 34.69 46.95 18.36 2.50 1.84 6.57

HF-OT-P 352210.00 410439.00 148551.00 38.65 45.04 16.30 2.11 2.08 6.47

HF-OT-PE 340869.00 410694.00 159637.00 37.41 45.07 17.52 2.04 2.08 6.68

HF-OT-PT 296296.00 441099.00 173805.00 32.52 48.41 19.07 2.42 2.05 6.51

HF-OT-PET 293803.00 439076.00 178320.00 32.24 48.19 19.57 2.39 2.03 6.50

Table A.2: Absolute results for all SBERT and Hybrid systems: language distribution
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System AP𝐸𝑁 AP𝑁𝐸𝑁 R𝐸𝑁 R𝑁𝐸𝑁 RR𝐸𝑁 RR𝑁𝐸𝑁

B-O-P 0.62 0.75 0.76 0.89 0.68 0.79

B-O-PE 0.63 0.76 0.77 0.90 0.69 0.80

B-O-PT 0.72 0.76 0.90 0.90 0.77 0.80

B-O-PET 0.73 0.78 0.91 0.91 0.78 0.81

B-OT-P 0.62 0.69 0.76 0.88 0.68 0.73

B-OT-PE 0.63 0.69 0.77 0.89 0.69 0.73

B-OT-PT 0.72 0.69 0.90 0.89 0.77 0.73

B-OT-PET 0.73 0.70 0.91 0.90 0.78 0.74

CZ-O-P 0.22 0.32 0.52 0.62 0.25 0.36

CZ-O-PE 0.23 0.34 0.54 0.64 0.27 0.38

CZ-O-PT 0.21 0.31 0.54 0.62 0.25 0.35

CZ-O-PET 0.23 0.34 0.56 0.65 0.27 0.38

CZ-OT-P 0.22 0.29 0.52 0.61 0.25 0.32

CZ-OT-PE 0.23 0.30 0.54 0.63 0.27 0.34

CZ-OT-PT 0.21 0.28 0.54 0.62 0.25 0.32

CZ-OT-PET 0.23 0.31 0.56 0.64 0.27 0.34

CF-O-P 0.27 0.38 0.57 0.64 0.32 0.43

CF-O-PE 0.26 0.37 0.55 0.63 0.30 0.42

CF-O-PT 0.27 0.37 0.59 0.65 0.31 0.42

CF-O-PET 0.25 0.36 0.55 0.63 0.30 0.41

CF-OT-P 0.27 0.34 0.57 0.65 0.32 0.39

CF-OT-PE 0.26 0.33 0.55 0.63 0.30 0.37

CF-OT-PT 0.27 0.33 0.59 0.65 0.31 0.38

CF-OT-PET 0.25 0.32 0.55 0.63 0.30 0.37

SZ-O-P 0.05 0.03 0.16 0.14 0.06 0.04

SZ-O-PE 0.04 0.03 0.15 0.13 0.06 0.04

SZ-O-PT 0.05 0.03 0.17 0.12 0.07 0.03

SZ-O-PET 0.05 0.03 0.16 0.14 0.06 0.04

SZ-OT-P 0.05 0.04 0.16 0.16 0.06 0.05

SZ-OT-PE 0.04 0.04 0.15 0.15 0.06 0.05

SZ-OT-PT 0.05 0.03 0.17 0.14 0.07 0.04

SZ-OT-PET 0.05 0.04 0.16 0.15 0.06 0.05

SF-O-P 0.00 0.00 0.02 0.01 0.01 0.00

SF-O-PE 0.00 0.00 0.00 0.00 0.00 0.00

SF-O-PT 0.00 0.00 0.03 0.01 0.01 0.00

SF-O-PET 0.00 0.00 0.02 0.01 0.01 0.00

SF-OT-P 0.00 0.00 0.02 0.01 0.01 0.00

SF-OT-PE 0.00 0.00 0.00 0.00 0.00 0.00

SF-OT-PT 0.00 0.00 0.03 0.02 0.01 0.00

SF-OT-PET 0.00 0.00 0.02 0.01 0.01 0.00

HZ-O-P 0.27 0.38 0.61 0.70 0.31 0.43

HZ-O-PE 0.26 0.37 0.59 0.69 0.31 0.42

HZ-O-PT 0.28 0.37 0.64 0.70 0.33 0.42

HZ-O-PET 0.27 0.36 0.61 0.69 0.32 0.41

HZ-OT-P 0.27 0.31 0.61 0.69 0.31 0.36

HZ-OT-PE 0.26 0.31 0.59 0.69 0.31 0.35

HZ-OT-PT 0.28 0.33 0.64 0.70 0.33 0.37

HZ-OT-PET 0.27 0.32 0.61 0.69 0.32 0.36

HF-O-P 0.25 0.34 0.54 0.62 0.30 0.39

HF-O-PE 0.22 0.27 0.48 0.58 0.27 0.32

HF-O-PT 0.29 0.35 0.62 0.63 0.34 0.40

HF-O-PET 0.28 0.36 0.61 0.65 0.34 0.41

HF-OT-P 0.25 0.27 0.54 0.62 0.30 0.31

HF-OT-PE 0.22 0.21 0.48 0.58 0.27 0.24

HF-OT-PT 0.29 0.30 0.62 0.64 0.34 0.34

HF-OT-PET 0.28 0.30 0.61 0.65 0.34 0.34

Table A.3: Absolute results for all systems: performance metrics
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A.0.2. Comparative results
Model comparison results

