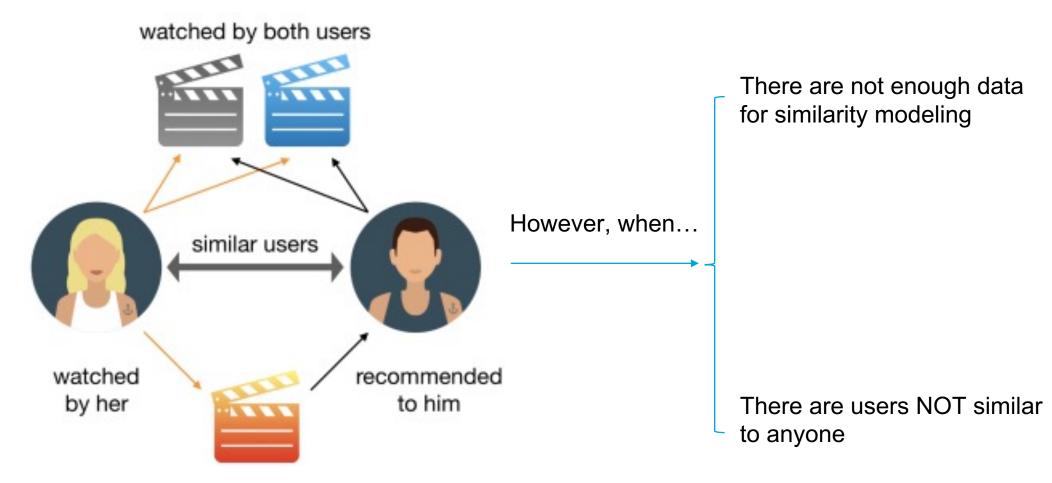
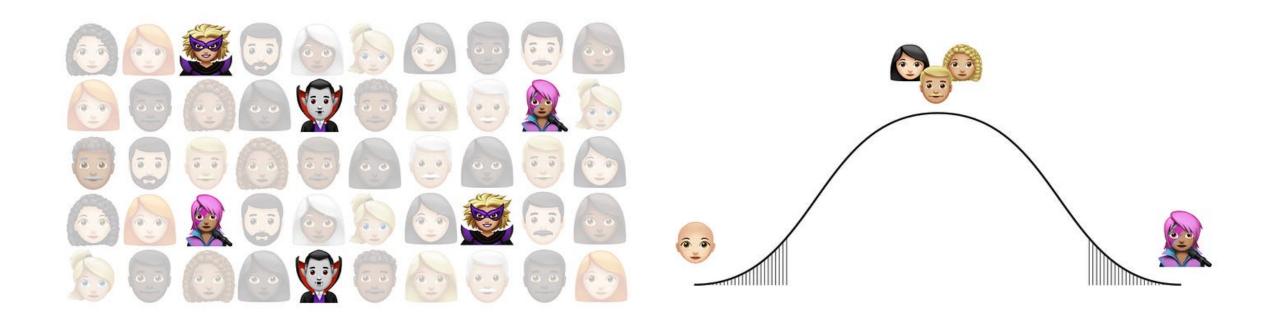

