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Collaborative Filtering & Similarity

2https://vitalflux.com/recommender-systems-in-machine-learning-examples/



Collaborative Filtering & Similarity

3https://vitalflux.com/recommender-systems-in-machine-learning-examples/

However, when…

There are not enough data 
for similarity modeling

There are users NOT similar 
to anyone



Mainstream Bias in Collaborative Filtering

4
https://uxdesign.cc/the-fundamentals-of-engaging-with-extreme-users-45e0033e6b2



Mainstream Bias Mitigation



Pathways on Mainstream Bias Mitigation
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1 Leave No User Behind: Towards Improving the Utility of Recommender Systems for Non-mainstream Users

Mainstream Bias

How to help

Who to help Knowing who is non-mainstream

Introduce more data for user modeling1

Direct intervention to
non-mainstream users
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Intuition on Direct Intervention: Cost-sensitive Importance
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Intuition on Direct Intervention: Cost-sensitive Importance

HOW TO DEFINE?
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Option 1: Explicit Measure/Quantify Mainstreamness

Zhu, Ziwei, and James Caverlee. “Fighting mainstream bias in recommender systems via local fine tuning.” In WSDM 2022.

• Multiple different definitions;

• Inconsistency of user mainstreamness
identification;

• Should the measurement of
mainstreamness be model-agnostic?
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Option 2: Get a Proxy of Mainstreamness

• Expected outcome of mainstream
bias: non-mainstream users suffer
lower recommendation accuracy;

• Bias is intrinsic, but pronounced by
the model.

Recommendation accuracy

Empirical Cumulative Distribution Function



Experiments & Results



12

Datasets & Baselines

• Binarization: all ratings are regarded relevant;
• FM as the model to get mu;
• nDCG as the metric to measure mu;
• Always with at least 5 items per user for train/val/test. Datasets are evenly split;
• Baselines: FM and one of the four model-agnostic strategies (Sim);
• Measure the recommendation performance in 5 buckets, as per the Sim or nDCG

(Util) scores on vanilla FM models. Lowest nDCG scores are interpreted as least
mainstream, and higher nDCG scores mean more mainstream.
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Effectiveness of Accuracy as Mainstreamness Proxy
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Effect of Bias Mitigation: Split by User Accuracy (Util)



Effect of Bias Mitigation:
Split by User Accuracy
(Util)
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Discussion: Are the Results on the
Individual User Level Reliable?



Data for producing
reliable results on the
indivisual user level
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• Enough items for each user to be
well trained;

• Enough items for
validation/evaluation;

• Achieve higher user coverage.



Conclusions

• Direct intervention by focusing more on non-mainstream users can
help mitigate mainstream bias;

• User recommendation accuracy on a traditional recommendation
model is an implicit but effective proxy of mainstreamness;

• The reliable results on the research of individual user performance
are subject to sufficient data for training/validation/testing.

Code & Data: https://github.com/roger-zhe-li/ictir23-cost-sensitive