system1 system2 dAP𝐸𝑁 dAP𝑁𝐸𝑁 dR𝐸𝑁 dR𝑁𝐸𝑁 dRR𝐸𝑁 dRR𝑁𝐸𝑁 RBO𝐸𝑁 RBO𝑁𝐸𝑁

B-O-P CZ-O-P -0.41 -0.43 -0.24 -0.27 -0.43 -0.43 0.24 0.34

B-O-PE CZ-O-PE -0.40 -0.42 -0.23 -0.26 -0.42 -0.41 0.25 0.35

B-O-PT CZ-O-PT -0.51 -0.45 -0.36 -0.28 -0.52 -0.45 0.23 0.33

B-O-PET CZ-O-PET -0.50 -0.43 -0.35 -0.26 -0.51 -0.43 0.25 0.35

B-OT-P CZ-OT-P -0.41 -0.40 -0.24 -0.27 -0.43 -0.41 0.24 0.30

B-OT-PE CZ-OT-PE -0.40 -0.39 -0.23 -0.26 -0.42 -0.39 0.25 0.32

B-OT-PT CZ-OT-PT -0.51 -0.41 -0.36 -0.27 -0.52 -0.42 0.23 0.29

B-OT-PET CZ-OT-PET -0.50 -0.40 -0.35 -0.26 -0.51 -0.40 0.25 0.31

B-O-P SZ-O-P -0.57 -0.72 -0.60 -0.75 -0.62 -0.75 0.05 0.03

B-O-PE SZ-O-PE -0.58 -0.73 -0.62 -0.76 -0.63 -0.76 0.05 0.03

B-O-PT SZ-O-PT -0.67 -0.74 -0.72 -0.78 -0.70 -0.77 0.05 0.02

B-O-PET SZ-O-PET -0.69 -0.74 -0.75 -0.78 -0.71 -0.77 0.05 0.03

B-OT-P SZ-OT-P -0.57 -0.65 -0.60 -0.72 -0.62 -0.67 0.05 0.05

B-OT-PE SZ-OT-PE -0.58 -0.65 -0.62 -0.74 -0.63 -0.68 0.05 0.04

B-OT-PT SZ-OT-PT -0.67 -0.66 -0.72 -0.74 -0.70 -0.69 0.05 0.03

B-OT-PET SZ-OT-PET -0.69 -0.66 -0.75 -0.75 -0.71 -0.69 0.05 0.04

B-O-P HZ-O-P -0.36 -0.37 -0.16 -0.19 -0.37 -0.37 0.32 0.39

B-O-PE HZ-O-PE -0.37 -0.39 -0.18 -0.21 -0.38 -0.38 0.31 0.37

B-O-PT HZ-O-PT -0.44 -0.39 -0.25 -0.20 -0.44 -0.38 0.31 0.38

B-O-PET HZ-O-PET -0.46 -0.41 -0.29 -0.22 -0.46 -0.40 0.29 0.36

B-OT-P HZ-OT-P -0.36 -0.38 -0.16 -0.18 -0.37 -0.37 0.32 0.33

B-OT-PE HZ-OT-PE -0.37 -0.39 -0.18 -0.20 -0.38 -0.38 0.31 0.32

B-OT-PT HZ-OT-PT -0.44 -0.37 -0.25 -0.19 -0.44 -0.36 0.31 0.33

B-OT-PET HZ-OT-PET -0.46 -0.39 -0.29 -0.21 -0.46 -0.38 0.29 0.32

Table A.4: Performance metrics across different models and augmentation strategies

