A New Perspective on Score Standardization

Julián Urbano, Harlley Lima and Alan Hanjalic

PROBLEM

- Very large **variability of effectiveness scores** within and between topics

CONSEQUENCES

- **Within-collection** system comparisons are difficult: observed differences disproportionately due to a few topics
- **Between-collection**: very unstable, just impossible

SOLUTION?

- Take topic difficulty into account
- Webber et al 2008: 2-step standardization
- 1. Compute z-score: $z=(x-\mu)/\sigma$, μ and σ per topic
- 2. **Nonlinear, Gaussian** transform: $y=\Phi(z)$, so $y\in[0,1]$

- Sakai 2016: 2-step standardization
- 2. **Linear** transform: *y=Az+B*, *A=0.15* and *B=0.5*

OUR PROPOSAL

- Standardize with per-topic distributions: $y=F_x(x)=P(X \le x)$
- "How does the system rank for the topic?"
- From this perspective, it turns out that Webber et al. and Sakai are **special cases**, just assuming a specific F_X :
- Webber et al: $X^{\sim}Normal(\mu, \sigma^2)$
- Sakai: $X\sim Uniform(\mu-\sigma B/A, \mu+\sigma(1-B)/A)$
- But why assume anything, and not just $X^{\sim}ecdf(x_1,...,x_n)$?

Current score standardizations
through gaussian and linear
transformations are special cases
of a standardization that
assumes specific distributions
of per-topic scores

The empirical distribution has better properties, seems to work better, and is more faithful to our notion of "ranking"

WITHIN-COLLECTION COMPARISONS

- Repeat 10,000 times:
- Randomly sample 50 topics and standardize
- Compare the std. system rankings vs. raw (τ and τ_{ap})
- Compare all pairs of systems (power)

BETWEEN-COLLECTION COMPARISONS

- Repeat 10,000 times:
- Randomly sample 2 sets of 50 topics and standardize Compare system rankings between sets (τ and τ_{ap})
- Compare every system with itself (type I errors)
- Compare all cross-collection pairs of systems (power)

