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ABSTRACT

Statistical significance tests are the main tool that IR practitioners

use to determine the reliability of their experimental evaluation

results. The question of which test behaves best with IR evaluation

data has been around for decades, and has seen all kinds of results

and recommendations. Definitive answer to this question has re-

cently been attempted via stochastic simulation of IR evaluation

data, allowing researchers to compute actual Type I error rates

because they can control the null hypothesis. One such research

line simulates metric scores for a fixed set of systems on random

topics, and concluded that the t-test behaves the best. Another such
line simulates retrieval runs by random systems on a fixed set of

topics, and concluded that the Wilcoxon test behaves the best. In-

terestingly, two recent surveys of the IR literature have shown that

the community has a clear preference precisely for these two tests,

so further investigation is critical to understand why the above

simulation studies reach opposite conclusions. It has been recently

postulated that a reason for the disagreement is the distributions

of metric scores used by one of these simulation methods. In this

paper we investigate this issue and extend the argument to another

key aspect of the simulation, namely the dependence between sys-

tems. Following a principled approach, we analyze the robustness

of statistical tests to different factors, thus identifying under what

conditions they behave well or not with respect to the Type I error

rate. Our results suggest that differences between the Wilcoxon

and t-test may be explained by the skewness of score differences.
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1 INTRODUCTION

The Information Retrieval (IR) practice heavily relies nowadays on

statistical significance tests to report the reliability of test collection

based experimental results [2, 15]. However, IR evaluation data do

not comply with typical assumptions made by these tests, such as

the assumption of normally distributed scores behind the t-test. The
natural question of which tests should be used is one that triggered

early discussion [9, 17, 20, 27]. The follow-up question of which

tests actually perform best with IR data is one for which several

experimental works have been published mostly in the past two

decades [6, 16, 17, 20, 21, 25, 28–30], with highly conflicting recom-

mendations. Two recent and parallel lines of work have pointed

to limitations in how these experimental works approached the

problem [13, 14, 24, 26]. The gist is mainly in that the data they

use are limited by the dozens of systems and topics in the TREC

archive, with no control over the null hypothesis. As an alternative,

they proposed stochastic simulation frameworks that allow us to

generate IR-like data and study how well statistical tests behave by

computing actual Type I and Type II errors.

On the one hand, Urbano [23] and Urbano and Nagler [26] de-

veloped a simulation framework that builds a model for the joint

distribution of effectiveness scores of a set of systems. The model

contains two parts: the marginal distribution of each system (ie.

their distribution regardless of other systems), and a copula [12]

to model the dependence among systems (ie. how they tend to

behave for the same topic). Given this model, they may simulate

effectiveness scores on new random1 topics for the same systems.

In a later work, Urbano et al. [24] used this simulation framework

to compute Type I error rates for a range of tests and under different

conditions. Besides other results, they find that i) the t-test and
permutation test maintain error rates at the α level remarkably

well; ii) the bootstrap test is biased towards small p-values, but
large sample sizes tend to correct the bias; and iii) both the Sign

and Wilcoxon tests have high error rates, but large sample sizes

actually tend to increase the bias.

On the other hand, Parapar et al. [14] developed a simulation

framework that builds a model for the retrieval score distribu-

tion [10] of a system and a topic. The model consists in a mixture

of distributions for relevant and non-relevant documents. Given

this model, they simulate new random runs2 for the same topic. In

a follow-up work, Parapar et al. [13] simulate runs from a logistic

model that captures the relationship between document ranks and

relevance. Besides other results, they find that i) the Wilcoxon and

permutation tests maintain error rates at the α level remarkably

1Note that the term “random” here means “stochastic”, that is, generated from a
probabilistic model. It does not mean that it is uninformative or uniformly random.
2Similarly, the term “random” refers here to a run generated from a stochastic model.
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well; ii) the t-test and Sign test have a medium bias towards high

p-values, and iii) the bootstrap test has a very high bias towards

high p-values.
It is surprising that these two works, based on the same princi-

ple of simulating data with control of the null hypothesis, reach

shockingly opposite conclusions, specially with regard to the t-test
and Wilcoxon test. These tests turn out to be the most popular

in the IR literature [2, 15], so further investigation is critical to

understand why these simulation studies reach opposite conclu-

sions. Parapar et al. [13] postulate that the results by Urbano et al.