Finetuning comparison results

system1 system2 dAP𝐸𝑁 dAP𝑁𝐸𝑁 dR𝐸𝑁 dR𝑁𝐸𝑁 dRR𝐸𝑁 dRR𝑁𝐸𝑁 RBO𝐸𝑁 RBO𝑁𝐸𝑁

CZ-O-P CF-O-P 0.05 0.06 0.05 0.02 0.06 0.07 0.25 0.29

CZ-O-PE CF-O-PE 0.03 0.03 0.01 -0.00 0.04 0.04 0.26 0.31

CZ-O-PT CF-O-PT 0.05 0.06 0.05 0.03 0.06 0.07 0.25 0.28

CZ-O-PET CF-O-PET 0.02 0.02 -0.00 -0.02 0.03 0.03 0.26 0.31

CZ-OT-P CF-OT-P 0.05 0.06 0.05 0.03 0.06 0.07 0.25 0.28

CZ-OT-PE CF-OT-PE 0.03 0.03 0.01 0.00 0.04 0.04 0.26 0.30

CZ-OT-PT CF-OT-PT 0.05 0.05 0.05 0.04 0.06 0.06 0.25 0.27

CZ-OT-PET CF-OT-PET 0.02 0.02 -0.00 -0.01 0.03 0.02 0.26 0.29

SZ-O-P SF-O-P -0.04 -0.03 -0.14 -0.13 -0.06 -0.04 0.01 0.00

SZ-O-PE SF-O-PE -0.04 -0.03 -0.15 -0.13 -0.06 -0.04 0.00 0.00

SZ-O-PT SF-O-PT -0.05 -0.02 -0.15 -0.11 -0.06 -0.03 0.01 0.01

SZ-O-PET SF-O-PET -0.04 -0.03 -0.14 -0.13 -0.06 -0.04 0.01 0.00

SZ-OT-P SF-OT-P -0.04 -0.04 -0.14 -0.14 -0.06 -0.05 0.01 0.01

SZ-OT-PE SF-OT-PE -0.04 -0.04 -0.15 -0.15 -0.06 -0.05 0.00 0.00

SZ-OT-PT SF-OT-PT -0.05 -0.03 -0.15 -0.13 -0.06 -0.04 0.01 0.01

SZ-OT-PET SF-OT-PET -0.04 -0.04 -0.14 -0.14 -0.06 -0.05 0.01 0.00

HZ-O-P HF-O-P -0.01 -0.04 -0.07 -0.07 -0.01 -0.04 0.24 0.25

HZ-O-PE HF-O-PE -0.04 -0.10 -0.11 -0.11 -0.03 -0.10 0.19 0.19

HZ-O-PT HF-O-PT 0.00 -0.02 -0.03 -0.07 0.01 -0.02 0.24 0.25

HZ-O-PET HF-O-PET 0.01 -0.01 -0.01 -0.04 0.02 -0.01 0.24 0.26

HZ-OT-P HF-OT-P -0.01 -0.05 -0.07 -0.07 -0.01 -0.05 0.24 0.23

HZ-OT-PE HF-OT-PE -0.04 -0.10 -0.11 -0.10 -0.03 -0.10 0.19 0.17

HZ-OT-PT HF-OT-PT 0.00 -0.03 -0.03 -0.06 0.01 -0.03 0.24 0.24

HZ-OT-PET HF-OT-PET 0.01 -0.02 -0.01 -0.04 0.02 -0.02 0.24 0.24

Table A.5: Performance metrics across different models and augmentation strategies



