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Abstract

Audio Music Similarity is a task within Music Information Retrieval that deals with systems
that retrieve songs musically similar to a query song according to their audio content. Eval-
uation experiments are the main scientific tool in Information Retrieval to determine what
systems work better and advance the state of the art accordingly. It is therefore essential
that the conclusions drawn from these experiments are both valid and reliable, and that
we can reach them at a low cost. This dissertation studies these three aspects of evalua-
tion experiments for the particular case of Audio Music Similarity, with the general goal
of improving how these systems are evaluated. The traditional paradigm for Information
Retrieval evaluation based on test collections is approached as an statistical estimator of
certain probability distributions that characterize how users employ systems. In terms of
validity, we study how well the measured system distributions correspond to the target user
distributions, and how this correspondence affects the conclusions we draw from an exper-
iment. In terms of reliability, we study the optimal characteristics of test collections and
statistical procedures, and in terms of efficiency we study models and methods to greatly
reduce the cost of running an evaluation experiment.
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Chapter 1

Introduction

1.1 Information Retrieval

Information Retrieval (IR) is the field concerned with the automatic representation, storage
and search of unstructured information [Croft et al. 2009, Buettcher et al. 2010]. In a typical
IR scenario, a user has some kind of information need and uses a system that provides her
with information that is deemed as relevant or significant to the problem at hand [Baeza-
Yates and Ribeiro-Neto 2011, Manning et al. 2008].

Traditionally, these have been activities in which only a few people engaged, such as
librarians and professional searchers. But technological developments over the last two
decades have made traditional cataloging techniques impractical to cope with the vast
amount of information readily available through communication networks, digital libraries,
etc. On the other hand, the increasing availability of large computing and storage capacity
allowed for a turn in how information is searched and accessed, to the point that these tasks
are nowadays ubiquitous and carried out in an automatic fashion with the aid of computers.

Research on IR dates as far back as the 1960s, though the first computer-based search
systems go back further to the late 1940s [Sanderson and Croft 2012]. Most IR research
has focused on textual information, but other types of information have been gradually
studied in the last two decades, such as video, image, audio or music. Information Retrieval
systems are based on models that define how documents are represented and how to predict
their relevance for some input user query. These models usually work according to some
parameters, and they can generally be extended with other techniques to improve their
performance. For example, a Text IR system for the Web may be designed to not distinguish
between present and past tense, and a Music IR system to recommend songs may be designed
to disregard lyrics or focus just on beat patterns. The problem is then to figure out what
models, parameters or techniques work better. That is, what is the best system?

Most research in Information Retrieval follows a cycle that ultimately leads to the de-
velopment of better systems thanks to evaluation experiments (see Figure 1.1). First, a
research problem is identified and an IR task is defined to evaluate different approaches to
solve it. In the Development phase researchers build a new system for that task or adapt a
previous one, and to assess how well it performs they then go through an Evaluation phase.
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Task System . .
[ Definition HDevelopmentH Evaluation Hlnterpretatmn}

1 Y

System
Improvement

Learning

J

Figure 1.1: The IR Research and Development cycle.

Once experiments are finished the Interpretation of results is carried out, which leads to
a phase of Learning why the system worked well or bad and under what circumstances.
Finally, with the new knowledge gained researchers go through an Improvement phase to
try and make their system better, going back over to the Evaluation phase. In some cases,
and especially when the task is new, the first evaluation rounds lead to a re-definition of the
task to better capture the real application scenario [Voorhees 2002a].

1.2 Information Retrieval Evaluation

Information Retrieval is thus a highly experimental discipline. Evaluation experiments are
the main research tool to scientifically compare IR techniques and advance the state of
the art through careful examination and interpretation of their results. Despite being a
quite young field of research, Music IR is not an exception. In its early years, the Music
IR community mirrored Text IR in terms of evaluation practices, but there has been little
research studying whether that mirroring should be fully applied and, when it should not,
what alternatives work better. These are very important questions to deal with, because
reaching wrong conclusions from evaluation experiments may not only hamper the proper
development of our field, but also make us follow completely wrong research directions.
Some presentations and discussions at the recent ISMIR (International Society for Music
IR) 2012 conference showed the general concern of the Music IR community in this matter,
but also the lack of clear views to improve the situation [Peeters et al. 2012].

1.2.1 Evaluation in Text Information Retrieval

Information Retrieval Evaluation has attracted a wealth of research over the years [Harman
2011, Robertson 2008] (see Figure 1.2). The Cranfield 2 experiments [Cleverdon 1991],
carried out by Cyril Cleverdon between 1962 and 1966, are often cited as the basis for all
modern IR evaluation experiments, and even as the birthplace of the IR field altogether!
[Harman 2011]. Cleverdon established the so-called Cranfield paradigm for IR Evaluation
based on test collections (see Chapter 2). From 1966 to 1967, the MEDLARS (Medical
Literature Analysis and Retrieval System) study focused on the evaluation of a complete
system from a user perspective, taking into consideration the user requirements, response
times, required effort, etc. [Lancaster 1968]. The SMART project was directed by Gerard
Salton from 1961 until his death in 1995 [Lesk et al. 1997]. Ome of the results of the
project was the development of several test collections, procedures and measures that allowed

1 He showed that indexing the words in the documents was more effective than indexing terms in a
controlled vocabulary.
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INEX omme—s
CLEF o=
NTCIR oo

MEDLARS e TREC
Cranfield 2 o= SIGIR
SMART
1960 1970 1980 1990 2000 2010

ISMIR e=——e

MIREX ¢=————0
MusiCLEF e
MSD Challengee®

Figure 1.2: Timeline of Evaluation in Text IR (top) and Music IR (bottom).

researchers to perform batch evaluation experiments in a systematic fashion. Meanwhile,
the ACM SIGIR conference started in 1978 as the premier venue for Text IR research.

Very successful IR Evaluation forums have followed ever since. TREC? (Text REtrieval
Conference) started in 1992 to study and provide infrastructure necessary for evaluations
based on large-scale test collections [Voorhees and Harman 2005]. NTCIR? (National Insti-
tute of Informatics—Testbeds and Community for Information access Research) started in
1999 to provide similar infrastructure for Asian languages. CLEF* (Conference and Labs of
the Evaluation Forum) started in 2000 with an emphasis on multilingual and multimodal in-
formation, and INEX® (INitiative for the Evaluation of XML retrieval) focuses on structured
information since 2002.

1.2.2 Evaluation in Music Information Retrieval

On the Music IR side, the ISMIR conferences started in 2000. Reflecting upon the very
long tradition of Text IR Evaluation research, the “ISMIR 2001 resolution on the need to
create standardized MIR test collections, tasks, and evaluation metrics for MIR research
and development” was drafted during ISMIR 2001, and signed by many members of the
Music IR community as a demonstration of the general concern regarding the lack of formal
evaluations [Downie 2003b]. A series of three workshops then followed between July 2002 and
August 2003, where researches engaged in this long-needed work for evaluation in Music IR
[Downie 2003b]. There was some general agreement that evaluation frameworks for Music
IR would need to follow the steps of TREC [Voorhees 2002b], although it was clear too
that special care had to be taken not to oversimplify the TREC evaluation model [Downie
2002], because Music IR differs greatly from Text IR in many aspects that affect evaluation
experiments [Downie 2004].

The general outcome of these workshops and many other meetings was the realization
by the Music IR community that a lot of effort and commitment was needed to establish
a periodic evaluation forum for Music IR systems. The ISMIR 2004 Audio Description
Contest stood up as the first international evaluation project in Music IR [Cano et al.
2006]. Finally, the first edition of the Music Information Retrieval Evaluation eXchange®

2 http://trec.nist.gov

3 http://research.nii.ac.jp/ntcir/

4 http://www.clef-initiative.eu

5 http://inex.mmci.uni-saarland.de

6 http://www.music-ir.org/mirex/wiki/MIREX_HOME
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(MIREX) took place in 2005, organized by IMIRSEL (International Music IR Systems
Evaluation Laboratory) [Downie et al. 2010], and ever since it has evaluated over 1,500
Music IR systems for over a dozen different tasks on a yearly basis. More recent evaluation
efforts have appeared in the Music IR field, namely the MusiClef” campaign in 2011 [Lartillot
et al. 2011] (now part of the MediaEval series) and the Million Song Dataset Challenge® in
2012 [McFee et al. 2012]. However, these forums cover a much smaller range of tasks than
MIREX, usually just one or two, and the MSD Challenge is only scheduled for two years.

1.3 Importance and Impact of IR Evaluation Research

The problem of improving how we evaluate systems is recognized as one of the key areas
in Information Retrieval research. In 2002, a workshop gathering world-wide leading IR
researchers identified Evaluation as one of the seven grand challenges in the field [Allan
and Croft 2003]. This meeting turned into the SWIRL series of workshops, which explore
the long-range issues in IR, recognize key challenges and identify past and future research
directions. Reflecting upon the history of IR research, the first workshop collected in 2004
a list of 47 recommended readings for IR researchers [Moffat et al. 2005], where as many as
9 (19%) were devoted to analyzing or improving evaluation methods, clearly showing the
importance of this topic. The second meeting took place in 2012, and Evaluation was still
recognized as one of the six grand challenges in Information Retrieval [Allan et al. 2012].
An updated list of recommended readings included this time 28 (21%) publications related
to evaluation. Even the 2012 ACM Computing Classification System®, which updates the
previous 1998 version, reflects the importance of Evaluation by listing it as one of the eight
main areas in the IR field.

On the Music IR side, the recent MIReS project (Roadmap for Music Information
ReSearch), funded by the 7th Framework Programme of the European Commission, is an in-
ternational and collective attempt at recognizing the challenges and future directions of the
field. Evaluation is also listed here as one of the seven technical-scientific grand challenges
in Music IR research [Serra et al. 2013]. This recognition was also explicit during the ISMIR
2012 conference, where a discussion panel on Evaluation in Music IR was held along with
a late-breaking discussion session [Peeters et al. 2012]. Even the recent MIRrors journal
special issue on the future of Music IR research acknowledges this importance by having
half the papers devoted to different aspects of Evaluation [Herrera and Gouyon 2013].

To quantitatively measure the importance and impact of evaluation studies in IR, I
analyzed the proceedings of the two major conferences on Text IR and Music IR: the ACM
SIGIR and ISMIR conferences. The proceedings of each edition since 1998 were examined,
counting the number of publications devoted to analyzing or improving evaluation methods.
Figure 1.3-left shows that on average Evaluation comprised 11% of research published in
SIGIR, while in ISMIR, this goes down to 6%. In fact, it is very interesting to see that
the relative difference between both trends has been twofold over the years. To measure
the impact of that research, the number of citations received by evaluation papers for each

7 http://www.multimediaeval.org/mediaeval2012/newtasks/music2012/
8 http://labrosa.ee.columbia.edu/millionsong/challenge
9 http://www.acm.org/about/class/2012
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Figure 1.3: Importance (left) of publications related to IR Evaluation in SIGIR and ISMIR pro-
ceedings; and their impact (right) along with TREC overview papers.

year was also counted, and then divided the citation counts by the total number of papers
(related to evaluation or not) published later and in the same venue. Figure 1.3-right shows
that SIGIR papers on evaluation are cited an average of 0.6 times for each paper published
later. Impact seems to be much lower in ISMIR, although the positive trend shows that the
community is indeed becoming aware of the need for this research. These figures serve as a
rough indication that Evaluation is in fact a very important topic of research which might
not be receiving enough attention from the Music IR community yet. Another indicator
of this mismatch can be found in the best paper awards: from the 17 papers awarded in
SIGIR, 4 (24%) are related to evaluation. To the best of my knowledge, this has never been
the case in ISMIR.

Therefore, Evaluation is not only a cornerstone in IR for allowing us to quantitatively
measure which techniques work and which do not, but also a very active area of research
receiving a lot of attention in recent years. We have seen this tendency in Text IR with a
series of indicators which, at the same time, show that the Music IR field does not seem to
pay as much attention as it probably should.

1.4 Audio Music Similarity

The Audio Music Similarity (AMS) task deals with systems that receive as query input
the audio signal of a music piece and in response they have to return a list of songs from a
corpus, sorted by their musical similarity to the query [Logan and Salomon 2001, Aucouturier
and Pachet 2002, Seyerlehner et al. 2010b, Mcfee et al. 2012]. These systems differ from
traditional music search systems in that the query input is an actual music audio signal, not
just a textual query containing a section of the lyrics or metadata such as the artist and music
genre [Typke et al. 2005b]. They also differ from traditional notational systems in which
the query contains a sequence of pitches and durations [Urbano et al. 2011a, Doraisamy and
Riiger 2003]; AMS systems work with audio signals rather than with quantized symbolic
information, and in the case of MIREX there is no metadata about documents available
to systems. AMS is one of the most recognizable tasks in Music IR, with clear application
scenarios like music recommendation or plagiarism detection [Downie 2003a].

Besides private evaluations carried out by individuals as part of their research, public
evaluation of Audio Music Similarity systems is carried out in a MIREX task with the same
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Year Teams Systems Queries Documents Judgments

2006 5 6 60 5,000 3x1,629
2007 8 12 100 7,000 4,832
2009 9 15 100 7,000 6,732
2010 5 8 100 7,000 2,737
2011 10 18 100 7,000 6,322
2012 7 10 50 7,000 2,622

Table 1.1: Summary of MIREX AMS editions. In the 2006 edition three different assessors provided
annotations for every query-document pair. The task did not run in 2008

name (see Table 1.1). The AMS task ran for the first time in 2006, with five different
research teams submitting six systems. The participation level has gone up and down since
then, with a grand total of 69 systems evaluated in 6 MIREX editions so far'. The same
document collection, with 7,000 audio documents, has been used since 2007.

1.5 Motivation

The impact of MIREX has been without doubt positive for the Music IR community [Cun-
ningham et al. 2012], not only for fostering evaluation experiments, but also the study and
establishment of specific evaluation frameworks for the Music domain. For some time the
Music IR community accepted MIREX as “our TREC”, but we are just now becoming
aware of its limitations [Urbano 2011, Peeters et al. 2012]. Evaluation experiments in IR are
anything but trivial [Harman 2011, Sanderson 2010, Voorhees 2002a, Tague-Sutcliffe 1992,
Saracevic 1995]. Section 1.3 showed that for the past fifteen years the Text IR literature has
been flooded with studies showing that evaluation experiments have their very own issues,
proposing different approaches and techniques to improve the situation. While the Music
IR community has inherited good evaluation practices by adopting TREC-like frameworks,
some are already outdated, and most still lack appropriate analysis. I agree that not every-
thing from the Text IR community applies to Music IR, but many evaluation studies do. In
fact, the Music IR evaluation frameworks and body of knowledge are based on research up
to the early 2000’s, but about 250 evaluation papers have been published in SIGIR alone,
and several landmark studies have taken place in the context of TREC since MIREX started
in 2005. These studies focused mainly on large-scale evaluation, robustness and reliability,
but none of them has even been considered for Music IR. In my view, this is where our
community should start to improve how we evaluate systems [Urbano et al. 2013c].

The main goal of this dissertation is to improve evaluation in the Audio Music Similarity
task. The approach to achieve this goal is towfold. On the one hand, I analyze the extent
to which the knowledge body inherited from Text IR applies to the AMS task, and on the
other hand I extend and improve the techniques used in Text IR to assess what evaluation
methods work better, therefore extending the general knowledge body on IR Evaluation.

Being a task that closely resembles the ad hoc setting in Text IR, AMS evaluation
experiments were designed in MIREX following the principles of other evaluation forums like
TREC. The MIREX AMS task has run since 2006, and yet there has been no comprehensive

10 Some of the MIREX AMS data can be downloaded from http://music-ir.org/mirex/wiki/.
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study analyzing the appropriateness of that body of knowledge for the particular case of
AMS. This issue is studied from the perspective of experimental validity, reliability and
efficiency, with particular emphasis on the relationship between system- and user-measures,
the optimal characteristics of test collections and statistical procedures, and the reduction
of annotation costs. In doing so, modified versions of the techniques widely used in Text IR
evaluation are employed. However, these techniques present some limitations that do not
allow researchers to fully describe experimental results, besides theoretical and experimental
gaps that make them hard to understand and apply in real situations.

1.6 Organization

Chapter 2 details the Cranfield paradigm followed in IR evaluation experiments, from which
we identify the three main objects of research for this dissertation: validity, reliability
and efficiency. The chapter also presents previous research on IR Evaluation, categorized
according to these three criteria. Three main blocks then follow, taking on each of them.