Mitigating Mainstream Bias in Recommendation via Cost-sensitive Learning

Roger Zhe Li, Julián Urbano, Alan Hanjalic July 23, 2023 @ ICTIR

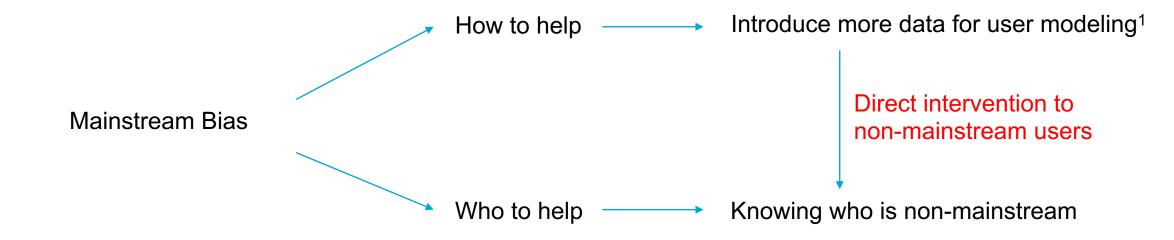


Collaborative Filtering & Similarity

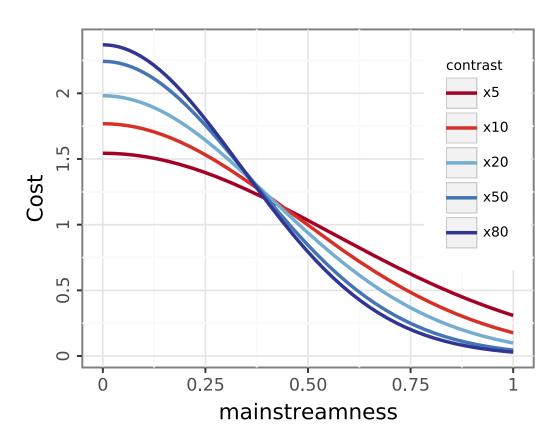


Collaborative Filtering & Similarity

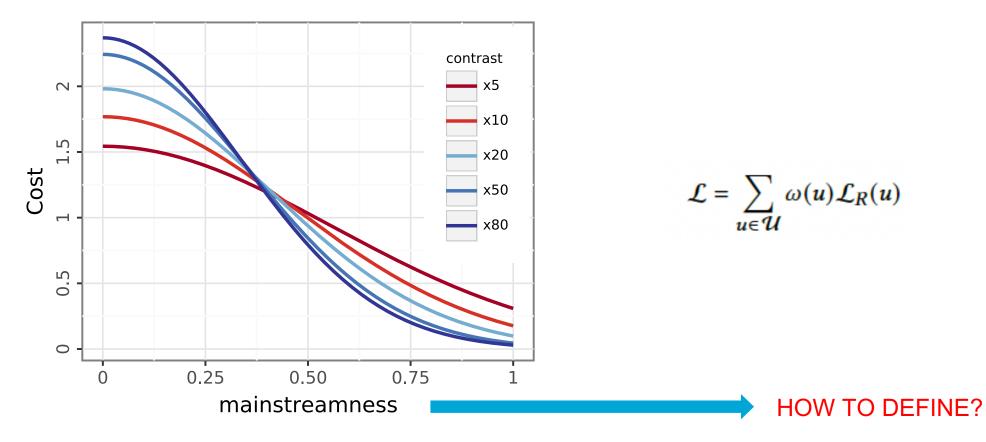
Mainstream Bias in Collaborative Filtering



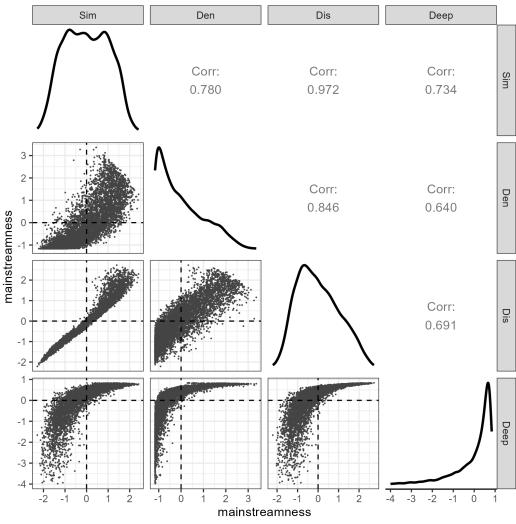
Mainstream Bias Mitigation



Pathways on Mainstream Bias Mitigation


Intuition on Direct Intervention: Cost-sensitive Importance

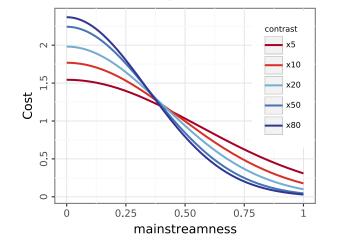
$$\mathcal{L} = \sum_{u \in \mathcal{U}} \omega(u) \mathcal{L}_R(u)$$



Intuition on Direct Intervention: Cost-sensitive Importance

Option 1: Explicit Measure/Quantify Mainstreamness

- Multiple different definitions;
- Inconsistency of user mainstreamness identification;
- Should the measurement of mainstreamness be model-agnostic?