83

Query augmentation comparison results

system1 system2 dAP𝐸𝑁 dAP𝑁𝐸𝑁 dR𝐸𝑁 dR𝑁𝐸𝑁 dRR𝐸𝑁 dRR𝑁𝐸𝑁 RBO𝐸𝑁 RBO𝑁𝐸𝑁

B-O-P B-OT-P 0.00 -0.06 0.00 -0.01 0.00 -0.07 1.00 0.87

B-O-PE B-OT-PE 0.00 -0.06 0.00 -0.01 0.00 -0.07 1.00 0.87

B-O-PT B-OT-PT 0.00 -0.07 0.00 -0.01 0.00 -0.07 1.00 0.84

B-O-PET B-OT-PET 0.00 -0.07 0.00 -0.01 0.00 -0.07 1.00 0.85

CZ-O-P CZ-OT-P 0.00 -0.04 0.00 -0.01 0.00 -0.04 1.00 0.70

CZ-O-PE CZ-OT-PE 0.00 -0.04 0.00 -0.01 0.00 -0.05 1.00 0.71

CZ-O-PT CZ-OT-PT 0.00 -0.03 0.00 -0.00 0.00 -0.04 1.00 0.70

CZ-O-PET CZ-OT-PET 0.00 -0.04 0.00 -0.01 0.00 -0.04 1.00 0.71

CF-O-P CF-OT-P 0.00 -0.04 0.00 0.00 0.00 -0.04 1.00 0.71

CF-O-PE CF-OT-PE 0.00 -0.04 0.00 -0.00 0.00 -0.05 1.00 0.71

CF-O-PT CF-OT-PT 0.00 -0.04 0.00 0.00 0.00 -0.05 1.00 0.71

CF-O-PET CF-OT-PET 0.00 -0.04 0.00 0.00 0.00 -0.05 1.00 0.71

SZ-O-P SZ-OT-P 0.00 0.01 0.00 0.02 0.00 0.01 1.00 0.72

SZ-O-PE SZ-OT-PE 0.00 0.01 0.00 0.01 0.00 0.01 1.00 0.72

SZ-O-PT SZ-OT-PT 0.00 0.00 0.00 0.02 0.00 0.00 1.00 0.73

SZ-O-PET SZ-OT-PET 0.00 0.01 0.00 0.01 0.00 0.01 1.00 0.73

SF-O-P SF-OT-P 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.72

SF-O-PE SF-OT-PE 0.00 -0.00 0.00 0.00 0.00 -0.00 1.00 0.93

SF-O-PT SF-OT-PT 0.00 -0.00 0.00 0.00 0.00 -0.00 1.00 0.71

SF-O-PET SF-OT-PET 0.00 -0.00 0.00 0.00 0.00 -0.00 1.00 0.70

HZ-O-P HZ-OT-P 0.00 -0.06 0.00 -0.00 0.00 -0.07 1.00 0.63

HZ-O-PE HZ-OT-PE 0.00 -0.06 0.00 -0.00 0.00 -0.07 1.00 0.63

HZ-O-PT HZ-OT-PT 0.00 -0.05 0.00 0.00 0.00 -0.05 1.00 0.64

HZ-O-PET HZ-OT-PET 0.00 -0.05 0.00 -0.00 0.00 -0.05 1.00 0.63

HF-O-P HF-OT-P 0.00 -0.07 0.00 -0.00 0.00 -0.08 1.00 0.62

HF-O-PE HF-OT-PE 0.00 -0.07 0.00 0.01 0.00 -0.08 1.00 0.61

HF-O-PT HF-OT-PT 0.00 -0.06 0.00 0.01 0.00 -0.06 1.00 0.63