The first block is concerned with the validity of the evaluation experiments, that is,
how well the system-measures correspond to the target user-measures and how this cor-
respondence affects the conclusions we draw from an experiment. Chapter 3 studies the
relationship between system effectiveness and user satisfaction, providing an empirical map-
ping from the former to the latter. This mapping allows researchers to study systems from
the perspective of users, it allows us to measure how much room for improvement there
is for systems considering personalization, and it shows that seemingly different systems
according to effectiveness may not be different according to user satisfaction. Chapter 4
then takes user satisfaction over a sample of queries, discussing the possibilities it offers as
opposed to taking just averages, and showing that conclusions based on the distribution of
user satisfaction may easily contradict conclusions based on the distribution of effectiveness.

The second block is concerned with the reliability of the evaluation experiments, that is,
how confident we can be that our conclusions are correct and not just a random artifact of
measuring performance on a sample such as a test collection. Chapter 5 compares various
statistical significance tests under different optimality criteria, discussing the usually over-
looked difference between practical and statistical significance. Chapter 6 then employes
Generalizability Theory to analyze the optimal characteristics of test collections in terms of
number of queries, assessors, etc.

The third block is concerned with the efficiency of the evaluation experiments, that is,
how to make them inexpensive while still reaching valid and reliable conclusions. Chapter 7
introduces the probabilistic framework for evaluation, and develops two models to predict
the relevance of documents under different circumstances. Chapter 8 then shows how the
effectiveness of systems can be estimated in this probabilistic setting. The chapter then
discusses how to estimate the ranking of systems without relevance judgments, and how to
minimize the judging effort when estimating differences between systems or absolute scores.

Finally, Chapter 9 presents the conclusions of this work and outlines topics for further
research in this line.






Chapter 2

Information Retrieval Evaluation

Most evaluation experiments in Information Retrieval follow the Cranfield paradigm to a
greater or lesser extent. This paradigm is based on test collections, which are used as
abstractions of the search process that users undertake in real situations. It is designed to
allow rapid development of systems and reproducibility of results, but it is limited in other
ways. This chapter formalizes this evaluation paradigm, presenting three aspects that must
be considered when designing such evaluation experiments, namely their validity, reliability
and efficiency. Past literature on IR Evaluation is then outlined under these three categories.

2.1 The Cranfield Paradigm

Batch evaluation experiments in Information Retrieval usually follow the traditional Cran-
field paradigm conceived by Cyril Cleverdon half a century ago for the Cranfield II experi-
ments [Cleverdon 1991]. The main element needed for these evaluations is a test collection,
which is made up of three basic components [Sanderson 2010]: a collection of documents
D, a set of queries Q and a set of relevance judgments R, compiled by a set of human
assessors H, telling what documents are relevant to what queries (the ground truth or gold
standard). These test collections are built within the context of a particular task, which
defines the expected behavior of the systems, the users and their information needs, and the
characteristics of the documents to be considered relevant. Several effectiveness measures
are used to score systems following different criteria, always from the point of view of a user
model with assumptions and restrictions as to the potential real users of the systems.

A typical IR research scenario goes as follows [Harman 2011, Voorhees 2002a]. First,
the task is identified and defined, normally seeking the agreement of several researchers.
Depending on the task, a document collection is either put together or reused from another
task, and a set of queries is selected trying to mimic the potential requests of the final
users. The set of systems to evaluate return their results for the particular set of queries
and document collection, and these results are then evaluated using several effectiveness
measures. Doing so, we attempt to assess how well the systems would have satisfied a real
user at different levels. This framework promotes rapid development and improvement of
systems because it allows researchers to systematically and iteratively evaluate and com-
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pare alternative algorithms and parametrizations. In that line, it also allows to reproduce
experiments and repeat results across research groups by using the same test collection.

Different tasks define the user information needs in different ways. For instance, in the
early TREC Ad Hoc tracks the information need would be “find documents related to some
topic”, and documents were considered relevant if they could be used as source to write
a report on that topic [Voorhees 2002a]. Examples of topics were “language and cultural
differences impeding the integration of foreign minorities in Germany” and “counterfeiting
of money being done in modern times”; here there is a distinction between a topic (the
instance of information need) and the query (the actual data structure provided as input
to a system) [Voorhees 2002a]. In a Named Entity Recognition task, the information need
would be “find all entities of some type”, where that type is the actual query (e.g. persons,
locations or organizations). In the case of Audio Music Similarity the information need is
“find songs musically similar to the query song”, and the query item given to systems as
input is the audio signal itself.

Other Music IR tasks such as Symbolic Melodic Similarity or Query by Humming clearly
fit into this classic retrieval setting. In other cases such as Audio Melody Extraction and
Audio Chord Estimation a slightly different procedure is followed. Instead of retrieving
documents in response to a query, systems provide annotations for different segments of this
query item, that is, there is no distinction between documents and queries. The ground
truth data does not provide information about query-document pairs, but rather about
different segments of the queries. Other tasks such as Audio Mood Classification and Audio
Genre Recognition are similar to annotation tasks, but instead of providing annotations for
different segments of the query, systems provide tags for the query itself. Therefore, in all IR
tasks systems are provided with some kind of query item and they return different output
data in response, as dictated by the task.

2.1.1 Formalizing the IR Evaluation Process
User Measures

The ultimate goal of evaluating an IR system is to characterize the usage experience of the
users who will employ it. We may consider several facets. For example, given an arbitrary
query, we may be interested in knowing how likely it is for a user to be satisfied by the
system results, or how long it would take to complete the task defined by the query. In the
first case we may characterize the system response as 0 (failure) or 1 (success), and in the
second case we may use the total duration in seconds required to complete the task.

We can formalize these user-measures by employing random variables. For example,
we can define the discrete random variable U; that equals 1 if the user is satisfied by the
system, and 0 otherwise. This variable U; is defined by a probability distribution function'
fu,, specified by a vector of parameters 0. This first facet of the system is defined by
fu,, and whenever a new query is run we can model the expected outcome with a random
variable drawn from that distribution. We could consider the second facet with a random

1T use the term “probability distribution function” to indistinctly refer to the “probability density function”
of a continuous random variable and the “probability mass function” of a discrete random variable.

10
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variable Us, equal to the task completion time in the interval (0, c0). Likewise, this variable
is defined by a probability distribution function fi,, parametrized by vector 8y, .

This multifaceted characterization of the system usage allows researchers to fully assess
the performance of the system from different perspectives, such as the probability of user
satisfaction, the minimum time needed to complete 50% of the tasks, the probability that
at least 80% of users will find the system satisfactory, etc.

Modeling Users

Unfortunately, there are several problems to know what the U; distributions look like. First,
including real users in evaluation experiments is not only expensive but also complex, and
there are always ethical issues to consider (e.g. privacy and wages). Second, involving users
makes it harder to tune system parameters due to the cost of running an evaluation trial.
Third, it is hard to reproduce experiments that involve human subjects, so system compar-
isons across research groups becomes quite difficult. An example earlier to the Cranfield I
experiments can be found in the ASTIA-Uniterm test in 1953: the two participating teams
could not agree on the relevance of documents, and so each team produced their own re-
sults for the same experiment [Gull 1956]. To minimize these problems, Cleverdon came up
with the idea of removing actual users from the evaluation process but including a static
user component: the relevance judgments in the ground truth. He was able to control the
experiment and reduce all sources of variability to just the systems themselves, making it
possible to iteratively compare systems in a systematic, fast and inexpensive way.

Therefore, when evaluating a system following the Cranfield framework we are actually
characterizing the system response rather than the user experience. The ground truth
provides us with information on how good or accurate that response is, but it does not
provide information on the user-system interaction, let alone on user-specific characteristics
such as perceived easiness in using the system. Likewise, each of the system-based measures
used in the evaluation experiment provides us with a description of the system from different
perspectives, each of which can again be modeled with random variables. For instance, when
evaluating music similarity systems we may use a random variable S; to refer to the average
similarity of the items returned by the system, and another variable S might refer to the
rank at which the system retrieves the first similar item. These variables are computed with
effectiveness measures A; (e.g. Cumulative Gain for S; and Reciprocal Rank for Ss, see
Section 2.5), and they are also defined by probability distribution functions fs, and fs,,
parametrized by vectors Og, and Og,, respectively. The assumption underlying Cranfield is
that S; is correlated with U;, and therefore the distribution defined by fg, can somehow be
used to describe the distribution defined by fr,.

Parameter Estimation

Computing the parameter vector g, is clearly impossible; it requires to evaluate a system
with the universe of all queries, documents and assessors; we would need all existing queries
and all queries yet to exist, which are potentially infinite. Instead, we evaluate with the
sample of queries Q in a test collection. When we evaluate a system according to an
effectiveness measure A;, we compute a score A, for each query ¢ € Q. When we repeat

11
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Figure 2.1: Validity and Reliability. Adapted from [Trochim and Donnelly 2007].

the process with all queries in the sample, the empirical distribution is used to estimate
the distribution fg, that defines the random variable S; associated with the effectiveness
measure A;. That is, we are estimating the parameters 0g,, and because we assume the
correlation between .S; and U;, we treat those system estimates 9& as estimates themselves
of the Oy, parameters of the user-based distribution.

The problem is knowing the distribution family for each facet. For example, the user
satisfaction variable U; may be modeled with a Bernoulli distribution with parameter p, and
then a Binomial distribution can be used to compute the probability that n out of m users
will find the system satisfactory. The completion time variable Uy may be modeled with
a Gamma distribution with parameters o and 3, but we could use instead a Log-Normal
distribution with parameters p and o2. There is really no theoretical basis for using one
distribution family or another, so researchers tend to ignore the shape of the distributions
and focus just on the first and second moments, the mean E[U;] and the variance Var[U,],
estimated with the sample mean and variance of the empirical distribution.

2.1.2 Validity, Reliability and Efficiency

In summary, we can look at an IR evaluation experiment as just an estimator of the true
parameters defining a user-based distribution. An effectiveness measure is our measurement
instrument, whose system-based distribution is assumed to perfectly correlate with our tar-
get user-based distribution. As such, there are three aspects of these evaluation experiments
that must be considered: validity, reliability and efficiency [Tague-Sutcliffe 1992]:

Validity. Do our effectiveness measures and ground truth data really define system-
distributions that match the intended user-distributions? We assume there is some function
mapping S; to U;, and therefore fs, to fu,. In fact, researchers somehow assume U; = 5,
or U; « S; at the very least. In a more relaxed form, validity can be reformulated as: are
we really measuring what we want to measure?

Reliability. How many queries are needed in the test collection so that the estimates
can be trusted? The more queries we use, the smaller the standard error we have in our
estimates, but the higher the cost too. A similar issue is found with the human assessors
because the ground truth is subjective, so it is expected that results vary to the extent the
assessors and the final users disagree as to the relevance of documents. Therefore, evaluation
experiments must find a tradeoff between reliability and effort. In a more relaxed form,
reliability can be formulated as: how repeatable are our results?

Efficiency. Creating a ground truth set is usually a very expensive and tedious task, and
some forms of ground truth data can be prohibitive for a large number of queries. Therefore,
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Figure 2.2: Accuracy and Precision. 6 is the true value and E[f] is the estimated value.

the efficiency of the ground truth annotation process directly impacts the reliability of the
evaluation. On the other hand, an efficient annotation process might be inaccurate, lowering
the validity of the results. Therefore, evaluation experiments must also find a balance
between validity and reliability and the cost of the annotation process. In a relaxed form,
efficiency can be formulated as: is there a cheaper way to obtain valid and reliable results?

Figure 2.1 illustrates validity and reliability with the metaphor of a target. Imagine our
goal is the center of the target (i.e. E[U;]), and each shot we take is our measurement with a
different test collection. In the first and fourth examples we have an instrument that is very
reliable, but in the first case we are clearly off the target. In the second and third examples
our instrument is not reliable, but in the second case we still manage to hit around the
target so that our measure is correct on average. In this case, efficiency can be thought of
as the cost of the weapon: rifle, bow, handgun, slingshot, etc. In Statistics terms, validity
refers to the accuracy and bias of the estimates, and reliability refers to their precision or
variance [Lehmann and Casella 1998]. That is, how close they are to the true parameters
and how much uncertainty there is in those estimates (see Figure 2.2). In Machine Learning
terms, validity refers to the bias of a learner, and reliability refers to its variance [Geman
et al. 1992]. That is, the average difference over training datasets between the true values
and the predictions, and how much they vary across training datasets. They can also be
linked to the concepts of systematic and random error in measurement [Taylor 1997]. Thus,
we may describe the IR evaluation process with the following basic equation:

U=S+¢es+¢r (2.1)

were £, is the systematic error and &, is the random error.

2.2 Validity

Validity is the extent to which an experiment actually measures what the experimenter in-
tended to measure [Shadish et al. 2002, Trochim and Donnelly 2007]. Validity is frequently
divided in four types that build upon each other, addressing different aspects of an ex-
periment. Conclusion Validity relates to the relationship found between our experimental
treatments (systems) and our response variables (user-measures). Can we conclude that the
systems are different? How much different? Internal Validity relates to confounding factors
that might cause the differences we attribute to the systems. Are those differences caused by

13
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specific characteristics of the annotators or the queries? External Validity relates to the gen-
eralization of that difference to other populations. Would system differences remain for the
wider range of all genres and artists? Construct Validity relates to the actual relationship
between the system-measures and the user-measures. Do differences in system-measures di-
rectly translate into the same differences in user-measures? How do those differences affect
end users?

2.2.1 Conclusion Validity

Effectiveness measures are usually categorized as precision- or recall-oriented. Therefore,
it is expected for precision-oriented measures to yield effectiveness scores correlated with
other precision-oriented measures, and likewise with recall-oriented ones. However, this
does not always happen [Sakai 2007, Kekéldinen 2005], and some measures are even better
correlated with others than with themselves [Webber et al. 2008b], evidencing problems
when predicting user-measures. In general, system-measures should be correlated with user-
measures, but observing a difference between two systems according to some system-measure
does not necessarily mean there is a noticeable difference with end users. For example, it
can be the case that relatively large differences need to appear between systems for users to
actually note them.

At this point it is important to note that in most situations systems are not provided
with any kind of user information [Jarvelin 2011, Schedl et al. 2013a], and therefore our
results should be interpreted as if targeting arbitrary users. As such, even if our system-
measures corresponded perfectly to user-measures, the system distributions estimated with
an evaluation experiment would not correspond perfectly to the expected user distributions
because we are not accounting for user factors in the ground truth data [Voorhees 2000].

It is also important to recall that an evaluation experiment provides an estimate of a
true population mean, which bears some degree of uncertainty due to sampling. Confidence
intervals should always be calculated when drawing conclusions from an experiment, to
account for that uncertainty and provide reliable reports of effect sizes [Cormack and Lynam
2006]. Depending on the experimental conditions, it might be the case that the interval is
too wide to draw any reliable conclusion regarding the true performance of systems. In
this line, it is important to distinguish between confidence intervals, used as estimators
of distribution parameters such as the true mean; and prediction intervals, which serve as
estimators of the expected performance on a new query item.

2.2.2 Internal Validity

Ground truth data is a much debated part of IR Evaluation because of the subjectivity
component it usually has. Several studies show that documents are judged differently by
different people in terms of their relevance to some specific query, even by the same peo-
ple over time [Schamber 1994]. As such, the validity of evaluation experiments can be
questioned because different results are obtained depending on the people that make the
annotations. Nevertheless, it is generally assumed that ground truth data is invariable, and
user-dependent factors are ignored [Jarvelin 2011, Schedl et al. 2013a]. Several studies have
shown that absolute scores do indeed change, but that relative differences between systems
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stand still for the most part [Voorhees 2000]. For domain-specific tasks though, results may
suffer large variations [Bailey et al. 2008], and for very large-scale experiments different as-
sessor behaviors may also have a large impact on the results [Carterette and Soboroff 2010],
let alone if the ground truth has inconsistencies.

Likewise, if a low-cost evaluation method were used with an incomplete ground truth
(see Section 2.4), systems more alike could reinforce each other, while systems with novel
technology might be harmed [Zobel 1998]. In general, making assumptions regarding the
missing annotations can affect both the measures [Buckley and Voorhees 2004, Sakai and
Kando 2008] and the overall results [Buckley et al. 2007]. This is an obvious problem
because the very test collection (documents, queries and ground truth), which is in its own
a product of the experiment, might not be reusable for subsequent evaluations of new systems
[Carterette et al. 2010a,b].

The particular queries used could also be unfair if some systems were not able to fully
exploit their characteristics. This is of major importance for tasks where Machine Learning
is heavily employed in systems that are first tuned with a training collection: if the query
or document characteristics were different between the training and evaluation collections,
systems could be misguided, resulting in researchers reaching wrong conclusions from the
experiment. On the other hand, if the same collections were used repeatedly, an increase
in performance could be just due to overfitting and not to a real improvement [Voorhees
2002a]. Also, some evaluation measures could be unfair to some systems if accounting for
information they cannot provide.