[24] are caused by “a fundamental limitation of [their] approach”,

namely “if simulated models are fitted from pre-selected classes of

distributions, the comparison is biased towards significance tests

that follow certain parametric assumptions [...] such pre-selection

of certain parametric distributions is an artifact of the simulation”.

Paraphrasing, if data are simulated from a model that aligns with

one of the tests, of course that test will behave better than others.

Unfortunately, this point was not analyzed or verified, so in this

paper we explore the issue and extend the argument also to the

copula families, that is, perhaps some of them benefit some tests

more than others. Shedding light on this matter is important not

only to find out if one simulation method is more appropriate than

the other, but also to gain more understanding regarding how dif-

ferent factors such as score distributions and system dependencies

may affect the behavior of significance tests when used with real

IR evaluation data.

In this paper we therefore present an exploratory but principled

investigation of the data generated by Urbano et al. with regard to

Type I errors, and in particular study the behavior of tests across

distribution families, copula families, and sample set sizes. Our

results show that differences across tests do not appear to be caused

by the metric score distribution families as suggested by Parapar

et al., but rather by the different degrees of skewness induced by

the dependence between system.

2 DATA

Figure 1 shows how Urbano et al. [24] simulated effectiveness data

under the null hypothesis to compute Type I error rates. To fit the

model (red flow), a baseline system B and an experimental system E
are randomly chosen and their marginal distributions are estimated

(ie. the distribution of metric scores, regardless of other systems).

From these distributions, the so-called pseudo-observationsU and

V are computed and used to estimate a copula that models their

dependence (ie. how they tend to behave for the same topic). To sim-

ulate scores on a random topic (blue flow), new pseudo-observations

U ∗ andV ∗ are generated from the copula, and they are transformed

into effectiveness scores B∗ and E∗. Because the same distribution

FB is used in the last step, both systems have the same expected

value and the null hypothesis holds; a test yielding p ≤ α is thus

making a Type I error.

For the margins, they considered 3 parametric distributions

(Truncated Normal, Beta and Beta-Binomial) and 6 non-parametric

through Kernel Smoothing and various kernels (Truncated Normal,

Beta, and Discrete with 4 degrees of smoothness) [24, 26], and chose

in each case the distribution that best described the data according

to the Akaike Information Criterion (AIC). For the dependence, they

Direction p-value=Test(U*,V*)

B*=FB-1(U*)E*=FB-1(V*) B

U=FB(B)U*

V*
V=

F E
(E
)

E

margin fB

margin fE copula

fit
simulate

Figure 1: Stochastic simulation model used by Urbano et al.

[24] (figure adapted from theirs). Note that the model is fit-

ted (red) with two different margins, but data are simulated

(blue) with only one, so that the null hypothesis holds.

considered 11 parametric copulas (Gaussian, Student t , Clayton,
Gumbel, Frank, Joe, BB1, BB6, BB7, BB8 and Tawn) plus their 3

rotations [24, 26], and similarly chose the best fit based on the AIC.

Urbano et al. created just over 50K such stochastic models from

the 363 TREC 5–8 Ad hoc runs and the 228 TREC 2010–2013 Web

runs, across five effectiveness metrics (AP , nDCG@20, ERR@20,

P@10 and RR), making 25M simulations across three topic set sizes

(25, 50 and 100). They studied the paired t-test, Wilcoxon Signed

Rank, Sign, bootstrap-shift and Permutation tests, leading to a total

of 125M 2-tailed p-values. These are the data we analyze in this

paper, which are publicly available from the Github repository

linked from their paper3.

3 ANALYSIS

The data described in Section 2 allow us to study how different

factors affect the Type I error rate of the tests, namely the effective-

ness metric and the score distributions it produces (ie. the margins),

the dependence between systems (ie. the copula), and the sample

size. Figure 2 shows that some distribution families and copula fam-

ilies are chosen more often than others4. This indicates that some

models describe actual IR data better than others, so in principle

it seems like a good idea to consider many different families and

choose the best one, as Urbano et al. [24] did. In addition, the diver-

sity of choices indicates that we should actually consider as many

families as possible. Still, as argued by Parapar et al. [13], maybe

some families favor some significance tests more than others, so

when using simulated data to study their behavior the comparison

might not be fair.