HF-O-PET HF-OT-PET 0.00 -0.06 0.00 0.00 0.00 -0.06 1.00 0.63

Table A.6: Performance metrics across different models and augmentation strategies
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Document enrichment comparison results

system1 system2 dAP𝐸𝑁 dAP𝑁𝐸𝑁 dR𝐸𝑁 dR𝑁𝐸𝑁 dRR𝐸𝑁 dRR𝑁𝐸𝑁 RBO𝐸𝑁 RBO𝑁𝐸𝑁

B-O-P B-O-PE 0.00 0.01 0.01 0.01 0.00 0.00 0.95 0.97

B-O-PT B-O-PET 0.01 0.01 0.01 0.01 0.01 0.01 0.96 0.97

B-OT-P B-OT-PE 0.00 0.00 0.01 0.01 0.00 0.00 0.95 0.96

B-OT-PT B-OT-PET 0.01 0.01 0.01 0.01 0.01 0.01 0.96 0.96

CZ-O-P CZ-O-PE 0.01 0.02 0.02 0.01 0.01 0.02 0.32 0.37

CZ-O-PT CZ-O-PET 0.02 0.03 0.02 0.03 0.02 0.03 0.31 0.36

CZ-OT-P CZ-OT-PE 0.01 0.02 0.02 0.01 0.01 0.02 0.32 0.35

CZ-OT-PT CZ-OT-PET 0.02 0.03 0.02 0.03 0.02 0.02 0.31 0.34

CF-O-P CF-O-PE -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 0.31 0.37

CF-O-PT CF-O-PET -0.01 -0.01 -0.03 -0.02 -0.01 -0.01 0.31 0.36

CF-OT-P CF-OT-PE -0.01 -0.01 -0.02 -0.02 -0.01 -0.01 0.31 0.35

CF-OT-PT CF-OT-PET -0.01 -0.01 -0.03 -0.02 -0.01 -0.01 0.31 0.34

SZ-O-P SZ-O-PE -0.00 -0.00 -0.01 -0.01 -0.00 -0.00 0.82 0.82

SZ-O-PT SZ-O-PET -0.01 0.01 -0.02 0.01 -0.01 0.00 0.78 0.76

SZ-OT-P SZ-OT-PE -0.00 -0.01 -0.01 -0.01 -0.00 -0.00 0.82 0.80

SZ-OT-PT SZ-OT-PET -0.01 0.01 -0.02 0.00 -0.01 0.01 0.78 0.75

SF-O-P SF-O-PE -0.00 -0.00 -0.02 -0.01 -0.00 -0.00 0.00 0.00

SF-O-PT SF-O-PET -0.00 -0.00 -0.01 -0.01 -0.00 -0.00 0.03 0.02

SF-OT-P SF-OT-PE -0.00 -0.00 -0.02 -0.01 -0.00 -0.00 0.00 0.00

SF-OT-PT SF-OT-PET -0.00 -0.00 -0.01 -0.01 -0.00 -0.00 0.03 0.02

HZ-O-P HZ-O-PE -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 0.74 0.72

HZ-O-PT HZ-O-PET -0.01 -0.01 -0.03 -0.00 -0.02 -0.01 0.73 0.72

HZ-OT-P HZ-OT-PE -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 0.74 0.71