2.2.3 External Validity

In IR Evaluation it is very important to clearly define what our target populations are. That
is, who our final users are, the music corpora they will work with, etc. When we carry out
an experiment to evaluate a system, we are interested in the distributions of user-measures
for those populations. The problem is that we might not be able to get access to those
users (e.g. anonymous users of an online music service, music artists, etc.) or those corpora
(e.g. copyrighted material or songs yet to exist). Therefore, we often have access only to
restricted and biased subsets of those populations. These are the accessible populations.
To reduce costs, we draw a sample from those accessible populations and carry out the
experiment. Our assumption when doing this is that the results obtained with our samples
can be generalized back to the target populations. In particular, for an arbitrary system-
measure we assume that the sample mean is an unbiased estimator of the true population
mean because our sample is representative of the target population. This is not necessarily
true if the accessible and target populations have different characteristics or the sampling
method is not appropriate.

This is probably the weakest point in IR Evaluation [Voorhees 2002a, Cormack and
Lynam 2006, Robertson and Kanoulas 2012, Sanderson et al. 2012]. In order to get a
sample representative of the accessible population we generally want that sample to be
large; the more elements we draw the better our estimates will be. This poses obvious
problems in terms of cost. Having large corpora means that the completeness of the ground
truth is compromised; it is just not feasible to judge every query-document pair or annotate
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every single segment of every query [Buckley and Voorhees 2004, Zobel 1998]. As a result,
collections contain too few query items or their corpus is too small to be representative.

In addition, we want the sample to be random in order to eliminate biases. In Text IR,
this has been a problem since the early days, because there was no pool of queries to draw a
sample from; they were made up on demand for the evaluation experiments [Voorhees and
Harman 2005]. Because of this, the Text IR literature has always emphasized that results
with a single test collection must be taken with a grain of salt because results are highly
dependent on document collections and query sets [Robertson 2011, Voorhees 2002a]; that
is, systems may work very well with a test collection but significantly worse with a different
one [Poibeau and Kosseim 2001], especially if Machine Learning algorithms are involved.
This is also emphasized in that results should be interpreted in terms of relative pairwise
system differences rather than absolute scores. That is, comparisons across collections and
claims about the state of the art based on a single collection are generally not justified.

To partially overcome this problem with non-random samples, the Text IR community
has traditionally sought very large collections. In the last decade though, several sources
of information, such as query logs from commercial search engines, have been used to draw
random samples and slightly reduce the cost. This has the additional advantage that queries
are likely to be representative of the final user needs, although the actual distributions of
queries may be hard to sample from because they tend to be highly skewed [Zaragoza et al.
2010]. A similar problem arises in Music IR because the accessible population is hardly
representative of the target population (e.g. copyrighted music material is nearly impossible
to use in test collections), so even if we have a very large sample we still can not generalize
back as we would like. Recent research has studied query selection methods that try to avoid
queries that do not provide useful information to differentiate between systems [Guiver et al.
2009, Robertson 2011].

2.2.4 Construct Validity

In IR evaluation experiments, Construct Validity is concerned mainly with the system-
measures used, their underlying user model [Carterette 2011], and their correlation with
user-measures. Unlike batch experiments where the only user component is the ground
truth, there have been some experiments with actual users interacting with IR systems.
They found little correlation between system-measures and user-measures, questioning the
whole Cranfield paradigm [Hersh et al. 2000, Turpin and Hersh 2001]. But the problem
strives in seeking correlations between measures that are not really supposed to be related
[Smucker and Clarke 2012a]. For instance, Precision is not designed as an indicator of task
completion time; Reciprocal Rank is. Various alternatives have been studied, such as using
different relevance thresholds on a per-assessor basis [Scholer and Turpin 2008], carefully
normalizing effectiveness scores [Al-Maskari et al. 2007], or including other factors in the
measurement of relevance [Smucker and Clarke 2012b, Yilmaz et al. 2010, Huffman and
Hochster 2007]. Later work further explored this issue, finding clear correlations between
system effectiveness and user satisfaction [Allan et al. 2005, Sanderson et al. 2010]. A similar
study in the Audio Music Similarity task has appeared recently following the principles of
Hersh et al. [2000], showing little relationship between measures [Hu and Kando 2012].
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The development of appropriate system-measures that closely capture the user expe-
rience is thus very important. For instance, in a traditional ad hoc retrieval task binary
set-based measures such as Precision and Recall do not resemble a real user who wants not
only relevant documents, but highly relevant ones at the top of the results list [Sanderson
et al. 2010]. Instead, measures that take the rank into account [Moffat and Zobel 2008],
graded relevance judgments [Voorhees 2001, Kekéldinen 2005], or a combination of them
[Jarvelin and Kekéldinen 2002, Robertson et al. 2010, Chapelle et al. 2009, Kanoulas and
Aslam 2009, Sakai 2004], are more appropriate. Other forms of ground truth can also be
studied [Bennett et al. 2008], such as preference judgments [Carterette et al. 2008].

2.3 Reliability

Reliability is the extent to which the results of the experiment can be repeated [Trochim
and Donnelly 2007, Tague-Sutcliffe 1992]. Will we obtain similar results if we replicate the
experiment with different sets of documents, queries and assessors?

As mentioned, it is very important that our samples are representative of the target
populations. It is important not only because we want our estimates to closely correspond to
the true population parameters, but also because our results would otherwise be unreliable:
with one sample system A is better than system B, but with another sample it is the other
way around. That is, we can not repeat the results. There are three main factors that
influence reliability: the effectiveness measures, the size of our samples and the agreement
between human annotators.

Two characteristics of the effectiveness measures used in IR evaluation experiments are
their stability and sensitivity. The results should be stable under different annotators and
query sets, so they do not vary significantly and alter the conclusions as to what systems
are better [Buckley and Voorhees 2000]. They are also desired to discriminate between
systems if they actually perform differently [Voorhees and Buckley 2002, Sakai 2007], and
to do so with the minimum effort [Sanderson and Zobel 2005]. However, they are desired to
not discriminate between systems that actually perform very similarly. These performance
differences must always be considered in the context of the task and its user model.

In general, the more queries we use the more stable the results and therefore the more
reliable, because we compute estimates closer to the true values and their variance is reduced.
Estimating how many queries are enough to reach some level of reliability is a quite tedious
process if following a data-based approach such as system swap rates [Buckley and Voorhees
2000, Voorhees and Buckley 2002, Sakai 2007, Sanderson and Zobel 2005]. A simpler yet
more powerful approach based on statistical theory can be followed with Generalizability
Theory [Bodoff and Li 2007, Urbano et al. 2013b, Salamon and Urbano 2012]. It allows to
measure how much variability is due to facets like queries or annotators, so it can be decided
where to spend more resources to increase reliability. It can be used to measure the stability
of a test collection while it is being developed, but it can also be used to estimate the stability
of a different experimental design, or to estimate the point at which it is preferable to employ
more annotations and the current query set rather than just including more queries.

Given a set of systems and the resulting effectiveness distributions obtained with different
queries according to some system-measure, they are usually compared in terms of their mean
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effectiveness score. This can be problematic, because those means are just estimates of the
true population means, and are therefore subject to random error due to sampling. Not
until relatively recently, statistical methods have been systematically employed to compare
systems by their score distribution rather than just their sample mean score [Carterette 2012,
Sakai 2006, Carterette and Smucker 2007, Webber et al. 2008a]. It is also very important to
study which statistical methods are more appropriate, because their assumptions are known
to be violated in IR evaluation experiments [Urbano et al. 2013a, Smucker et al. 2007,
Zobel 1998]. At this point, it is important to correctly interpret the results and understand
the very issues of hypothesis testing and, most importantly, distinguish between statistical
and practical significance [loannidis 2005, Ziliak and McCloskey 2008]. Even if one system
is found to be statistically significantly better than another one, the difference might be
extremely small; too small to even be noticed by users. On the other hand, the tiniest
practical difference will turn out statistically significant with a sufficiently large collection.

2.4 Efficiency

Efficiency is the extent to which the experimenter gets to a valid and reliable conclusion at
a low cost [Trochim and Donnelly 2007, Tague-Sutcliffe 1992]. Are there other annotation
procedures or alternative evaluation methods that result in a more cost-effective experiment?

Annotations for test collections are usually made by experts, which increases the cost
of building large datasets. Some recent work examined the use of non-experts for relevance
judging [Bailey et al. 2008], and found that in general there are no noticeable differences
in the evaluation results, although clear differences exist when the task is very specialized.
Others explore the use of paid crowdsourcing platforms such as Amazon Mechanical Turk
[Alonso and Mizzaro 2012, Lease and Yilmaz 2011, Kittur et al. 2013] to gather annotations
for a very low cost. The problem in these cases is the potential low quality of the results.
Some quality control techniques are based on known answers [Sanderson et al. 2010], redun-
dant answers to compute consensus [Ipeirotis et al. 2010, Snow et al. 2008] or detection of
neglecting behavior [Kittur et al. 2008, Urbano et al. 2011b, Rzeszotarski and Kittur 2011].

Other research focused on the use of incomplete ground truth data where not all annota-
tions are present in the test collections. A first approach to reduce the number of annotations
in test collections was the pooling technique [Buckley and Voorhees 2004]. Instead of anno-
tating all documents retrieved by all systems, a pool with the top-k results from all systems
is formed, and only those are annotated. All documents outside the pool are then assumed
to be non-relevant. This technique has been used in Text IR for many years, and it has been
repeatedly shown to be reliable despite the non-relevance assumption, permitting the use
of large collections by reducing the annotation cost to about 35%. With very large collec-
tions though, it is shown to have problems [Buckley et al. 2007]. Different modifications of
the basic pooling technique have been proposed via interactive annotation processes [Zobel
1998, Cormack et al. 1998], meta-search models [Aslam et al. 2003], intelligent selection of
documents to judge [Moffat et al. 2007] or ignoring them altogether [Buckley and Voorhees
2004, Sakai and Kando 2008]. Other alternatives studied the evaluation of systems even
when annotations are not available at all [Soboroff et al. 2001], which es useful as a lower
bound on evaluation reliability.
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More recent work has focused on the inference of annotations based on a very incomplete
set of previous annotations, using a more probabilistic view of evaluation. Some techniques
focus on sampling theory [Aslam and Yilmaz 2007], document similarities [Carterette and
Allan 2007] or meta-search [Carterette 2007]. The inferred data are then used to estimate
effectiveness scores based on random samples of annotations [Yilmaz and Aslam 2006, Yil-
maz et al. 2008]; or to estimate the ranking of systems by annotating only those documents
that are more informative to tell the difference between systems [Carterette et al. 2006,
Carterette 2007]. These low-cost techniques have been studied mainly in the TREC Million
Query Track between 2007 and 2009, offering very reliable results for a very low cost of
annotation. In fact, they allowed a dramatic increase in the number of queries from a few
dozens to over a thousand [Carterette et al. 2009].

2.5 Effectiveness Measures

Given a ranked list of documents returned by a system for some query and a set of relevance
judgments, a measure A is used to assess the effectiveness of the system for the query. In
this section I review several measures as used in the IR literature. For simplicity, I will refer
to an effectiveness score A\ o simply as A, assuming some arbitrary system A and query q.

2.5.1 Binary Relevance Scale

Traditionally, the relevance of a document d has been assessed with a binary relevance scale
£ ={0,1}, that is, ny = 2. If a document d is deemed as relevant to the query then ry = 1,
and if it is not then r4 = 0.

Precision

A simple effectiveness measure to evaluate a retrieval run A when n,y = 2 is Precision at k
documents retrieved (PQk). Its purpose is to measure the noise introduced by the system
in the top k documents retrieved:

PQk =

El e

k
> A, (2.2)

that is, it computes the average relevance of the top k documents retrieved by A. If PQk = 0
it means that the system was not able to retrieve any document relevant to the query, and
PQ@k =1 means all documents were indeed relevant.

Average Precision

P@Fk does not provide by itself any information on the ordering of documents. If a system
retrieved relevant documents at the top of the ranking it would have the same PQ@Fk score
as a system retrieving the same documents at the very bottom. It is clear that a user
inspecting results from the first system will find useful information quicker than with the
second one. Average Precision at k documents retrieved (APQk) does account for the
ordering of documents as follows [Harman 1993]:
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k

APQk = |7Tll| > ra, - P@i (2.3)
i=1

that is, the average of precisions computed at ranks where relevant documents are retrieved.

If a pivot document A; is not relevant, the ra, = 0 and therefore P@i does not contribute

to the summation. The final score is normalized dividing by the total number of relevant

documents ’Rl‘ In the example above, the first system would have a higher APQFk score.

Reciprocal Rank

In several situations, the retrieval task aims at finding one relevant document. This is
the case of Question Answering systems or Known-Item search. In these cases we are
interested in measuring the ability of the system to return a relevant document at a high
rank. Reciprocal Rank (RR) is defined as [Kantor and Voorhees 1996]:

1
_ _ 2.4
RR min{i : ra, = 1} (2:4)

that is, the inverse of the rank at which the first relevant document is retrieved.

2.5.2 Graded Relevance Scale

Despite the binary n, = 2 relevance scale has been the standard in TREC and other forums,
Cleverdon [1991] already used three levels of relevance in the Cranfield I experiments and
as many as five in Cranfield II. In the early 2000’s it became apparent that some systems
worked well for retrieving highly relevant documents, while others were better at retrieving
all relevant documents Voorhees [2001]. In addition, there is the notion of perfect documents
for some types of queries, such as navigational queries (e.g. the homepage of Youtube), while
other documents may still be somewhat relevant. Consequently, graded ny > 2 relevance
scales were increasingly adopted [Jarvelin and Kekélainen 2000].

Binary Measures with Graded Relevance Scales

One option to handle graded relevance judgments is to use binary measures and conflate
relevance levels with a threshold /¢,,;, € £ such that if the relevance r4 of a document d is
rq < Lmin it is considered not relevant, and if it is r4 > #,,,;,, it is considered relevant. This
way, we can easily redefine PQk, APQk and RR as follows:

k
1
Pak = - ; 1(ra, > loin) (2.5)
1 k
1
RR = (2.7)

min{i : ra, > lin}

The drawback of using binary measures and a threshold 4,,;, is that effectiveness scores
have to be reported several times for different values of £,,;,.
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Cumulative Gain

Jarvelin and Kekéldinen [2002] proposed a family of measures that directly handle graded
relevance scales. These measures are based on the concept of utility provided by a re-
turned document. Let g(¢) be a gain function that maps relevance level ¢ to a utility
score: g : £ — RZ9. Additionally, the following two restrictions are imposed: g(0) = 0 and
G >t = g(€;) > g(¢;) (i.e. it is monotonically increasing). The gain is larger as the
relevance score is larger, and a relevance score of 0 is always mapped to a gain of 0.

This way, we can define the Cumulative Gain at k documents retrieved (CGQ@Ek) as the
total gain provided by the top k documents:

k
CGQk = g(ra,) (2.8)

i=1

In the initial definition of these measures Jarvelin and Kekéldinen [2002] used the
straightforward gain function g(¢) = ¢, so that the gain provided by a document could
range from 0 to ns — 1. However, the gain function can be arbitrary.

Discounted Cumulative Gain

CGQEk has the same problem as PQFk, that is, that it ignores the rank of documents.
Similarly, if a system returns highly relevant documents towards the top of the list or towards
the end, does not make any difference for the computation of CG@Qk. To account for the
fact that documents retrieved at lower ranks are less useful than those retrieved at higher
ranks, Jirvelin and Kekélidinen [2002] also introduced a discount function d : N0 — R>0
to reduce the gain of a document depending on the rank at which it is retrieved. Likewise,
the following restriction is imposed to a discount function: i > j = d(i) > d(j) (i.e. it is
monotonically increasing).

Discounted Cumulative Gain after k& documents retrieved (DCGQk) is thus a measure
like CGQF that also discounts the gain of documents as they are returned down the list:

k
DCG@k=§:ggg) (2.9)
i=1

In the original definition of DCG@E Jarvelin and Kekéldinen [2002] used a logarithmic
discount function as follows:
1 ;< b
anz{ N

log,t >0
The logarithm base b is a parameter to model user persistence; the larger it is the lower
the discount for a given rank and therefore the larger the utility at that rank. Jarvelin and
Kekéldinen [2002] suggested the base b = 2, so their original formulation can be written
simply as d(i) = max (1,log, 7).