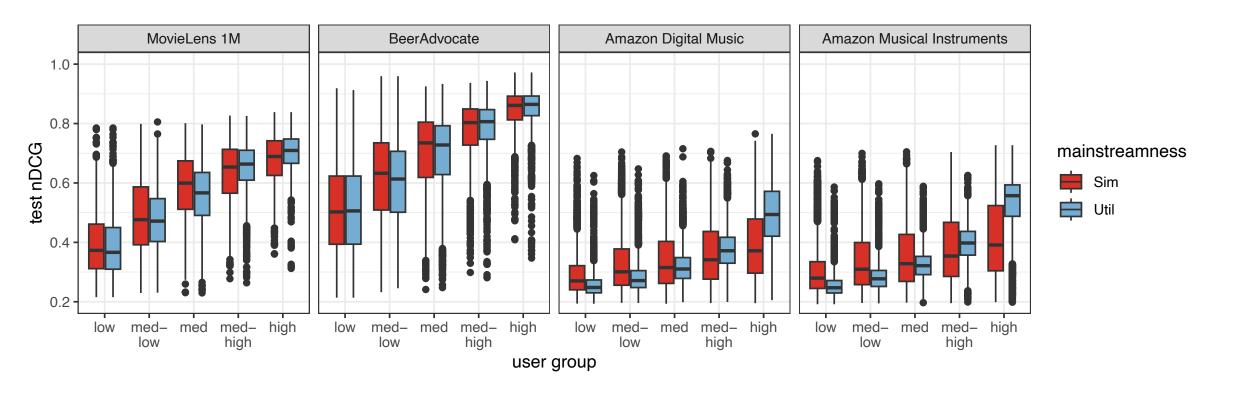


Option 2: Get a Proxy of Mainstreamness

 Expected outcome of mainstream bias: non-mainstream users suffer lower recommendation accuracy;

 Bias is intrinsic, but pronounced by the model. Empirical Cumulative Distribution Function $\omega(u) = \operatorname{cost}(\operatorname{ecdf}_{\mathcal{U}}(m_u))$ Recommendation accuracy

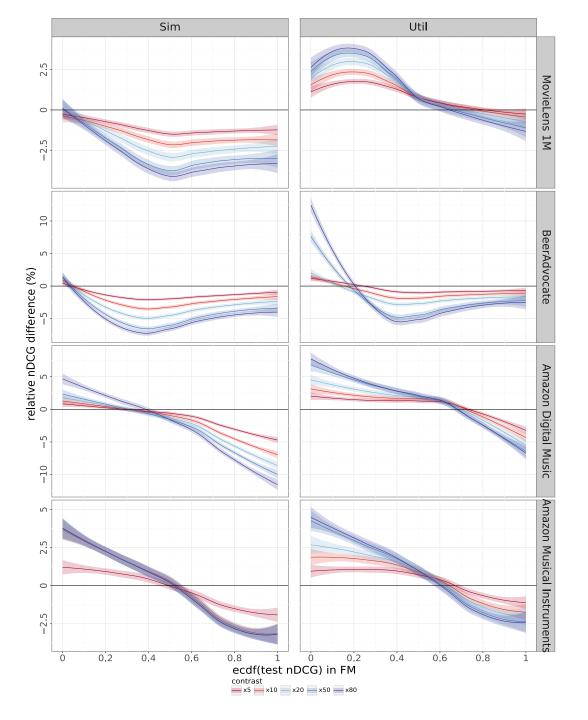
Experiments & Results


Datasets & Baselines

Dataset	#users	#items	#ratings	Density
MovieLens 1M [6]	6,040	3,609	562,957	2.583%
BeerAdvocate [13]	8,821	43,663	780,752	0.203%
Amazon Digital Music [15]	14,057	379,171	619,673	0.011%
Amazon Musical Instruments [15]	15,270	585,766	862,798	0.010%

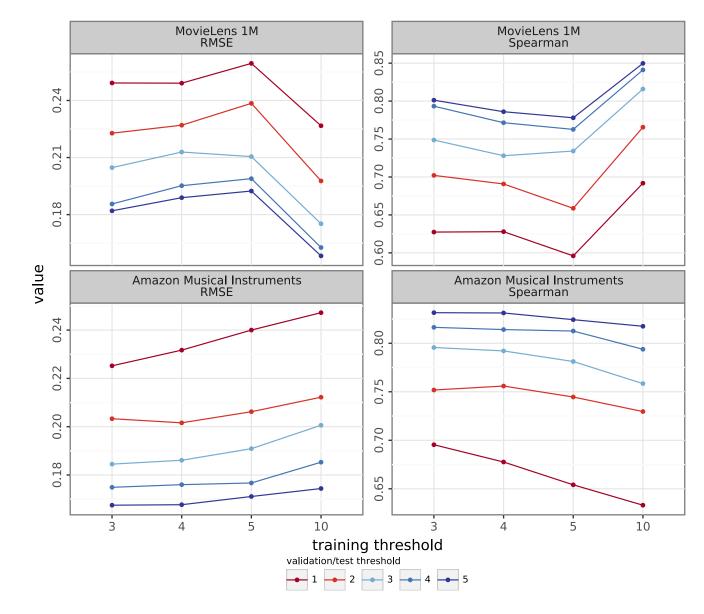
- Binarization: all ratings are regarded relevant;
- FM as the model to get m_u;
- nDCG as the metric to measure m_u;
- Always with at least 5 items per user for train/val/test. Datasets are evenly split;
- Baselines: FM and one of the four model-agnostic strategies (Sim);
- Measure the recommendation performance in 5 buckets, as per the Sim or nDCG (Util) scores on vanilla FM models. Lowest nDCG scores are interpreted as least mainstream, and higher nDCG scores mean more mainstream.