HZ-OT-PT HZ-OT-PET -0.01 -0.01 -0.03 -0.01 -0.02 -0.01 0.73 0.70

HF-O-P HF-O-PE -0.03 -0.07 -0.06 -0.05 -0.03 -0.07 0.35 0.35

HF-O-PT HF-O-PET -0.00 0.00 -0.01 0.02 -0.00 0.00 0.43 0.46

HF-OT-P HF-OT-PE -0.03 -0.06 -0.06 -0.04 -0.03 -0.07 0.35 0.31

HF-OT-PT HF-OT-PET -0.00 -0.00 -0.01 0.02 -0.00 0.00 0.43 0.42

B-O-P B-O-PET 0.11 0.02 0.14 0.02 0.09 0.02 0.81 0.95

B-OT-P B-OT-PET 0.11 0.01 0.14 0.02 0.09 0.01 0.81 0.86

CZ-O-P CZ-O-PET 0.02 0.02 0.04 0.03 0.02 0.02 0.30 0.35

CZ-OT-P CZ-OT-PET 0.02 0.02 0.04 0.03 0.02 0.02 0.30 0.33

CF-O-P CF-O-PET -0.01 -0.02 -0.02 -0.01 -0.02 -0.02 0.29 0.35

CF-OT-P CF-OT-PET -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 0.29 0.34

SZ-O-P SZ-O-PET -0.00 -0.00 -0.01 -0.01 -0.00 -0.00 0.78 0.78

SZ-OT-P SZ-OT-PET -0.00 -0.01 -0.01 -0.01 -0.00 -0.00 0.78 0.76

SF-O-P SF-O-PET -0.00 -0.00 -0.01 -0.00 -0.00 0.00 0.02 0.01

SF-OT-P SF-OT-PET -0.00 -0.00 -0.01 -0.00 -0.00 0.00 0.02 0.01

HZ-O-P HZ-O-PET 0.00 -0.01 0.01 -0.00 0.00 -0.01 0.69 0.68

HZ-OT-P HZ-OT-PET 0.00 0.00 0.01 -0.00 0.00 0.00 0.69 0.66

HF-O-P HF-O-PET 0.03 0.02 0.07 0.02 0.04 0.02 0.41 0.46

HF-OT-P HF-OT-PET 0.03 0.03 0.07 0.03 0.04 0.03 0.41 0.39

Table A.7: Performance metrics across different models and augmentation strategies
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Document translation comparison results