In a later paper, Burges et al. [2005] proposed an alternative definition for the gain and
discount functions: g(¢) = 2¢ — 1 and d(i) = logy(i + 1). These definitions can still be
generalized to an arbitrary base b: g(¢) = b’ — 1 and d(i) = log, (i + b — 1). This way, they
strongly emphasized highly relevant documents and also discounted all documents according
to their rank, not only those where ¢ > b. This definition with b = 2 is the de-facto standard
used by the community, sometimes known as Microsoft DCG.
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Normalized Discounted Cumulative Gain

The last measure proposed by Jarvelin and Kekéldinen [2002] accounts for the ideal ranking
l,.1) to normalize a DCGQk
score. They defined the Normalized Discounted Cumulative Gain at k documents retrieved
as the DCGQk of the system A divided by the DCGQF of the ideal ranking I:

of documents sorted by relevance | := <I17 coylpp Vi, >

nDCGQk = Z%l 9(ra) /400 (2.10)
>im19(r,) /d(z)

Similarly, Burges et al. [2005] defined the so-called Microsoft nDCG measure by using
the alternative definitions for the gain and discount functions that we saw above.

Q-Measure

Sakai [2004] proposed a new effectiveness measure to handle graded relevance judgments.
It was designed to cope with the late discount problem in the original definition of Jarvelin
and Kekélainen [2002] for large b, and to generalize to Average Precision when the relevance
scale is binary. The Q-measure at k documents retrieved (Q@Fk) can be defined as:

1 k Zi-zl ]l(rA. > 0) + 8- Zi-zl g(rA.)
I(ra, >0 J ! , J !
IR ; =0 i+ B3 g(n,)

Qak = (2.11)

where f is a tuning parameter usually set to 8 = 1. When § = 0 it is easy to see that QQk
in (2.11) reduces to APQF in (2.3) if using a binary n, = 2 scale, and to (2.6) with a graded
scale and a threshold /,,;, instead of 0.

Rank-Biased Precision

Moffat and Zobel [2008] argued against the discount function in (n) DCG and proposed a
model of user behavior based on a persistence parameter p: with probability p the user moves
to the next document in the ranking, and with probability 1—p she does not. The probability
that the user reaches the document at rank i and stops there is therefore p'=1 - (1 — p).

Moffat and Zobel [2008] originally defined the Rank-Biased Precision (RBP) measure
for a binary n, = 2 relevance scale:

np
RBP=(1-p) Y ra, 57!
i=1
RBP can easily be generalized to a graded ng > 2 scale by substituting ra, with g(ra,):

1—p & -
RBP = ——L N7 g(ra) - pf 2.12
Tz T) > g(ra)-p (2.12)

i=1

where the g(n, — 1) factor is used to normalize the score between 0 and 1. This formulation
is implemented for example in the ntcireval evaluation package used in NTCIR.

22



2.5. Effectiveness Measures

Expected Reciprocal Rank

Both (n)DCG and RBP incorporate a form of discount that penalizes the need of the user
to traverse the ranked list of documents. However, this discount function depends only on
the rank of a document, ignoring the relevance of all documents ranked above it. Chapelle
et al. [2009] extended the discount notion to incorporate this factor. Let us assume that
the user inspects results from top to bottom, and let pg be the probability that the user is
satisfied with document d. Chapelle et al. [2009] defined this probability as:

2md — 1
Pa= o=t (2.13)
With probability 1 — pg the user is not satisfied with document d and moves on to the next
one in the list. Therefore, the probability that the user starts from the top of the list and

stops at rank i is:

1—1
pAi : H 1- ij
7=1

Under this model of user behavior, we can define the Expected Reciprocal Rank (ERR) by
fixing the contribution of the i-th document to be 1/i:

np

i—1
1
ERR=)_ = | e I11-pa, (2.14)
i=1 j=1

If we chose the contribution to be g(ra,) rather than 1/i, we would obtain a redefinition
of DC'G with a more elaborated discount function. If we further consider a gain function
to define the probability of satisfaction pg, we may formulate it as

9(ra)
= 2.15
bd glng—1)+1 (2.15)
which is identical to (2.13) when g(¢) = 2° — 1 as defined by Burges et al. [2005]. Therefore,
we can generalize the FRR definition in (2.14) with an arbitrary gain function as in (2.15).

Graded Average Precision

Robertson et al. [2010] proposed a generalization of APQFk to graded n, > 2 relevance scales
that similarly assumes a relevance threshold ¢,,,;, € £ such that a document d is considered
relevant if r4 > £,,;n» and not relevant if r4 < £,,;,. However, this threshold is not fixed as
in (2.6). Instead, Robertson et al. [2010] made it probabilistic, defining p, as the probability
that an arbitrary user implicitly sets ¢,,;, = ¢. By defining p, over the space of users, we
have Zzl_lpg = 1. Note that pg is always assumed to be 0.
For arbitrary rank & and threshold ¢, the binary precision is defined similar to (2.5):
1k
PQky =+ ; 1(ra, > 0)

Taking into account that a document with relevance r4 only contributes to the binary

precisions of levels {1,...,74}, the expected precision over the space of users is:
1y &
EIPAH = 32 1m 20
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Computing these precisions along the ranking and normalizing by the maximum possible,
the Graded Average Precision at k documents retrieved (GAPQE) is:

S E[P@i]
PR e

The computation of a GAPQE score still depends on the probability distribution of py.

GAPQk =

(2.16)

Without any specific data regarding actual users, Robertson et al. [2010] recommend the
uniform distribution py = 1/(nz — 1) for being the most informative.

Average Dynamic Recall

Typke et al. [2006] proposed a measure specifically for Symbolic Melodic Similarity, designed
to handle ground truth data in the form of partially ordered lists [Typke et al. 2005a, Urbano
et al. 2010a]. These lists do not contain a relevance judgment for a query-document pair
as usual, but groups of documents equally relevant to the query. Some groups are more
relevant than others, but the magnitude of this difference is not defined because there is no
pre-fixed relevance scale. Nonetheless, it can be extended to handle a prefixed scale L, so
we can define Average Dynamic Recall at k& documents retrieved (ADRQk) as:

k
Z Tg >, A

; 7
=1

At each rank 7 it computes the fraction of documents in an ideal ranking up to that point
that are indeed retrieved by the system, averaging across ranks. Because this proportion

is 1 almost surely for a sufficiently large rank, it is recommended to compute ADRQk at
cut-off k = |R>7|.
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Chapter 3

System Effectiveness
and User Satisfaction

The construct validity of an Information Retrieval evaluation experiment was identified in
the previous chapter as the extent to which the system-oriented effectiveness measures corre-
spond to the target user-oriented measures. Evaluation experiments following the Cranfield
paradigm consider users from a static point of view so that we can reproduce experiments
and compare systems in a systematic and iterative way. The underlying assumption is that
systems with better scores are actually perceived as more useful by the users and therefore
are expected to bring more satisfaction, but it is unknown the extent to which this is true.
This is an important gap to fill because the ultimate goal of a researcher is to figure out
whether final users will be satisfied or not, or which system is better from that viewpoint.
In this chapter I empirically establish the relationship between system effectiveness and
user satisfaction for an array of measures and relevance scales. This allows us not only
to interpret evaluation results in practical terms, but also to assess which effectiveness
measures and relevance scales are better correlated with user satisfaction. As a side result,
this chapter also allows us to quantify the extent to which users agree as to the performance
of a system, setting the practical limits of purely system-based evaluations that do not

account for user-specific information.

3.1 Effectiveness Measures and Relevance Scales

In the MIREX Audio Music Similarity evaluation experiments the relevance of a document
to a query is assessed by human experts and based on two different relevance scales. The
Broad scale is an ny = 3 scale where the relevance of a document d is vy = 0 if the document
is mot similar to the query, rq = 1 if it is somewhat similar and r4 = 2 if it is very similar
[Jones et al. 2007, Downie et al. 2010]. The Fine scale is an ng = 101 relevance scale, where
rq goes from 0 (not similar at all) to 100 (identical to the query)!. In terms of effectiveness

1 In early editions of MIREX it was defined from 0 to 10, with one decimal digit. With the appropriate
normalization, both definitions are equivalent
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measures, the official MIREX evaluations only report Cumulative Gain after 5 documents
retrieved (CG@5) with the g(¢) = ¢ linear gain function (2.8).

3.1.1 User-Oriented Effectiveness Measures

Only two effectiveness scores are reported in MIREX: CG@5 with Broad judgments and
CG@5 with Fine judgments. The assumptions are therefore that the higher the relevance
judgment for a document the more likely for it to be perceived as satisfactory; that this
perception is independent of the rank at which the document is retrieved and of the relevance
of the previous documents; and that the user will actually listen to all five documents in the
list. Section 2.5 described a wealth of effectiveness measures based on different user models
and making different assumptions. For this chapter I consider all these measures and study
their suitability for the AMS task.

However, there are some aspects that we must consider before trying to map system
effectiveness onto user satisfaction. Al-Maskari et al. [2007] described a counterintuitive
behavior of the nDCG formulation in (2.10). Consider a graded ny = 5 relevance scale
and a query for which the set of judgments is R = {1,0,0,0,0}. A system returning the
ranking A = (1,2,3,4,5) would obtain nDCG@5 = 1 because it retrieves the only relevant
document at the top. However, only one single document of the lowest possible relevance
has been returned, which probably will not help the final user. If the set of judgments
were R = {1,4,4,4,4} then the system would obtain nDCGQ5 < 1 because it failed to
retrieve the highly relevant documents first. Nonetheless, it managed to retrieve all four
highly relevant documents after the first rank, which most likely will help the user. In the
first case the system was given the highest possible score and was therefore assumed to be
perfect, but it is clear that it would have been worse for the user than in the second case.

This counterintuitive behavior of nDCG can be found in other measures; the root of the
problem is the consideration of all known judgments for the calculation of the effectiveness
score. Consider for example Average Precision at cutoff k as in (2.3). The only way for a
system to obtain APQk = 1 is if it only retrieves relevant documents and k > |R1‘. That
is, APQF scores are likely to be low for queries where there are many relevant documents.

For this chapter some of the formulations in Section 2.5 are modified to avoid this
behavior. In addition, all A scores are normalized between 0 and 1 such that a system would
obtain A = 1 only if it returned a perfect ranking according to the measure’s user model.
These modifications are discussed below.

Binary Relevance Scale

Precision. No modification is needed in this case because the score depends only on
the retrieved documents and it is 1 only when all documents retrieved are relevant. The
formulation used is (2.2).

Average Precision. We force the score to be 1 only when all k¥ documents retrieved are
relevant, regardless of how many relevant documents there are in the ground truth. Instead
of (2.3), this formulation is used:

k
1 .
APQk = z ZE:I ra, - PQi (3.1)
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Reciprocal Rank. The original formulation in (2.4) is defined for the full list of retrieved
documents, so we need to define a variant for a cutoff k. The RRQE score is set to be 0 if
none of the top k retrieved documents is relevant:

1
—  ifmin{iira, =1} <k
RRQ@k = { min{i:ra, =1} tiera =1} (3.2)

0 otherwise
Graded Relevance Scale

Cumulative Gain. This measure only considers the relevance of the retrieved documents,
but its upper bound is k - g(ng — 1). The formulation in (2.8) is therefore normalized to:

cGak = 1 zk: _9Ura) (3.3)
k= g(ne—1)

Discounted Cumulative Gain. Similarly, no other than the retrieved documents are
considered here, but the score needs to be normalized between 0 and 1. Instead of (2.9),
the following formulation is used:

Yo 9(ne — 1) /d(i)

As for the discount function, I use d(i) = log,(i + 1) as defined by Burges et al. [2005].
Normalized Discounted Cumulative Gain. This measure is naturally bounded between
0 and 1 but, as mentioned before, it is counterintuitive because it considers all relevance
judgments in the ground truth [Al-Maskari et al. 2007]. I do not use it in this chapter, but
it should be noted that the above formulation for DCGQ@E in (3.4) would be the equiv-
alent to a user-oriented nDCG@QE: the definition of the ideal ranking is changed to be
(ng—1,ng —1,...,ns — 1), that is, independent of the documents not retrieved.
Q-Measure. Similar to the modifications for APQk and DCGQE, 1 divide by k rather
than by |R>°| and define the ideal ranking as (nz —1,nz—1,...,nz —1). Instead of (2.11),
the following formulation is used:

23:1 1(ra, > 0) +p- 22:1 g(ra,)
Z‘l‘ﬂ : Z;Zlg(nﬁ - 1)

Rank-Biased Precision. The first modification necessary for RBP is that we have to

k
QQk = i; 1(ra, > 0) (3.5)

compute it for a cutoff k = 5 rather than for all np documents as in (2.12). The score is
then divided by the RBPQFk obtained with the ideal ranking as defined above, such that a
system retrieving all documents with maximum relevance would obtain RBPQk = 1. The
final formulation is as follows:

Yy glra) - pi?
RBPQk = — =1 — (3.6)
Zi=1 g(ng - 1) P

Note that this formulation is the same as DCGQF as defined in (3.4) but with the geometric
discount function d(i) = 1/p’~! instead of the logarithmic d(i) = log,(i +1). Next, we
consider the expected number of documents seen by the user [Moffat and Zobel 2008]:
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> 1
1—p iopl= ——
( )Z; =

Because the MIREX AMS evaluation assumes the user sees as many as 5 documents, I set
the persistence parameter to p = 0.8 so that we have 1/(1 — p) = 5.

Expected Reciprocal Rank. Similarly, ERR is defined in (2.14) for the full list of
documents, but we need to compute the score at the cutoff k = 5. In this case I also divide
by the ERRQF score obtained by a fully ideal ranking (np — 1,n, —1,...,ns — 1). Asin
(2.13), the probability that the user is satisfied with a document in the ideal ranking is:

I g(nﬁfl)
glng—1)+1

The probability that the user starts from the top of the ideal ranking and stops at rank i is:
i—1
p/ . H 1 _p/ :p/(l _p/)z—l
j=1

Plugged into (2.14) this gives us the ERRQk score of the ideal ranking. Using it to normalize
the score of an arbitrary system, the final formulation of ERRQk used in this chapter is:

ERRQk = - (3.7)

Graded Average Precision. The GAPQk formulation in (2.16) is already bounded
between 0 and 1, but similarly to APQk and QQk it uses the full set of judgments to
normalize. In this case I also consider a fully ideal ranking with & documents of relevance
ne — 1. The denominator in (2.16) is changed accordingly to reflect the fact that the best
an arbitrary system can do is retrieve those k documents:

sk E[Pai] 1< )
GAPGk = et s = > E[Pai] (3.8)
=1 D¢ i=1

In the absence of data, a uniform distribution p; = 1/(ng — 1) is used as suggested by
Robertson et al. [2010].

Average Dynamic Recall. The case of ADRQFE is more restrictive than in the other
measures. We need to consider again a fully ideal ranking with k£ documents of relevance
n, — 1 to obtain a score of 1. The problem is that when we compute how many of the top 4
retrieved documents are in the ideal ranking, we only accept those with maximum relevance
ne — 1, and any other document with relevance r4 < ny — 1 will not contribute to the final
score. That is, we are forcing systems to retrieve only highly relevant documents, so this
user-oriented variation becomes very restrictive. The formulation used in this chapter is:

k . . k
1 HA'GAZ]SZ/\TA,.:’I’LL—l}‘ 1 1
ADR@k = - ;:1 ! — == ;:1 72 L(ra, =nc —1) (3.9)
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Expected Discounted Cumulative Gain. The final measure considered in this chapter
is a variation of ERRQF as in (3.7) where a document at rank 4 contributes g(ra,) rather
than 1/i. This is therefore a version of DCG@Fk where the discount applied to a document
actually depends on the relevance of all documents retrieved before rather than just on its
rank. The exact formulation is:

k i—1
> g(ra) [ pa [T 1—pa,
EDCGak = —— =
> glne —1) (1 - gyt
=1

(3.10)

3.1.2 Relevance Scales

This chapter studies several relevance scales combined with all eleven user-oriented effec-
tiveness measures described above. Because they are the scales annually used in MIREX,
the original n, = 3 Broad and n, = 101 Fine scales are employed. I further consider three
graded scales and four binary scales by using thresholds. The judgments for these seven
scales were artificially created from the original Fine judgments made for MIREX. For the
artificial graded scales, the [0,100] range is evenly split in n, intervals of length 101/n..
For instance, in the ny = 3 case, a document d has relevance 0 if ry; < 34, relevance 1 if
34 < rq < 67 and relevance 2 if 4 > 67. For the artificial binary scale, the [0,100] range
is split in n,s = 2 intervals based on a threshold /,,;, so that an arbitrary document d is
considered relevant only if r4 > £,,:,. Although both the original Broad and the artificial
ne = 3 scales have 3 possible levels of relevance, I should note that the final judgments are
not necessarily the same because the latter is computed from the Fine scale and the former
is independent of it (see Figure 2 in [Downie et al. 2010]).