3https://github.com/julian-urbano/sigir2019-statistical/
4We do not report nDCG@20 and ERR@20 because results are very similar to those
ofAP . Likewise, we will not report on the permutation and Sign tests because they are
very similar to the t -test andWilcoxon test, respectively. Full results, alongwith all data
and code, are available online at https://github.com/julian-urbano/ictir2021-metric
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Figure 2: Distribution of copula and marginal distribution families used in the simulation models.
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Figure 3: Estimated marginal Type I error rates for the copula, margin and sample size factors, along with 95% BC bootstrap

confidence intervals. The vertical dashed lines mark the ideal rate α = 0.05. Note that, for the same metric, the x-axes have
the same scale; panels have different widths because they cover different ranges.

To answer this question, and contrary to Urbano et al. [24], we

do not report on the observed error rates across each of the factors.

Figure 2 showed that the data are highly imbalanced, so simply

reporting the observed rates would lead to confounded effects [11].

For example, the Wilcoxon test had an observed error rate of 0.074

for AP and the Truncated Normal margin. However, as many as

30% of those cases came from a Tawn copula, which means that the

0.074 error rate may largely be due to the combination of Truncated

Normal margin and Tawn copula.

Descriptive results would therefore be biased towards pop-

ular models, so instead we look at Estimated Marginal Means

(EMM) [19]. In particular, for each effectiveness metric we calculate

the observed Type I error rate for every combination of sample size,

margin family and copula family. We then fit a linear model for the

error rate including these three factors and their two-factor inter-

actions. From this model, we compute the EMMs for each factor,

which estimate the error rate for each case while controlling for

the effect of the other factors, that is, it removes confounding. For

instance, the EMM error rate for the Truncated Normal margin is

0.058, while it is 0.152 for the Tawn copula. Such an analysis would

therefore suggests that the cause of the high error rate in the above

example (ie. the observed 0.074) does not seem to be the margin,

but the copula. To further reduce noise in our analysis, we compute

95% bias-corrected bootstrap intervals [7] around the EMMs, based

on 1, 000 bootstrap samples.
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Figure 4: Illustration of how copula asymmetricity affects the skewness ofmetric score differences. 1) Distribution ofAP scores

of the TREC 7 system iit98au2. 2.A) Copula fitted for the dependence with system LIAClass; the best fit is a Clayton copula

(symmetric). 2.B) Distribution of per-topicAP differences using the copula in 2.A with the margin in 1; the distribution is not

skewed. 3.A) Same as 2.A but with system LNaTitDesc7; the best fit is a Tawn copula (asymmetric). 3.B) Same as 2.A but with

the copula in 3.A; the distribution is skewed. By construction, both 2.B and 3.B comply with the null hypothesis because both

simulated systems have the same marginal distribution in 1.

Figure 3 shows the Estimated Marginal Mean Type I error rates

for each of the factors, where the dashed vertical lines mark the

ideal error rate at the α = 0.05 level. If we first turn our attention

to the effect of the topic set size n, we see that the t-test is indeed
robust, the bootstrap test tends to correct the bias with higher

sample sizes, but the Wilcoxon test tends to make the bias even

worse. As suggested by Urbano et al. [24], this makes sense because

the bootstrap test is able to better estimate the sampling distribution

of the mean if it has more data, and the Wilcoxon test may be too

liberal with high sample sizes if its assumptions are not met. This

observation agrees with the studies by Smucker et al. [20, 21] and

Urbano et al. [25], who compared the tests with real IR data from

the Ad hoc and Robust TREC tracks, and similarly found that the

bootstrap test was the one producing smallest p-values. Regarding
marginal distributions, we see that both the bootstrap andWilcoxon

tests have a consistent bias for all distribution families, while the

t-test is robust and only displays a minor and non-significant bias

for the Beta-Kernel Smoothing case. Interestingly, the effect of

the margins on the Wilcoxon test is not consistent across metrics.

Looking at the error rates across copula families, we see that the

bootstrap test is still consistently biased. The Wilcoxon test shows

mild bias in P@10 and RR, but it is robust for AP except for a very

clear bias with the Tawn copula. The t-test is very robust to changes
in the copula, again with a minor bias for the Tawn copula.