Effectiveness of Accuracy as Mainstreamness Proxy


Effect of Bias Mitigation: Split by User Accuracy (Util)

	MovieLens 1M						BeerAdvocate							Amazon Musical Instruments										
			med-	.150	med-				med-	SV.	med-		4-10-52		med-		med-	Wales I			med-		med-	
	Overall	low	low	med	high	high	Overall	low	low	med	high	high	Overall	low	low	med	high	high	Overall	low	low	med	high	high
FM	.5531	.3284	.4621	.5753	.6613	.7388	.6887	.4144	.6051	.7301	.8132	.8809	.3456	.2324	.2695	.3145	.3828	.5289	.3606	.2348	.2772	.3276	.4085	.5552
x5	.5465	-0.36	-0.89	-1.62	-1.3	-1.33	.6792	-0.52	-1.72	-1.83	-1.44	-1.13	.3395	+0.65	+0.05	-0.61	-1.8	-4.45	.3581	+1.61	+0.77	-0.09	-1.06	-2.5
x10	.5437	-0.47	-1.32	-2.23	-1.87	-1.94	.6734	-0.81	-2.87	-2.94	-2.27	-1.8	.3368	+0.99	+0.1	-1	-2.67	-6.27	.3577	+3.29	+1.44	+0.08	-1.68	-3.54
.E x20	.541	-0.53	-1.76	-2.85	-2.41	-2.51	.6666	-1.35	-4.23	-4.13	-3.22	-2.56	.3347	+1.31	+0.09	-1.3	-3.46	-7.69	.3576	+3.33	+1.44	+0.04	-1.72	-3.58
x50	.5376	-0.67	-2.28	-3.64	-3.06	-3.26	.6588	-2.01	-5.65	-5.56	-4.29	-3.54	.3328	+1.63	+0.07	-1.6	-4.13	-8.92	.3576	+3.37	+1.45	+0.03	-1.75	-3.6
x80	.5359	-0.67	-2.55	-4.06	-3.39	-3.59	.6548	-2.55	-6.39	-6.17	-4.84	-4.08	.3316	+3.66	+0.9	-1.78	-5.07	-10.62	.3576	+3.39	+1.45	+0.02	-1.77	-3.61
x5	.5567	+1.67	+1.81	+0.63	+0.16	-0.13	.6846	+0.63	-0.41	-0.94	-0.83	-0.77	.3454	+1.59	+1.43	+1.2	+0.4	-2.58	.3607	+1.1	+0.96	+0.62	-0.04	-1.19
x10	.5574	+2.38	+2.34	+0.7	+0.11	-0.27	.6807	+0.44	-1.19	-1.66	-1.39	-1.27	.3453	+2.54	+2.09	+1.53	+0.18	-3.5	.3607	+2	+1.52	+0.78	-0.32	-1.8
王 x20	.5579	+3.05	+2.87	+0.73	0	-0.48	.6762	+0.54	-2.11	-2.67	-2.09	-1.74	.3454	+3.59	+2.78	+1.64	+0.11	-4.25	.3607	+2.63	+1.93	+0.8	-0.53	-2.08
x50	.5579	+3.62	+3.31	+0.68	-0.21	-0.84	.6722	+2	-3.09	-3.86	-2.89	-2.32	.3458	+4.84	+3.67	+1.92	-0.11	-4.9	.3608	+3.94	+2.48	+0.85	-0.83	-2.66
x80	.5577	+3.89	+3.47	+0.63	-0.32	-1.05	.6715	+2.98	-3.2	-4.25	-3.14	-2.54	.346	+5.45	+4	+2.02	-0.18	-5.15	.3608	+4.48	+2.64	+0.88	-0.97	-2.86

Effect of Bias Mitigation: Split by User Accuracy (Util)



Discussion: Are the Results on the Individual User Level Reliable?

Data for producing reliable results on the indivisual user level

- Enough items for each user to be well trained;
- Enough items for validation/evaluation;
- Achieve higher user coverage.

Conclusions

- Direct intervention by focusing more on non-mainstream users can help mitigate mainstream bias;
- User recommendation accuracy on a traditional recommendation model is an implicit but effective proxy of mainstreamness;
- The reliable results on the research of individual user performance are subject to sufficient data for training/validation/testing.

Code & Data: https://github.com/roger-zhe-li/ictir23-cost-sensitive