Table 3.1 shows all combinations of effectiveness measures and relevance scales consid-
ered in this chapter (marked with x). The binary measures PQ5 (2.2), APQ5 (3.1) and
RR@5 (3.2) are combined with all four artificial binary scales. All graded measures based on
a gain function are combined with both the linear g(¢) = ¢ and the exponential g(¢) = 2 —1
gain functions, named A; and A. respectively. All these measures are combined with the
original Broad scale and with the three artificial graded scales. The original Fine scale is
combined only with the A; versions, because the maximum gain score in the A, versions is
extremely high and the measure has virtually no sensitivity for relatively high levels (e.g.
consider g(90) = 290 —1 ~ 1.24-1027 versus ¢(85) = 2%° —1 ~ 3.87-10%%). The ADR@Q5 (3.9)
measure is not combined with the Fine scale either, as it would only accept retrieved docu-
ments with relevance ry; = 100, which is very hardly ever the case because assessors seldom
assign such an extreme relevance level to begin with (see Figure 7.1).

Finally, some combinations are ignored because they are equivalent to others. All A,
measures with binary scales are equivalent to their A; counterparts because g(1) = 21 -1 = 1.
Similarly, under a binary relevance scale CGQ5 (3.3) is equivalent to PQ@5 (2.2); and both
Q@5 (3.5) and GAP@5 (3.8) are equivalent to AP@5 (3.1). In summary, as many as 95
different combinations are studied.
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Measure Original Artificial Graded Artificial Binary

Broad Fine|nz,=3 ng=4 ns,=5| lmin=20 lmin=40 lpin=060 L in=80
PQ@5 X X X X
APQ@5 X X b X
RRQ@5 X X X X
C@G,@5 X X X X X PQ5 PQ5 PQ@5 PQ@5
CG.Q5 X X X X pPQ5s PQ@5s PQ@5s PQ@5
DC@G,@5 X X X X X X X X X
DCG.Q5 X X X X DCG@5 DCG@5 DCG,@Q5  DCG @5
EDCG,@5 X X X X X X X X X
EDCG.Q5| x X x x |EDCG,@5 EDCG,Q5 EDCG,Q5 EDCG@5
Q:Q5 X x x x x AP@5 AP@5 AP@5 AP@5
Q.Q5 X X X X APQ5 APQ5 APQ5 APQ5
RBP,Q5 X X X X X X X X X
RBP.Q5 x X X x RBP@5 RBP@Q@5 RBPQ5 RBP@5
FERR;Q5 X X X X X X x x X
ERR.Q5 X X X X FRR/@Q5 FERR/Q5 FERR@5 FERR,Q5
GAPQ5 X X X X X APQ@5 APQ@5 APQ5 APQ@5
ADRQ@5 X X X X X X X X

Table 3.1: All 95 combinations of effectiveness measures and relevance scales studied (marked
with x), and equivalent combinations (e.g. GAPQ5 is the same as AP@5 with a binary scale).

3.2 Experimental Design

An experiment with actual users was designed such that it allows us to map system effec-
tiveness onto user satisfaction. In this context, I consider the two situations an IR researcher
is often faced with. In the first scenario we want to evaluate a single system (i.e. absolute
A scores) to assess how well it will satisfy users. In the second scenario we want to compare
two systems (i.e. relative AX scores) to assess which one will provide more user satisfaction.

Subjects were presented with different examples, each containing a query clip ¢ and two
ranked lists of five results each, as if retrieved by two different AMS systems A and B. The
effectiveness scores A\;a and A, g were known but withheld to subjects [Sanderson et al.
2010, Allan et al. 2005]. They had to listen to the clips and then select one of the following
options: system A provided better results, system B did, they both provided good results,
or they both returned bad results (see Figure 3.1). From these options we can differentiate

four user preferences:

Positive preference. The subject selected the system with larger effectiveness.
Negative preference. The subject selected the system with smaller effectiveness.
Good nonpreference. The subject indicated both systems are equally good.

Bad nonpreference. The subject indicated both systems are equally bad.

This design allows us to analyze the results from two different perspectives: the evalua-
tion of a single system and the comparison of two systems. Subjects indicating that both
systems are good suggest that they are satisfied with both ranked lists. That is, their answer
serves as an indication that the effectiveness scores Ay a and A, p measured for those sys-
tems translates into user satisfaction. If, on the other hand, they indicate that both systems
are bad, we can infer that those effectiveness scores do not translate into user satisfaction.

30



3.2. Experimental Design

Music Recommendation

Imagine you could use a service where you provide a clip of music as a query and the service
then recommends five songs similar to it.

In this task we dive you an arbitrary query and the songs recommended by two different services.
You have to listen to the songs and tell us what service provided better results.

Query

Service A Service B
Hinje|n = == SRR R RE
Result 1 Result 1
Result2 Result2

Result 3 Result 3
Result 4 Result 4
Result5 Result 5

What service gives better results?
Service A
Service B
They are both equally good
They are both equally bad

Any comments or suggestions?

Figure 3.1: Task template used in the experiment.

Subjects indicating a preference for one ranked list over the other one suggest that there
is a difference between them large enough to be noted. That is, their answer serves as an
indication that the difference in effectiveness AX; ag between the systems translates into
users being more satisfied with one system than with the other. Whether they agree with
the evaluation or not depends on which of the two systems they prefer.

3.2.1 Data

The relevance judgments collected for the MIREX AMS task in 2007, 2009, 2010, 2011 and
2012 were used. They comprise a total of 22,074 relevance judgments across 439 queries?.
Each of these judgments consists of the Broad and Fine labels assigned to a document for
a particular query. The full [0, 1] range for effectiveness scores was split in 10 equally-sized
bins 4 € {[0,0.1),[0.1,0.2),...,[0.9, 1]}, such that the [AX, ag| score of an arbitrary example
falls under one of these bins.

Next, we need to come up with examples such that for every (A, £, ) combination we
have a sufficiently large number of examples to compute a realiable mapping. Using the
documents retrieved by the actual MIREX AMS systems is unfeasible because it would limit
our chances of having enough data for all cases. Instead, artificial examples were created

2 T excluded queries and documents for which I did not have the actual audio files. Among others, this
effectively excluded all judgments from MIREX 2006.
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using the known judgments to get at least 200 examples per bin [Sanderson et al. 2010, Allan
et al. 2005]. Because there are 10 bins, we need at least 2,000 examples in the best case. The
easiest method to accomplish this is a random sampling algorithm that randomly creates
2,000 examples. However, this method will most likely generate biased distributions for |A)|
in some (A, £) combinations where data is rather scarce. For example, human assessors very
rarely assign r4 < 10 and r4 > 90 with the Fine scale, so it is very hard to find examples
for which |AM| € [0.9,1] [Urbano et al. 2012]. Instead, I used an iterative greedy algorithm
that at each iteration selects the (A, £, 3) combination with the least number of examples
so far. If a new artificial example can be created for that combination, then that example is
saved and added to the respective bin it falls under for all other (A, £) combinations. If the
available data is not enough to create another such example, then the (A, £, 5) combination
is ignored from that point on. This algorithm iterates until there are at least 200 examples
per combination or there are no more possibilities to achieve that with the known judgments
at our disposal.

This algorithm was run with all 22,074 judgments, and a total of 4,115 examples
were artificially created to accommodate 200 examples per (A, L, 3) combination. How-
ever, in 5 of the 950 combinations there was not enough data to create 200 exam-
ples: (CG.Qk,Broad,[0.5,0.6)), (CG.Qk,Broad,[0.7,0.8)), (CG.Qk,n, = 3,[0.5,0.6)),
(CG.Qk,n, =3,[0.7,0.8)) and (CG;@Qk,n, = 4,[0.7,0.8)) ended up with 165, 178, 166, 141
and 178 examples respectively. Additionally, PQk can not accommodate examples for some
bins because of its very formulation: all PQ5 scores are a multiple of 0.2, so it is impossible
to create an example such that AP@5 is 0.3, for instance. Similarly, it is impossible to
create examples such that ARRQ5 € [0.4,0.5).

In summary we have 4,115 examples, and all but five (A, L, 8) possible combinations
contained at least 200 examples, with a final average of over 400 examples per combination.
Across all 4,155 examples we find 432 unique queries and 5,636 unique documents, covering
the wide range of genres and artists in the MIREX document set. All 4,115 examples were
different from each other.

3.2.2 Procedure

Preferences for all 4,115 examples were collected via crowdsourcing. Previous work by Lee
[2010] and Urbano et al. [2010b] demonstrated that music similarity judgments gathered
with crowdsourcing platforms are very similar to those collected with experts, with fast
turnaround and at a low cost. Another advantage of crowdsourcing for our experiment is
that it offers a large and diverse pool of subjects around the globe. Using a controlled group
of students or experts would probably bias our results, but using a diverse pool of workers
allows us to draw conclusions that should generalize to the wider population of users.
However, using crowdsourcing has other issues. The quality of judgments via crowd-
sourcing can be questioned because some workers are known to produce spam answers and
others provide careless answers seeking profit without actually doing the task. I decided
to use the platform Crowdflower® to gather preferences, which delegates the work to other
platforms such as Amazon Mechanical Turk. It also provides a quality control layer at the

3 http://wuw.crowdflower.com
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3.3. Results

process level [Urbano et al. 2011b] that separates good from bad workers by means of trap
examples [Le et al. 2010, Sanderson et al. 2010]: some of the examples shown to workers
have known answers (provided by us) that are used to estimate worker quality. Workers that
show low quality on the trap examples are rejected, and those that show high agreement
are allowed to participate. Crowdflower was provided with 20 such trap examples (5 for
each of the four answers), assigning each of them a subjective level of difficulty based on
the answers by two experts. Most of them were fairly easy to answer.

3.2.3 Task Design

Figure 3.1 shows the task template used. A first section listed the task instructions, and
then a Flash player permitted subjects to listen to the query clip. Below, they could find
the two ranked lists of 5 results each, followed by radio buttons to select their answer.
Finally, a textbox was provided for subjects to optionally leave feedback. All audio clips
were uploaded to a private server, and served upon request. The order in which examples
are shown to workers is random, as is the assignment of the ranked lists as system A or
system B. Also, the maximum number of answers by a single worker was limited to 100,
minimizing the possible bias due to super-workers that do most of the work.

All answers were collected in nine batches of nearly 500 examples each. Lee [2010]
collected similarity judgments paying $0.20 for 15 query-document pairs, while Urbano et al.
[2010Db] collected preference judgments paying $0.02 for each query-document-document. In
both studies workers were therefore paid approximately $0.007 per audio clip. Music-related
tasks are known to be enjoyable by workers, and given that quality does not significantly
degrade when decreasing wages [Mason and Watts 2009], I decided to pay $0.03 for each
example, leading to approximately $0.003 per clip. The total spent was approximately $250
after fees to Crowdflower.

3.3 Results

The nine batches were completed in less than 24 hours. A total of 547 unique workers
from 21 different crowdsourcing platforms participated in the experiment. These workers
provided a grand total of 11,042 answers, from which Crowdflower accepted 9,373 (85%)
as trustworthy; the extra answers are due to repeatedly showing trap examples to workers.
Only 175 workers were responsible for these trusted answers, so 372 workers (68%) were
rejected. The average trust on these 175 workers, as computed by Crowdflower [Le et al.
2010], ranges from 73% to 100%, with an average of 90%. Discarding answers to the trap
questions, the final 4,115 answers were given by 113 unique workers, with an average of 36
answers per worker.

3.3.1 Evaluating a Single System

For 2,025 of the 4,115 examples (49%) we received a nonpreference (i.e. subjects judged both
systems as equally good or bad). Therefore, we have 4,050 ranked lists that subjects judged
as satisfactory or unsatisfactory. Figure 3.2 shows the log-scaled distributions of absolute A
scores for these lists. As can be seen, the wide range of scores is covered, following somewhat
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Figure 3.2: Log-scaled distributions of absolute A scores in all 2,025 examples with nonpreferences.
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Figure 3.3: Probability of user satisfaction given a A score in all 2,025 examples with nonpreferences.
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uniform distributions with about 400 ranked lists per bin; again, there are some measures
for which it is not possible to produce examples that fall under some particular bins. The
number of good and bad nonpreferences was similar too: 1,056 and 969.

Figure 3.3 shows the fraction of examples within bins that were judged as satisfactory.
Let Sat be a random variable that equals 1 if the user is satisfied and 0 if not. The
proportions in the figure allow us to take a frequentist approach to the probability that
Sat = 1 conditional on the observed A score: P(Sat = 1|A = A), or simply P(Sat|\). For
instance, if a system obtains PQ5 = 0.4 when using the ¢,,;, = 80 scale, there is a 0.6
probability that an arbitrary user finds the results satisfactory. Similarly, AP@5 > 0.1 is
required for half the users to be satisfied.

As expected, there is a very tight positive correlation between effectiveness and user
satisfaction; the relationship appears to be nearly linear in many cases. The effect of the
threshold £,,;, is clear in the binary measures: the larger ¢,,;, the larger P(Sat), because
documents need to be very similar to the query to be considered relevant and A only increases
with very similar documents. Comparing the linear A; and exponential A, measures, it is
clear that the A. measures tend to underestimate satisfaction (they are quite above the
diagonal). This is an artifact of the exponential gain function: highly relevant documents
are assumed to be much more satisfactory relative to the others than in the linear gain
function. For example, in a linear gain function two documents with relevance ry = 2 and
rq = 4 contribute 2 and 4 to CG;@5, but they contribute 22 — 1 = 3 and 2* — 1 = 15 to
CG.@5. That is, the relative contribution is an order of magnitude larger. The measure
ends up overestimating the contribution of highly relevant documents and underestimating
the contribution of the rest. As a result, the expected satisfaction due to mid-relevant
documents is underestimated because it is not as large as it could supposedly be. This effect
is also clear comparing the same A, measure with the different graded scales: the larger n,
the larger the underestimation, because documents with the highest relevance within the
scale leave much more room for improvement to the other documents.

In general, the measures that best adhere to the diagonal are C'G;@5, DCG;@Q5 and
RBP,Q5 for the graded scales. However, it is not really a problem that the curves are
far apart from the diagonal; it just means that the interpretation of a A score is not as
immediate as we expected it to be. I get to this issue in Chapter 4. For the time being,
we are interested in measures and scales that are closer to the expected P(Sat|0) = 0 and
P(Sat|l) = 1. Given the highly subjective notion of similarity, it is expected that different
users perceive results differently. If a human assessor makes some relevance judgments and
a system gets an effectiveness score A = 1, it means that the system provided ideal results,
and therefore all users should find them satisfactory. In practice though, that is not the case;
some users will disagree to some extent. Some measures account for more information than
others and make different assumptions as to how users behave so that effectiveness scores
are better correlated with user satisfaction. It does not really matter if the relationship is
linear or not, as long as the measure is not biased towards the endpoints and it gets closer
to the expected 0 and 1. Measures that better achieve this are the ones that we can trust
the most when generalizing results to the wider population of users because they are less

sensitive to user variations.
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Measure Original Artificial Graded Artificial Binary

Broad Fine |[ng=3 ng=4 nc=5 [lmin=20 lmnin=40 lrnin=060 Lpin=2380
PQ@5 0.1515 0.1494  0.158 0.1893
APQ@5 0.1562 0.1513 0.1671 0.2154
RRQ@5 0.2268 0.2229  0.2305 0.2507
CG,@5 0.1159 0.1284 10.1293 0.1232 0.111
CG.Q5 0.1175 0.1283 0.1297 0.13
DCG @5 0.1202 0.1293 |0.1314 0.1248 0.1215 |0.1515 0.1494 0.158 0.1893
DCG.Q5 |0.1226 0.1335 0.1347 0.14
EDC@G;@5(0.1726 0.1843[0.1784 0.203  0.2097 |0.2371 0.2171 0.2085 0.2237
EDCG.@50.2145 0.2237 0.226  0.2741
Q.,Q5 0.1327 0.1535(0.141 0.1296 0.1304
Q.Q5 0.1306 0.1448 0.1409 0.1425
RBP,Q@5 0.1202 0.120210.1314 0.1239 0.1195|0.1515 0.1494 0.158 0.1893
RBP.@Q5 |0.127 0.1347 0.1355 0.1397
FERR;@Q5 |0.1812 0.1831(0.1857 0.1905 0.1953 |0.1927 0.1859 0.1916 0.2176
ERR.Q5 |0.193 0.1979 0.1978 0.2043
GAPQ5 0.1224 0.1221]0.1346 0.128 0.1189
ADRQ5 0.1874 0.181 0.2042 0.2226 |0.1747 0.1654 0.1781 0.2226

Table 3.2: Bias in P(Sat|\) at the endpoints A = 0 and A =1 as per (3.11) (lower is better). Best
per measure in bold, best per scale in italics.