system1 system2 dAP𝐸𝑁 dAP𝑁𝐸𝑁 dR𝐸𝑁 dR𝑁𝐸𝑁 dRR𝐸𝑁 dRR𝑁𝐸𝑁 RBO𝐸𝑁 RBO𝑁𝐸𝑁

B-O-P B-O-PT 0.10 0.01 0.13 0.01 0.08 0.01 0.82 0.96

B-O-PE B-O-PET 0.11 0.02 0.13 0.01 0.09 0.02 0.83 0.97

B-OT-P B-OT-PT 0.10 0.00 0.13 0.01 0.08 0.01 0.82 0.87

B-OT-PE B-OT-PET 0.11 0.01 0.13 0.01 0.09 0.01 0.83 0.87

CZ-O-P CZ-O-PT -0.00 -0.01 0.02 -0.00 -0.00 -0.01 0.32 0.37

CZ-O-PE CZ-O-PET 0.00 -0.00 0.02 0.01 0.00 -0.00 0.36 0.41

CZ-OT-P CZ-OT-PT -0.00 -0.01 0.02 0.00 -0.00 -0.00 0.32 0.35

CZ-OT-PE CZ-OT-PET 0.00 0.00 0.02 0.01 0.00 0.00 0.36 0.39

CF-O-P CF-O-PT -0.00 -0.01 0.02 0.01 -0.00 -0.00 0.33 0.38

CF-O-PE CF-O-PET -0.00 -0.01 0.00 -0.00 -0.00 -0.01 0.35 0.40

CF-OT-P CF-OT-PT -0.00 -0.01 0.02 0.01 -0.00 -0.01 0.33 0.36

CF-OT-PE CF-OT-PET -0.00 -0.01 0.00 -0.00 -0.00 -0.01 0.35 0.38

SZ-O-P SZ-O-PT 0.00 -0.01 0.01 -0.02 0.01 -0.01 0.83 0.80

SZ-O-PE SZ-O-PET 0.00 -0.00 0.00 0.00 0.00 -0.00 0.94 0.94

SZ-OT-P SZ-OT-PT 0.00 -0.02 0.01 -0.01 0.01 -0.01 0.83 0.79

SZ-OT-PE SZ-OT-PET 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.94 0.92

SF-O-P SF-O-PT 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.05

SF-O-PE SF-O-PET 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00

SF-OT-P SF-OT-PT 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.05

SF-OT-PE SF-OT-PET 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00

HZ-O-P HZ-O-PT 0.02 -0.01 0.04 0.00 0.02 -0.01 0.79 0.78

HZ-O-PE HZ-O-PET 0.01 -0.00 0.02 0.00 0.01 -0.00 0.87 0.86

HZ-OT-P HZ-OT-PT 0.02 0.01 0.04 0.00 0.02 0.01 0.79 0.75

HZ-OT-PE HZ-OT-PET 0.01 0.01 0.02 0.01 0.01 0.01 0.87 0.83

HF-O-P HF-O-PT 0.03 0.02 0.08 0.01 0.04 0.01 0.41 0.47

HF-O-PE HF-O-PET 0.06 0.09 0.12 0.07 0.07 0.09 0.33 0.37

HF-OT-P HF-OT-PT 0.03 0.03 0.08 0.01 0.04 0.03 0.41 0.41

HF-OT-PE HF-OT-PET 0.06 0.09 0.12 0.07 0.07 0.10 0.33 0.30

B-O-P B-O-PET 0.11 0.02 0.14 0.02 0.09 0.02 0.81 0.95

B-OT-P B-OT-PET 0.11 0.01 0.14 0.02 0.09 0.01 0.81 0.86

CZ-O-P CZ-O-PET 0.02 0.02 0.04 0.03 0.02 0.02 0.30 0.35

CZ-OT-P CZ-OT-PET 0.02 0.02 0.04 0.03 0.02 0.02 0.30 0.33

CF-O-P CF-O-PET -0.01 -0.02 -0.02 -0.01 -0.02 -0.02 0.29 0.35

CF-OT-P CF-OT-PET -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 0.29 0.34

SZ-O-P SZ-O-PET -0.00 -0.00 -0.01 -0.01 -0.00 -0.00 0.78 0.78

SZ-OT-P SZ-OT-PET -0.00 -0.01 -0.01 -0.01 -0.00 -0.00 0.78 0.76

SF-O-P SF-O-PET -0.00 -0.00 -0.01 -0.00 -0.00 0.00 0.02 0.01

SF-OT-P SF-OT-PET -0.00 -0.00 -0.01 -0.00 -0.00 0.00 0.02 0.01

HZ-O-P HZ-O-PET 0.00 -0.01 0.01 -0.00 0.00 -0.01 0.69 0.68

HZ-OT-P HZ-OT-PET 0.00 0.00 0.01 -0.00 0.00 0.00 0.69 0.66

HF-O-P HF-O-PET 0.03 0.02 0.07 0.02 0.04 0.02 0.41 0.46

HF-OT-P HF-OT-PET 0.03 0.03 0.07 0.03 0.04 0.03 0.41 0.39

Table A.8: Performance metrics across different models and augmentation strategies
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