The bias between the expected and actual behavior at the endpoints was measured by
computing a rooted mean squared distance as follows:

5 (3.11)

\/P(Sat|0)2 +(1— P(Sat|1))?
Table 3.2 shows the results for all measure-scale combinations. The £,,,;, = 40 scale performs
the best among the binary scales, and the Broad scale dominates among the graded scales.
Similarly, the measures that behave the best are CGQ@5, DCG@Q5, RBPQ5 and GAP@5. In
general, P(Sat|0) ~ 0.2, with some measures having a bias as high as 0.4. This means that
about 20% of users will find the results satisfactory even when the result of the evaluation
is A = 0. On the other hand, when A = 1 it is expected that between 10% and 20% of users
are not satisfied despite the evaluation suggested ideal results.

3.3.2 Comparing Two Systems

For 2,090 of the 4,115 examples (51%) we did receive a preference (i.e. subjects indicated
that one system provided better results than the other one). Subjects preferred system A
1,019 times and system B 1,071 times, that is, about the same as expected. Whether those
user preferences were positive or negative (i.e. agreeing with the sign of AX, ag or not),
depends on the combination of measure and scale used. Let Agr be a random variable that
equals 1 if the subject agrees with the evaluation and does prefer the system with higher A
score as measured with a test collection (i.e. a positive preference), -1 if she disagrees (i.e. a
negative preference), and 0 if she can not decide which one is better (i.e. a nonpreference).
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Measure Original Artificial Graded Artificial Binary
Broad Fine ne=3 nc=4 ng=5 lmin=20 lpin=40 Lpin=60 Lyin =380

pas 0.5842 0.5945 0.5999 0.5733
APQ5 0.5696 0.562 0.5586 0.5101
RR@5 0.6483 0.6382 0.6508 0.6513
CG,@5 0.5688 0.4653|0.5814 0.5348 0.5265

CG.Q5 0.5309 0.5438 0.5241 0.5014

DCG@5 ]0.531 0.4733(0.542 0.5304 0.5203 |0.5529 0.5579 0.5756 0.5533
DCG.@5 |0.5313 0.544 0.5287 0.512

EDCG,@5 (0.563 0.5172]0.5877 0.566 0.5527 [0.6139  0.5999  0.623 0.6424
EDCG.Q5]0.5942 0.6148 0.614 0.5963

Q@5 0.5432 0.4904|0.5486 0.5387 0.5303

Q.Q5 0.5387 0.5473 0.5325 0.5186

RBP@5 [0.5274 0.4719(0.539 0.5276 0.5176 |0.551 0.5614  0.5731  0.5489
RBP.@5 [0.5272 0.5387 0.5247 0.5075

ERR/@Q5 |0.5672 0.515 |0.5783 0.5683 0.5595 [0.5587  0.5743  0.6081 0.6044
ERR.Q5 [0.5741 0.5906 0.585 0.5725

GAPQ@5 0.5229 0.4665|0.5333 0.5166 0.5105

ADR@5 0.5827 0.5933 0.5837 0.5649 |0.5622 0.5756  0.5924  0.5649

Table 3.3: Distance between 1 and P(Agr = 1|A)) (lower is better). Best per measure in bold,
best per scale in italics.

Positive Preferences

Figure 3.4 shows the fraction of examples within bins for which users preferred the sup-
posedly better system according to AX; ag. The proportions allow us again to follow a
frequentist approach to the probability that Agr = 1 conditional on the observed A\ score:
P(Agr = 1|AA = A)), or simply P(Agr = 1|A)). For instance, if comparing two systems
we get ARBP,@5 = 0.2 there is a 0.3 probability that an arbitrary user will agree as to
which system is better. Similarly, when using the Fine scale AFRR;@Q5 > 0.4 is required
for half the users to agree.

Ideally we would want users to show a preference for the better system whenever we
observe an effectiveness difference in the evaluation, regardless of how large this difference
is. That is, we always expect P(Agr = 1) = 1 regardless of AX. Figure 3.3 and Table 3.2
showed that there is some level of disagreement x among users, so we should actually expect
P(Agr =1) = 1 — k. But there is a very tight positive correlation with AX instead: the
larger the difference in effectiveness the more likely for users to prefer the supposedly better
system. The relationship is nearly linear again, but we can observe very clear differences
among scales. To quantitatively assess which measures and scales are closer to the ideal
P(Agr =1) = 1, the rooted mean squared distance between the distributions and the top
y = 1 axis was measured:

30 Plagr=1aA € ) (3.12)
B

Table 3.3 shows the results for all measure-scale combinations. The ¢,,;,, = 80 scale is
slightly better than the other binary scales except for ARRQ5 > 0.5. In the graded case,
the Fine scale is clearly superior for all A; measures, and the artificial ny = 5 scale is
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Figure 3.4: Probability of positive user preference given a A\ score in all 4,115 examples.
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Chapter 3. System Effectiveness and User Satisfaction

superior for the A. measures. The measures that behave best overall are again CG@Q5,
DCGQ5, RBPQ5 and GAPQ@5.

Negative Preferences

Figure 3.5 shows the fraction of examples within bins for which users preferred the sup-
posedly worse system according to AX. Once again these proportions allow us to follow a
frequentist approach to the probability that Agr = —1 conditional on the observed A\ score:
P(Agr = —1|AA = A)), or simply P(Agr = —1]A)X). As an example, if the effectiveness dif-
ference between two systems is AERR;@Q5 = 0.4 with the Fine scale, 5% of the users disagree
and prefer the supposedly least effective system. Similarly, when using the ny, = 5 graded
scale we need AGAPQ5 > 0.3 to have less than 5% of users prefer the worse system. Consid-
ering both Figure 3.4 and Figure 3.5 together, we see that users are increasingly undecided as
differences in effectiveness get smaller. In general, the probability that the user can not de-
cide for one system or the other is P(Agr = 0|AX) = 1—P(Agr = 1|AXN)—P(Agr = —1]A\).

Ideally we would want users to never show a preference for the supposedly worse system,
no matter how small the effectiveness difference in the evaluation is. That is, we always
expect P(Agr = —1) = 0 regardless of AX. But as we discussed before, there is some level
of disagreement among users, so we should actually expect P(Agr = —1) = k. Instead we
find a slight negative correlation with AX: the smaller the difference in effectiveness the
more likely for users to prefer the supposedly worse system.

To quantitatively assess which measures and scales are closer to the ideal
P(Agr = —1) =0, the rooted mean squared distance between the distributions and the
bottom y = 0 axis is measured:

% S P(Agr = 1]AA € B)? (3.13)
B

Table 3.4 shows the results for all measure-scale combinations. The Fine scale seems again
superior for the A; measures, while the Broad scale is generally the best for the A, measures.
Across scales, the measure that behaves the best overall is CG@5, followed by GAPQ5,
DCGQ5 and RBPQ5.

3.4 Considering Priors

Section 3.3 provides a guide for the interpretation of evaluation results from the point of view
of user satisfaction. It allows researchers to assess how well their systems are expected to
satisfy users and what to expect from them when comparing two systems. From Figure 3.3
researchers who pursue a goal such as satisfying over 80% of the users are now able to
set a threshold in A. For example, when using the Fine scale we see that it is required
GAPQ@5 > 0.7 or ;@5 > 0.8. Intuitively then, we would pay more attention to GAPQ5
because it requires our systems to be less effective. Similarly, from Figure 3.4 we may set
a threshold in AX to meet the goal of having 50% or more users agree with the evaluation
result. For example, AQ;@5 > 0.35 with the Fine scale is required, while AQ;@Q5 > 0.5
is with the Broad scale. Intuitively then, we would prefer to use the Fine scale because it
requires smaller differences and it should therefore be easier to achieve our goal.
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Chapter 3. System Effectiveness and User Satisfaction

Measure Original Artificial Graded Artificial Binary
Broad Fine ne=3 ng=4 ng=5 {lmin=20 lpin=40 Lpin =060 Cmin=280

P@5 0.0443 0.0414 0.0452 0.0452
APQ@5 0.0547 0.054 0.054 0.0491
RR@5 0.0521 0.0516 0.0732 0.0657
CG,@5 0.0453 0.046 |0.0475 0.0466 0.0467

CG.Q@5 0.045 0.0494 0.0535 0.0516

DCG,@Q5 10.0479 0.0446|0.0505 0.0512 0.0518 {0.0523 0.0489 0.0547 0.0501
DCG.@5 |0.0503 0.0531 0.0526 0.0515

EDCG;@5(0.0639 0.0607 [0.0696 0.0657 0.0648 |0.0535  0.0509 0.0596  0.0631
EDCG.@5(0.073 0.0818 0.0887 0.079

Q,Q5 0.0519 0.0473|0.0534 0.0521 0.0516

Q.Q@5 0.049 0.0525 0.0514 0.0524

RBP,@5 |0.0486 0.046 [0.0518 0.0516 0.0518|0.0508  0.0513  0.0538  0.0512
RBP.Q5 |0.0495 0.0535 0.0523 0.0511

ERR;@Q5 [0.0573 0.0547 [0.0594 0.0597 0.0599|0.0547  0.0541 0.0639  0.0628
FERR.Q5 |0.057 0.0607 0.063 0.0593

GAPQ@5 0.0478 0.0432|0.0515 0.0481 0.0492

ADRQ@5 0.0574 0.06  0.0609 0.05780.0573  0.0522 0.0587  0.0578

Table 3.4: Distance between 0 and P(Agr = —1|AX) (lower is better). Best per measure in bold,
best per scale in italics.

Intuition fails at this point. When making the decision of using the Fine scale instead of
the Broad scale because smaller differences are required, we are assuming that both scales
are equally likely to produce these AQ;@5 scores. Imagine that AQ;@5 > 0.35 is achieved
only 20% of the times with Fine judgments, while AQ.@5 > 0.5 is achieved 40% of the
times with Broad: even though the Fine scale requires smaller differences it is less likely to
observe those differences to begin with. That is, we must consider the prior probability of
observing differences that large.

For each of the nine relevance scales considered throughout this chapter the prior distri-
butions were computed for each measure of interest. A way to proceed would be to compute
all possible assignments of relevance that can be made to two lists of five results each, then
computing the distribution of A) scores for each measure. However, priors computed this
way would not be informative because they would be too unrealistic. It could be the case
that we randomly consider a hypothetical system that retrieves ideal results compared with
another system that does not retrieve any relevant document at all. While possible in the-
ory, situations like that hardly ever happen in practice; A scores are generally correlated
across systems, so A\ is usually small. Instead, the prior distributions were computed by
comparing all pairs of actual systems from the MIREX AMS 2007, 2009, 2010, 2011 and
2012 editions. For every pair of systems evaluated for every query, the corresponding A
score was calculated for every (A, £) combination. This makes a total of 37,450 datapoints
per combination of measure and scale.

Figure 3.6 shows the cumulative distribution functions Faa(AX) = P(AA < AM) for
all (A, £) combinations. For example, with Fine judgments Facg,a5(0.3) = 0.8, meaning
that in 80% of the observations we get ACG;@Q5 < 0.3 and only 20% of the times we
get ACG;@Q5 > 0.3. As mentioned, it can be seen that A\ scores are generally small.
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Figure 3.6: Cumulative distribution functions of prior A\ scores.

P(Agr =1]AA > AX) > 0.5 (lower is better).
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Measure Original Artificial Graded Artificial Binary
Broad Fine |ng=3 ng=4 ns=5 [lmin=20 Lpin=40 lmin =60 Cin=80

PQ@5s 0.1881 0.2103 0.1785 0.0743
APQ5 0.238 0.2201 0.1702 0.1082
RR@5 0.1654 0.2216 0.1842 0.0971
CGQ5 0.1774 0.17180.1249 0.1698 0.1634

CG.Q5 0.1746 0.1433 0.1205 0.1157

DCG@5 ]0.1769 0.1685(0.1724 0.1587 0.1615 |0.2303 0.2262 0.1642 0.107
DCG.Q5 ]0.1543 0.1501 0.123 0.1118

EDCG,@5 [0.0972 0.1008 |0.0763 0.0861 0.0954 |0.0669  0.0951 0.1054 0.0518
EDCG.@Q5(0.0763 0.0743 0.0853 0.1004

Q@5 0.2163 0.1715(0.2028 0.2003 0.1933

Q.Q5 0.1878 0.1737 0.1434 0.1224

RBP@5 [0.17838 0.1735|0.1705 0.1606 0.163 |0.2075  0.2091 0.1793  0.1044
RBP.@5 |0.1573 0.1493 0.1251 0.1142

ERR;@5 |0.1803 0.1587|0.1676 0.1549 0.1541 |0.1895 0.2122 0.1733  0.0695
EFRR.Q5 [0.1417 0.1417 0.1159 0.1129

GAPQ@5 0.1878 0.1832]0.1706 0.1749 0.1677

ADRQ5 0.1084 0.1112 0.0799 0.0803 [0.2052 0.1717  0.1448  0.081

Table 3.5: Expected fraction of observations such that P(Agr = 1) > 0.5 (higher is better). Best
per measure in bold, best per scale in italics.

The points in the plots mark the interpolated minimum A\ from Figure 3.4 such that
P(Agr = 1|AA > AX) > 0.5, that is, the minimum difference that needs to be observed
for the standard goal of having over 50% of users agree as to which system is better. For
instance, in Figure 3.4 we saw that the minimum AGAPQ5 required ranged from 0.35 with
the Fine scale to 0.5 with the n, = 3 scale, suggesting the use of the Fine scale. However,
Figure 3.6 suggests that if we consider priors all scales are virtually the same: about 15%
of the times we will meet our goal. Similarly, with Fine judgments we find that about 83%
of the AQ;@5 observations are below the AX threshold, so we are expected to have over
50% of users agreeing only in about 17% of the cases. Surprisingly, the Broad scale, that
required a larger A\ score, is successful about 22% of the times. In the case of RBP,Q5
we find that the £,,;, = 20 and ¢,,;, = 80 binary scales have almost the same A\ = 0.45
threshold, but the latter is successful twice as often as the former to meet our goal.

In general, we want the marks to be as close to the bottom y = 0 axis as possible. That
means that in most of the actual observations we have a A\ score sufficiently large to expect
over 50% of users preferring the better system. Table 3.5 shows the fraction of observations
that are expected to meet the P(Agr =1) > 0.5 criterion. Even though differences are
generally small, the Broad scale appears to be superior, and the ¢,,;, = 40 scale works
exceptionally well. In terms of measures, ;@5 is clearly the best of all, followed by a mix
of combinations in CG;@5, DCG,;@Q5, RBP,@5 and GAPQ5.

3.5 Discussion

In terms of measures, the A; versions worked better than the A. versions to predict user
satisfaction (good nonpreferences). They also proved to perform better to predict user-
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3.6. Summary

evaluation agreement (positive preferences), although they resulted in slightly more dis-
agreements (negative preferences) too. Both RRQk and ERRQk follow a user model in
which the goal is to retrieve one single highly relevant document. These measures showed
poor performance in all aspects, evidencing that this user model is not appropriate for the
AMS task as presented to users. A music recommendation scenario was suggested, in which
users are expected to just consume results pretty much as they would listen to a playlist.
If the scenario were that of identifying versions or plagiarized music, then finding that one
highly relevant document would definitely be more appropriate. On the other hand, CGQEk
is a measure assuming that all documents contribute to the user and independently of other
documents, and DCG@QE further considers a positional user model were the contribution
of a document depends on the rank at which it is retrieved; these measures are therefore
expected to perform better in the assumed music recommendation scenario. Indeed, they
generally obtained the best or next to best results. RBPQE is a variation that accounts
differently for the document ranks, and it is generally among the top three measures, es-
pecially in its RBP,@Qk version. EDCGQEL is a mix of DCGQ@Qk and ERRQk in which
all documents contribute but depending on the other documents. This measure has the
worst performance overall, further suggesting that the cascade user model in FRRQE is
not appropriate. ADRQ@k also showed quite poor performance as expected, because it is
extremely demanding in the user-oriented formulation employed here. This can be seen in
that quite many users considered the results satisfactory even when the ADR@5 scores were
very low. The other binary measures PQk and APQk, together with Q@Fk, showed average
performance. Finally, GAPQFk was also among the best measures overall, especially when
focusing on extremely low and large scores.

In terms of relevance scales, the original Broad and Fine scales performed best overall.
The Broad scale proved to be particularly good to predict user satisfaction, while the Fine
scale worked better to differentiate between systems thanks to its greater resolution. The
artificial graded scales appear to be next in general, especially n, = 4 and ny = 5. The
binary scales were worse overall, although some sporadic combinations were particularly
good with £,,;, = 40. For a task like AMS these results are rather expected. The use of
relevance scales with a pre-fixed number of levels is inherited from evaluation in Text IR,
where there often are clear guidelines describing the characteristics of documents to assign
one or another relevance level (e.g. documents discussing some topic are relevant, and if it is
the main topic of the documents they are very relevant). Such guidelines seem unrealistic for
music similarity, where relevance is rather continuous: a song can be increasingly modified
and still resemble the original song, but similarity is gradually weaker as more and more
changes are made. Level-based relevance scales do not seem suitable for similarity tasks
because there is no accepted criterion to distinguish between levels. In fact, sometimes
assessors go back to a document to change its judgment, after seeing a different song that
makes them reconsider the boundaries between relevance levels [Jones et al. 2007].

3.6 Summary

Intuition tells us that if the effectiveness of a system for some query is A = 1 any user
should be satisfied by the system, and if it is A = 0 then no user should. In general, we
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expect 100A% of users to like the system. Similarly, if system A obtained a score larger
than system B, we expect users to agree and actually prefer A. By choosing one or another
effectiveness measure researchers make different assumptions as to the behavior and needs
of the final users, and by choosing one or another relevance scale they follow different
criteria to differentiate satisfactory from unsatisfactory results. Section 3.3.1 empirically
provides the mapping from system effectiveness onto user satisfaction for a wide range of
effectiveness measures and relevance scales, and Section 3.3.2 provides the mapping from
differences in effectiveness onto user-evaluation agreement, allowing us to validate or not
these assumptions.

Figure 3.3 allows researchers to interpret effectiveness scores in practical terms and
answer the larger question of whether a system satisfies users or not. These results also
allow us to quantify user disagreement and how much room for improvement there is if we
implemented personalization of results [Jarvelin 2011]. The figure shows that about 15%-
20% of users contradict the effectiveness measures, which is consistent with disagreements
found between AMS assessors [Jones et al. 2007, Schedl et al. 2013a] and in related tasks
such as Genre Classification [Lippens et al. 2004, Seyerlehner et al. 2010a]. This implies
a practical lower and upper bound on both user satisfaction and system effectiveness, and
also suggests the need for a larger user component beyond mere relevance judgments to
consider user properties and user context in evaluation experiments [Schedl et al. 2013a].
The incorporation of user context features such as mood or location is problematic because
they are not static. But user properties such as musical background or taste should be
fairly easy to incorporate in the Cranfield framework by making them a static part of the
query itself. That is, the problem would go from retrieving similar music to a given song
to retrieving songs similar to a query and targeting a user with certain characteristics.
This is the scenario of the recent Million Song Dataset Challenge [McFee et al. 2012], that
incorporates a user-specific listening history as user property to predict songs that the user
should also like.

Figure 3.4 and Figure 3.5 allow researchers to interpret differences in effectiveness in
practical terms, answering the question of whether users will actually prefer one system
or another. These results show that effectiveness differences need to be quite large for
the majority of users to actually prefer one system. Although there are variations across
measures and scales, it is generally required to observe AX > 0.4. Historically though,
only about 20% of system comparisons in MIREX have resulted in such large differences.
For smaller differences users generally can not decide between one system or another; they
seem equally good or bad. This does not mean that incrementally implementing slight
improvements in a system will not have practical implications for users; at some point they
may all add up to a difference sufficiently large for users to note it.
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Previous chapter provided the tools to map the effectiveness score for one query onto the
arguably more meaningful probability of user satisfaction for that query. But the description
of evaluation results usually focuses just on the average effectiveness of systems over some
sample of queries. In this chapter effectiveness-satisfaction relation is modeled to provide
good estimates of average user satisfaction as well.

In addition, I discuss how to move beyond simple means and consider the full score
distributions. Doing so we are able to describe the performance of systems from new per-
spectives. First, it allows us to analyze the variability of scores so that we can better study
the expected user satisfaction and predict how extreme systems can be. Second, it allows
us to easily categorize system results as successful or unsuccessful, so researchers can fo-
cus on problematic types of queries. It is shown that, considering the full distribution of
scores, apparently straightforward comparisons between systems can be more complex than
it may seem. In fact, conclusions based on simple averages of effectiveness can easily be
contradicted by conclusions based on full distributions of user satisfaction.

4.1 Mean Probability of User Satisfaction

Section 3.3.1 provided an empirical mapping between system effectiveness and user satisfac-
tion. In particular, we were able to map an effectiveness score A onto a probability of user
satisfaction P(Sat|\). For simplicity, let us refer to this mapping as a function:

sat(A) := P(Sat = 1|A = )) (4.1)

This mapping allows us to interpret the results of an evaluation experiment in terms of
user satisfaction. If for an arbitrary query ¢ a system obtains A,, the probability that an
arbitrary user finds the system satisfactory for that query is sat();). We can further consider
user satisfaction as a random variable following a Bernoulli distribution with probability of
success sat(Aq); doing so we can define the random variable Sat, that equals the number
of satisfied users from a total of n users. This variable follows a Binomial distribution:
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Measure Original | Artificial Graded| Artificial Binary
Broad Fine|ng=4 nc=5 |lmin=20 lmin=40
PQ@5 X X
APQ@5 X X
C@G,@5 x x x X P@5 PQ@5
CG.@5 X X X PQ@5s P@5
DCG @5 X X X X X X
DCG.Q5| x X X DCG,@Q5 DCG,Q5
Q@5 X X X X APQ5 AP@5
Q.Q5 X X X APQ5 APQ5
RBP,Q5 X X X X X X
RBP.Q5 X X X RBP,Q5 RBP,Q@5
GAPQ5 X e X X APQ5 APQ5

Table 4.1: All 40 combinations of effectiveness measures and relevance scales studied (marked
with x), and equivalent combinations (e.g. GAP@Q5 is the same as APQ5 with a binary scale).

P(Sat, = k|A = \)

(Z) sat(\)F (1 — sat(\)" "

!

mgat()\)k (1= sat(\)" " (4.2)
As an example, let us consider system STBD1 from MIREX 2011 and query d007449. Using
the Fine judgments, the effectiveness obtained was ;@5 = 0.6095, which according to
Figure 3.3 corresponds to P(Sat) = sat(0.6095) ~ 0.7. It is therefore expected that about
70% of users will find the results for that query satisfactory; if 15 different users were asked,
the probability that 10 will be satisfied is P(Sat15 = 10) =~ 0.2061.

4.1.1 User Satisfaction over a Sample of Queries

Equations (4.1) and (4.2) can be used to compute the expected user satisfaction for a single
query, but the larger question relates to the expected user satisfaction on the universe of all
queries, that is, the mean probability of satisfaction pp(gqs). If the sat mapping functions
were linear we could just compute the mapping of the mean effectiveness py, but judging by
Figure 3.3 they are not. We therefore have to integrate the sample space to get the expected
probability of user satisfaction as:

HP(Sat) = /sat()\)P(A =) dA

However, because all effectiveness scores are computed for a cutoff £ and the set of
possible relevance judgments is £, the sample space for effectiveness scores is a finite and
countable set. That is, the distribution of effectiveness is discrete, and the expected proba-
bility of user satisfaction is therefore calculated as:

pp(sar) = Y sat(\)P(A = \)

This would be the expected probability of satisfaction for an arbitrary user and query. The
problem at this point is that the actual distribution P(A = X) is unknown. We would need
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Measure Original Artificial Graded Artificial Binary
Broad  Fine ne=4 ng=5 | Lynin=20 Lpin=40

P@5 0.0034 0.0141

APQ@5 0.0402 0.0267

CG@5 0.0254  0.0206 | 0.0254 0.0183

CG.@5 0.0334 0.0339 0.0315

DCG,@Q5 | 0.0265 0.0154 | 0.0176  0.0155 | 0.0325 0.0346

DCG.Q5 | 0.0265 0.02 0.0281

Q@5 0.0155 0.0217 | 0.0229  0.0205

Q.Q@5 0.0302 0.0206 0.0233

RBP,@5 0.0272 0.0141 | 0.0229 0.0188 0.0275 0.038

RBP.Q5 | 0.0229 0.0242 0.0252

GAPQ5 0.0302  0.0205 | 0.0208  0.0262

Table 4.2: RMS residuals of sat predictions (lower is better). Best per measure in bold, best per
scale in italics.

to evaluate the system for the universe of all queries and all users to know this distribution,
but in reality we only use a sample of queries Q and a sample of assessors H. By the Law
of Large Numbers, the sample mean fip g, converges to the true mean almost surely as
ng — 00, so we use it as an estimator of the true population mean:

. 1
Bp(Sat) = @ Z sat(Aq)
q€Q

4.1.2 Interpolated Probability of User Satisfaction

Note that the true sat mapping function is also unknown. The mapping from Figure 3.3
was also obtained empirically with a sample of users, and not for the actual A scores but for
intervals {[0,0.1),[0.1,0.2),...,[0.9,1]}. This means that we assigned the same probability
of satisfaction to any two effectiveness scores in the same interval, which most certainly is
not true. To better estimate the sat mapping function I proceeded to interpolate the known
estimates in Figure 3.3. Judging by the plots, a cubic polynomial fit should be sufficiently
powerful to describe the data, so the following model was fitted using least squares:

S/Jt()\) =ag+ a1 A+ CLQ/\2 + 0,3/\3 (43)

Based on the results from Chapter 3 some (A, £) combinations are discarded. In par-
ticular, I discard the RRQ5, EDCGQ5, FRRQ5 and ADRQ5 measures, as well as the
ng = 3, byin = 60 and £,,;, = 80 relevance scales. This leaves us with 40 combina-
tions from this point on (see Table 4.1). Figure 4.1 plots the fits for the (A, £) combina-
tions of interest. The explained variance ranged from R? = 0.9561 to R? = 0.9998, with
an average of R? = 0.9858. Table 4.2 lists the rooted mean squared residuals, ranging
from 0.0034 (PQ5 with £,,;, = 20) to 0.0402 (APQ5 with £,,;, = 20), with an aver-
age of 0.0241. The cubic model in (4.3) thus resulted in a quite good fit on the actual
data; the average error of sat predictions is about 2%. In terms of measures, PQ5 was
fitted particularly well, followed by the A; graded measures and GAP@5. In terms of rel-
evance scales, fits were similarly good, but the Fine and n, = 4 scales were fitted slightly
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Figure 4.1: Estimated sat(\) mappings fitted from Figure 3.3.

better. Table 4.3 lists the fitted parameters for all (A, L) combinations of interest. As
an example, an effectiveness score GAPQ5 = 0.32 with Broad judgments corresponds to
P(Sat) = 0.1018 4+ 1.7272 - 0.32 — 1.6028 - 0.322 + 0.6471 - 0.323 = 0.5116.

Finally, the expected probability of user satisfaction for an arbitrary query and user can
be estimated with a test collection as:

. 1 -~
E[“P(Sat)} = o Z sat(Aq
qeQ

~—

(4.4)

As an example, let us consider the CL1 system from MIREX 2009; Figure 4.2 shows the
histograms of effectiveness (CG;@5 with Fine judgments) and estimated probability of user
satisfaction. The sample mean effectiveness is CG;@5 = 0.2525 which, intuitively, would be
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4.1. Mean Probability of User Satisfaction

Broad Fine
ao a a2 as ao ai az as3
CG,@5 0.1872 -0.0969 1.9908  -1.237 0.2007 -0.4632 3.6754  -2.6338
CG.Q@5 0.1601 0.9345  -0.3245 0.1463

Measure

DCG;@5 | 0.1614 0.4043 1.1288  -0.8535 || 0.1873 -0.3 3.3552  -2.4675
DCG.@5 | 0.1253 1.2334  -0.7733 0.2884
Q:Q5 0.1291  1.0993 -0.2774 -0.1157 || 0.1509 0.3214  2.0057  -1.7292
Q.Q5 0.1117 1.6064 -1.4001 0.5267

RBP@5 | 0.1666 0.3591  1.2609  -0.9536 || 0.1722 -0.1443 3.0142 -2.253
RBP.@Q5 | 0.1297 1.1906  -0.6452 0.204
GAPQ5 0.1018 1.7272  -1.6028 0.6471 0.1131 1.0327  0.6077  -0.9409

ne =4 neg=2>5
Measure
ag ay a2 as ao ai az a3
CG,@5 0.2162 -0.1609 2.151 -1.3492 || 0.1895 -0.0282 1.9266  -1.2236
CG.@5 0.1879 0.6952  0.5243  -0.5204 || 0.1734 1.1467 -0.3836 -0.0491
DCG,@Q5 | 0.1908 0.1522 1.637 -1.1374 || 0.1853 0.1434 1.737 -1.2215
DCG.Q5 | 0.1592 1.1177  -0.4211 0.0049 0.141 1.5581  -1.2976 0.465
Q,Q5 0.143 0.9574  -0.0258 -0.2404 || 0.1438 0.8224  0.3413  -0.4773
Q.Q5 0.1125 1.8645 -1.93 0.8061 0.0956 2.4332  -3.2653 1.5964
RBP,@5 | 0.1884 0.1822 1.5873  -1.1176 || 0.1761 0.2562 1.5186  -1.1098
RBP.@Q5 | 0.1605 1.0565 -0.2106 -0.1524 || 0.1406 1.5719 -1.3141 0.4653
GAPQ5 0.124 1.4399  -0.883 0.1802 0.1209 1.4456  -0.8938 0.2014

M Zmin =20 émm =40
easure

ag a1 asz as ao ai az as
PQ@5j 0.1541 0.1227 0.0152 0.5589 0.2352 -0.3261 1.5421 -0.5807

AP@5 0.1428 0.4791  0.4859  -0.3479 || 0.1659 0.9044 -0.0926 -0.1725
DCG;@5 | 0.1742 -0.0972 1.0231  -0.2768 || 0.2292 -0.1256 1.4722  -0.7195
RBP@5 | 0.1635 0.0401 0.6029  0.0208 0.2291 -0.1532 1.5484  -0.7779

Table 4.3: Fitted parameters of the s/cﬁ()\) = agp + a1\ + az\? + a3\ models.

interpreted as roughly 25% of user satisfaction. However, the sample mean probability of

satisfaction is P(Sat) = 0.3526, indicating that on average about 35% of users are expected
to find the system satisfactory. This is a clear example that system effectiveness and user
satisfaction do not have an equality relation as intuition dictates. In fact, in this case we
underestimated user satisfaction by about 10%.

4.1.3 Sampling Distribution of the Mean Probability of User Satisfaction

Equation (4.4) estimates the mean probability of user satisfaction based on a sample of
queries. As there is random error due to the sampling process, it is customary to provide a
measure of confidence on the estimates. The variance of the estimate is:
2
45 Sat)
ng

Var |:/3’15(Sat):| = (4.5)

where sd P(Sat) is the sample standard deviation. By the Central Limit Theorem, we know
that the sampling distribution of P(Sat) is approximately normal as ng — 00, so we can
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Figure 4.2: Distributions of C'G;@5 and corresponding f’(S’at) for system CL1 in MIREX 2009.

compute a 100(1 — 2a)% interval estimate for the mean as:

{0 o > Sdl3 Sat
E{”P@aw} + tay/ Var [Mmsat)} = P(Sat) itaﬁ (4.6)

where ¢, is the quantile function of the ¢-distribution with ng —1 degrees of freedom. In the

previous example with system CL1, the sample standard deviation is sd P(Sat) = 0.2187, so
a 95% confidence interval would be fip(sary = 0-3526£1.9842 - 0.2187/10 = [0.3092, 0.3960].
The same procedure can of course be followed to better describe effectiveness. In this case
sdeg,as = 0.2557, so a 95% confidence interval would be ficq,as5 = [0.2018,0.3033].

4.2 Distribution of the Probability of User Satisfaction

Equations (4.4) and (4.5) allow researchers to calculate the point and interval estimates
for the average probability of user satisfaction. However, this only tells us about average
behavior in the long run, not about what to actually expect for an arbitrary new query
and user. That is, in the example above it is expected that if we evaluate different samples
of queries Q1, 9o, ..., 9,, and compute the sample average for each of them, 95% of those
sample averages will be in the estimated [0.3092,0.3960] interval. However, given a new and
arbitrary query ¢, what is the range in which we can expect the probability of satisfaction
to be? It will of course be between 0 and 1!, but we are similarly interested in computing
intervals up to some confidence level. These are prediction intervals for new observations,
as opposed to confidence intervals for the average over these observations.

As an example, let us consider the distribution in Figure 4.3. On average, 95% of all
new observations lie in the red interval (prediction interval), and the sample mean of 95% of
independent samples lie in the blue interval (confidence interval on the mean). With larger
samples the empirical distribution (histogram) converges to the true distribution (red), and
the sampling distribution (blue) gets narrower (more precision) around the true mean pu
(more accuracy).

In the ideal case of knowing the distribution of P(Sat) we could compute a 100(1—2a)%

prediction interval as:

Qp(sat (@) @ p(gan (1 — @)

L Actually, Section 4.1 showed that 0 and 1 are never expected because of the inherent user disagreement.
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4.2. Distribution of the Probability of User Satisfaction

95% confidence and prediction intervals

—— True distribution
—— Sample distribution
—— Sampling distribution of the mean

Density

Figure 4.3: True distribution, histogram of a sample, and sampling distribution of the mean.

where () is the quantile function or inverse cumulative distribution function. That is, we
compute the interval covering the central 100(1 —2a)% of the probability mass function. We
can also compute 1-tailed intervals to describe the distribution. For example, the bottom
100a% of the observations have P(Sat) < Qp(san (1 — @).

4.2.1 Probability Distributions

But then again, we do not know the true distribution because we use a sample of queries,
so we have to estimate it. Four probability distributions are considered for this purpose.

Empirical Distribution

The easiest way to do so is to use the Empirical distribution. The empirical cumulative
distribution function is defined as:

ecdf (s) = L Z ]l(s/a\t()\q) < s)

no qeQ

that is, the fraction of queries for which the predicted probability of satisfaction is less than
or equal to s. The ecdf is a step function with increments of 1/ng at each of the observations
in the sample. This means that the resolution of the empirical quantile function is 1/ng,
and consequently it needs to compute estimates at discontinuities [Hyndman and Fan 1996].
For example, let (sat(\1), ..., sat(\, o)) be the sequence of observations sorted in ascending
order. Each of these observations sat();) corresponds to the 100(i — 1)/(ng — 1)-quantile,
but the quantile between two consecutive observations needs to be estimated because there
is no data to calculate it.

By the Strong Law of Large Numbers, the quantile function converges to the true F
function as ng — oo almost surely, and therefore eqf converges to ) too. But we do not
know how many queries are sufficient, or how sufficient is sufficient enough for that matter.
In addition, our objective in Chapter 6 is actually to reduce ng as a means to reduce general
evaluation cost, so we need to explore other ways to estimate F' that work reasonably well
for smaller test collections. At the very least, we need to get an idea of how good our

estimates are.
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Figure 4.4: Examples of distribution fits for RBP,@Q5 with Broad judgments for systems ME and
BK2 from MIREX 2007.

Normal Distribution

The second alternative considered is the familiar Normal distribution with parameters mean
and standard deviation: N (u, o). The cumulative distribution function is:

(s—n 42
= — e 2 dt
V 2w /700

The benefit of using the Normal distribution is that it can be easily estimated with mean

(55 pu,0)

1= fip(gqy and standard deviation o = sdp g, from equations (4.4) and (4.5). The
downside is that it is supported on the interval [—oco,400], while both A and P(Sat) are
supported on the [0, 1] interval. This means that according to this distribution there is some
probability, however small, that a new observation falls outside the [0, 1] interval. Therefore,
it is expected that ® overestimates close to 0 and underestimates close to 1.

Truncated Normal Distribution

One way to solve this problem is to use the Truncated Normal distribution A (u, o, a,b) in
the interval [a, b]. The cumulative distribution function is:

0 ifs<a

' (s;p,0,a,b) = ! . . ifs>b
CI)(*) _ (I)(i)

() ()

which effectively removes all density to the left of @ and to the right of b, and then normalizes

otherwise

by the density left between a and b; in our case a = 0 and b = 1. This distribution can
be easily estimated again with u = ﬂp(sat) and standard deviation o = SdP(Sat) from
equations (4.4) and (4.5).

Beta Distribution

Finally, the Beta distribution Beta(c, 8) with shape parameters « and f is also considered.
It is supported on the [0, 1] interval by definition. The cumulative distribution function is:
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When sd? < i(1 — 1), the shape parameters can be estimated by the method of moments:

(o)
- (5 1)

If not, they can be estimated by Maximum Likelihood. Unfortunately, the maximum like-

B(s;a, ) =

o)

B

lihood estimates for o and 8 do not have a closed form, though they can be solved by
numerical methods [Beckman and Tietjen 1978]. The drawback of using the Beta distribu-
tion is that in some cases it requires numerical methods to be estimated; on the other hand,
they are readily available in virtually any statistical software. Also, under certain combina-
tions of the shape parameters B(s;«, 8) can be extremely large for s — 0 and s — 1. The
upside is that it is much more versatile than the Normal distribution: while the latter is
restricted to its well-known bell shape, the Beta distribution can take several other shapes.

In summary, we compare the Normal, Truncated Normal, Beta and Empirical distributions,
defined by their cumulative distribution functions ®, ®', B and ecdf (see Figure 4.4 for a
graphical comparison). Instead of fitting the P(Sat) distributions, I fitted the A distribu-
tions. This is because the former is expected to be very similar across effectiveness measures
and relevance scales, and it is actually estimated from the latter distribution.

4.2.2 Goodness of Fit

Given a full query set Q, a sample Q; of size ng, queries is randomly selected. The sample
of A\g, scores is then computed, and all four cumulative distribution functions are fitted
to it. Ideally, we would measure the goodness of fit of each distribution by comparing
their cumulative distribution functions to the true F, function, but this is unfortunately
unknown. Instead, they are compared with the ecdf of the distribution of scores from the
disjoint subset of leftover queries; let these be Q; = Q — Q; with size ngy, = ng — no;
queries. That is, we are measuring the predictive power of the four distribution fits.

The question now is how to measure the goodness of fit between each of the estimated
F' functions and the true F (estimated themselves by ecdfg,). The often used Kolmogorov-
Smirnov D statistic measures the maximum absolute difference between the two functions
[Kolmogorov 1933]:

D =sup|F(\) — F()\)
A
By the Glivenko-Cantelli theorem, when F = ecdf then D converges to 0 almost surely as
ng, — 00, suggesting that for large collections the Empirical distribution will work better.
But this is not necessarily true for small samples, nor for the Normal, Truncated Normal
and Beta approximations. The D statistic is very simple in that it does not provide any
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Figure 4.5: Average & statistics of the fits provided by the Normal, Truncated Normal, Beta and
Empirical distributions for different query set sizes.

information about where this maximum distance occurs or about total distance between the
functions for that matter. A more informative measure is the Cramér-von Mises w? statistic
[Cramér 1928, von Mises 1931]:
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4.3. Probability of Success

which measures the total squared distance between F' and F. Because our distributions are
discrete, the following definition is used instead?:

@ =Y (FO) - E0y) (4.7)

4.2.3 Results

For all 53 systems in the MIREX 2007, 2009, 2010 and 2011 AMS editions, 200 random trials
of the experiment were run. This was repeated for each of the forty (A, £) combinations of
interest, and repeated for different query subset sizes ng, € {10, 20,30, 40,50}. Therefore
we have a grand total of 2,212,000 trials, each providing the &2 statistic for the four a
estimates.

Figure 4.5 plots the (log-scaled) & statistics for all combinations®. In general, it can be
seen that the empirical distribution converges more rapidly towards w = 0, and it provides
the best approximation across combinations. The Normal and Beta distributions perform
similarly, and the Truncated Normal is clearly outperformed in all cases. Fits are very
similar across effectiveness measures, but clear differences can be observed across relevance
scales. The Fine scale is better modeled, followed by the ny =5, n, = 4 and Broad scales.
That is, the more fine-grained the relevance scale the better its distribution is modeled. For
the binary scales, the best approximation is clearly provided by the Empirical distribution.

For ng, = 50, Table 4.4 shows that the Empirical distribution is clearly the best ap-
proximation except for the Fine relevance scale, where the Beta distribution takes over and
even the Normal distribution performs generally better. However, for small query sets such
as ng, = 20 things change considerably. Table 4.5 shows that the Empirical distribution
still provides the best approximation when there are few relevance levels, such as in the
limin = 20, £pin = 40 and Broad scales, but with more levels the continuous distributions
perform better: the Normal distribution provides the best approximation with n, = 4 and
ne = 5, while the Beta distribution again shows the best results with the Fine scale.

4.3 Probability of Success

Being able to accurately describe the distribution of effectiveness and map it onto a dis-
tribution of probability of satisfaction, allows us to go one step further in the analysis of
evaluation results. So far we can estimate the probability P(Sat) that a user will find a
system satisfactory for some query. But researchers may make the decision of considering
the system successful if this probability is larger than some threshold. For instance, one
may consider that if the majority of users is satisfied by the system, then we can consider it
successful. In this case, we may set the threshold P(Sat) > 0.5. The probability of success
can be estimated as:

P(Suce) = 1= Fpg,,(0.5) (4.8)

that is, the fraction of queries for which the estimated satisfaction is larger than 0.5.

2 We iterate through query set Q2 because it is always larger than or equal to the reduced sample Q1 used
to compute the F' approximations.
3 I show @ rather than &2 to maintain units. Relative comparisons are the same.
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Broad Fine

Normal Trunc. Beta Empir. Normal Trunc. Beta Empir.
CG,@5 0.701 0.8611 0.7694 0.5194 || 0.5071 0.5602 0.4808 0.526

CG.Q5 0.7279 0.986 0.7388 0.5215
DCG@Q5 | 0.6118 0.8108 0.685 0.5278 || 0.512 0.5671 0.4844 0.5262
DCG.Q5 | 0.6425 0.9061 0.6866 0.5262
Q@5 0.7076 1.0482 0.6847 0.5279 || 0.5304 0.6044 0.4928 0.5277
QR.Q5 0.6592 0.9757  0.686 0.5273
RBP@5 | 0.6097 0.8078 0.6814 0.5283 || 0.5106 0.5646 0.4843 0.5264
RBP.@Q5 | 0.6315 0.8916 0.6811 0.5266
GAPQ@5 0.6259 0.9052 0.6982 0.5269 || 0.5246 0.6182  0.4822 0.5273

Measure

ne =4 neg =295

Normal Trunc. Beta Empir. Normal Trunc. Beta Empir.
CG,@5 0.6254 0.7945 0.6686 0.5213 || 0.5873 0.7195 0.6083 0.5246
CG.Q5 0.6512 0.9658 0.6435 0.5234 || 0.6453 0.9896 0.5921 0.5286
DCGQ5 | 0.5743 0.7703 0.6153 0.5267 || 0.5494 0.7014  0.569 0.5291
DCG.@5 | 0.6015 0.9098 0.62 0.5259 || 0.6111 0.9476  0.5769 0.53

Q@5 0.653 0.953 0.629 0.5295 || 0.6052 0.8346  0.5891 0.5311
QeQ5 0.6146 0.9455 0.6255 0.5279 || 0.6173 0.9641  0.5808 0.5307
RBP@5 | 0.5712 0.7648 0.6147 0.5267 || 0.5464 0.6957  0.5685 0.5291
RBP.@5 | 0.5973 0.9021 0.6192 0.5259 || 0.6075 0.9396 0.5762 0.5297
GAPQ5 0.5969 0.8719 0.6225 0.5276 || 0.5706 0.7905 0.5724 0.5291

Measure

M emin =20 gmin =40

easure . .
Normal Trunc. Beta Empir. Normal Trunc. Beta Empir.

pas 1.386 0.7657 0.5964 0.3683 || 1.0539 1.0551  0.8957 0.4739

APQ@5 1.2939 0.7727 0.4512 0.3596 || 0.9349 1.1075  0.7677 0.4681

DCG@5 | 1.3777 0.9091 0.4543 0.3605 || 0.9926 1.0948 0.7644  0.4638
RBP@5 | 1.3704 0.8873  0.4507 0.3607 || 0.9863 1.0784 0.7686  0.4701

Table 4.4: Average w statistics of the fits provided by the Normal, Truncated Normal, Beta and
Empirical distributions for ng, = 50. Best per measure in bold.

Let us consider an example with systems ANO and GT from MIREX 2009. Fig-
ure 4.6 (top) shows their distributions of DCG.@5 scores with ny = 5. The average
effectiveness is nearly the same in both systems: E[Aano] = 0.3854 and E[Agt] = 0.3875.
According to the mapping in Table 4.3, the expected probabilities of user satisfaction as per
(4.4) are also very similar: E[P(Sat)ANo} = 0.5343 and E{p(Sat)GT] = 0.5332. However,

the bottom histograms show that the distributions of P(Sat) are quite different, and the
GT system does indeed have a fatter left tail. As per (4.8), the probabilities of success are
P(Succ)ANo = 0.62 and P(Succ)GT = 0.55. This is again an example of two systems whose
probability of satisfaction is larger than it was in principle guessed (about 15% more). But
in this case, under the criterion of success, it is shown that one of the systems is about 7%
more successful than the other. That is, comparing the systems from a success criterion
directly contradicts our conclusions based solely on mean effectiveness.
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Broad Fine
Normal Trunc. Beta Empir. Normal Trunc. Beta Empir.
CG,@5 0.9096 1.0872 1.0316 0.8302 | 0.7098 0.7523 0.7057 0.8457
CG.Q5 0.9335 1.2225 0.9983 0.8344
DCG;@Q5 | 0.8208 1.0406 0.9462 0.833 0.7114 0.7559 0.7062 0.8418
DCG.Q5 | 0.8421 1.1315 0.9488 0.8379
Q@5 0.9373 1.3292  0.9584 0.8403 | 0.729 0.7952  0.7127 0.8398
QR.Q5 0.875 1.2323  0.9544 0.833
RBP@5 | 0.8237 1.0399 0.9494 0.8407 0.711 0.7543 0.707 0.8422
RBP.@5 | 0.8395 1.123 0.9483 0.8364
GAPQ@5 0.8333 1.14 0.9665 0.8369 0.7227 0.8078 0.704 0.8423

Measure

Measure ne =4 ne =5
Normal Trunc. Beta Empir. Normal Trunc. Beta Empir.
CG,@5 0.8261 1.0107 0.9179 0.8409 0.7875 0.925 0.8513 0.8463
CG.Q5 0.8496 1.1974 0.8973 0.8428 || 0.8476 1.226 0.8447 0.8496
DCG,@5 | 0.7773 0.9892 0.8704 0.8416 0.7522 0.9095 0.8171 0.8474
DCG.Q@Q5 | 0.7966 1.1325 0.879 0.8406 0.8114 1.1776 0.8338 0.8471
Q@5 0.8669 1.2081 0.8863 0.8438 || 0.8181 1.0721 0.8409 0.8509
Q.Q5 0.8159 1.181 0.8845 0.8429 0.8213 1.1999 0.8395 0.8478
RBP@5 | 0.7751 0.9836 0.8704 0.8426 0.75 0.9039 0.8171 0.8484
RBP.@Q5 | 0.7936 1.1247 0.8786 0.8411 0.8081 1.1688 0.8329 0.8476
GAPQ5 0.7993 1.1001 0.8786 0.8427 0.7743 1.0067 0.8228 0.8489

M emin =20 gmin =40

easure . .
Normal Trunc. Beta Empir. Normal Trunc. Beta Empir.

pas 1.7547 1.0001 0.7669 0.5754 || 1.3241 1.3235 1.1445 0.738

APQ@5 1.6545 0.9918 0.6199 0.5638 || 1.215 1.3903 1.0474 0.7496

DCG@Q5 | 1.7616 1.1631 0.6217 0.5621 || 1.2878 1.3889  1.0352 0.7441
RBP@5 | 1.7574 1.1223  0.6266 0.5616 || 1.2803 1.3669  1.0382 0.7423

Table 4.5: Average w statistics of the fits provided by the Normal, Truncated Normal, Beta and
Empirical distributions for ng, = 20. Best per measure in bold.

4.4 Discussion

In Chapter 3 I anticipated that a (A, £) combination for which the sat function does not track
the P(Sat) = A function does not necessarily mean it is a bad predictor of user satisfaction;
it just means that it is not as intuitive and immediate as it might seem. Simple polynomial
models were fitted to estimate these sat functions for several combinations of effectiveness
measure and relevance scale. In terms of measures, the A, formulations with exponential
gains were again outperformed by the A; versions with linear gain; estimation errors were
slightly lower. Although fits were generally good (mean squared residuals of about 0.02),
rank-based measures behaved better than the set-based C'G;@5; especially DCG;@Q5, ;@5
and RBP,@5. Within the binary measures, PQ5 was clearly better fitted than AP@5. In
terms of scales, the Fine scale was again the best one, followed by the ny =5 and n, =4
artificial graded scales and the Broad scale; that is, the more relevance levels the better the
fit. The artificial binary scales performed worse in general. This suggests the use of the
Fine scale alone to gather relevance judgments because it is the one that performs the best
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Figure 4.6: Distributions of DCG.@5 scores with nz =5 (top) and corresponding distributions of
P(Sat) (bottom) for systems ANO and GT in MIREX 2009.

and, in any case, all other scales may be reproduced from the Fine relevance scores. If we
decided to just use the Fine scale, the best measure would be RBP,@5.

In order to better estimate the distribution of effectiveness of a system based on the sam-
ple of queries in a test collection, several probability distributions were compared. Results
suggested that the Empirical distribution produces the best fit in virtually all (A, £) cases,
provided that the query sample is sufficiently large. For small collections with ng < 30
queries, the Beta and Normal distributions provide better fits than the Empirical distribu-
tion, probably because the resolution of the latter is just too low with that few data points.
In terms of measures, the A; variants outperformed the A, variants again. The overall best
measures were again DC'G;@Q5 and RBP