Generally speaking, Figure 3 points in the direction of the Tawn

copula family, as it seems to yield higher error rates for all metrics

and tests, specially the Wilcoxon test with AP scores. A close look

at its definition [22], reveals that this copula is asymmetric, while

all the other 10 copula families used are symmetric (an example of

both can be seen in Figure 4 2.A and 2.B). In their experiment, Ur-

bano et al. [24] fitted all 11 copulas and their rotations to every pair

of systems, and simply selected the one with lowest AIC score. The

Tawn copula was selected 22% of the times, followed by the Joe and

Gumbel copulas 16% of the times each (see Figure 2). As Figure 4

illustrates, symmetric copulas are likely to yield symmetric distri-

butions of per-topic score differences, while asymmetric copulas

may yield distributions with different degrees of skewness. This

is critical, because those are the distributions fed to the statistical

Figure 5: Skewness of the score difference distributions

in TREC and simulated. Only the Tawn copula allows for

skewed distributions.

tests (recall that these are paired tests). The side-effect of choosing

the copula model based on AIC alone, is that whatever skewness

there was in the TREC data is removed by the model if the selected

copula is other than the Tawn copula. Conversely, a Tawn copula

may also enforce the skewness observed in the TREC data even

when the underlying process was not skewed (ie. it was just an

artifact of the topic selection). Figure 5 shows that such skewness

is indeed present in actual IR data, but to different degrees across

metrics.

To further analyze the effect of skewness alone, Figure 6 shows

the EMM error rates for different levels of skewness. As the plot

evidences, all tests are affected to some extent, but the Wilcoxon

test is clearly the least robust to skewed data. As a matter of fact,

that the score distributions are symmetric (ie. zero skewness) is one

of the assumptions of the test [5].5 One may immediately wonder

why the t-test is not affected that much, given that it assumes Nor-

mal distributions. We may link this to the Central Limit Theorem,

stating that the sampling distribution of the mean approaches a

Normal distribution as the sample size increases, regardless of the

distribution of the data. This means that, regardless of how skewed

5Technically, it is not. The Wilcoxon test is originally for differences in the median, but
it is often used as a non-parametric alternative to the t -test for differences in means,
thus adding the assumption of symmetricity (ie. mean and median are the same).
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Figure 6: Estimatedmarginal Type I error rates for the skewness factor, along with 95% BC bootstrap confidence intervals. The

vertical dashed lines mark the ideal rate α = 0.05. Note that, for the same metric, the x-axes have the same scale; panels have

different widths because they cover different ranges.

the data are, the sample mean converges to a distribution with zero

skewness. Specifically, the Berry–Esseen theorem [1, 8] determines

the rate of convergence via an upper bound on the Kolmogorov-

Smirnov distance, which is in fact proportional to the third absolute

moment E[|X |3], which is itself proportional to the skewness. In

short, the sampling distribution of the mean, which the t-test as-
sumes to be Student’s t (ie. symmetric), does converge to symmetric

as the sample size increases, at a rate inversely proportional to the

skewness of the score distribution.

4 DISCUSSION

Two parallel lines of research have recently used stochastic simula-

tion to compute actual Type I error rates of statistical significance

tests for Information Retrieval. Shockingly, they conclusively reach

opposite conclusions regarding the popular Wilcoxon and t-tests.
Parapar et al. [13] recently claimed that the experiments by Urbano

et al. [24] favored the t-test because they used parametric marginal

distributions to simulate data. In reality though, they also used

non-parametric distributions based on Kernel Smoothing, which

are arguably as free of assumptions as one can be, providing models

that adjust to the data better than parametric models should. Follow-

ing a similar logic, one could be tempted to argue that the t-test is
at disadvantage with such distributions. However, our results show

that it behaves equally well across all score distributions, while the

Wilcoxon test showed systematically high error rates across the

board. Thus, the claim by Parapar et al. seems unjustified because

the t-test does not appear to benefit from parametric distributions.

We extended their argument to the copula families, and our anal-

ysis points in the direction of the skewness of the bivariate joint

distribution (ie. the dependence between systems), and how it af-

fects the skewness of the per-topic score differences. The Wilcoxon

test assumes that score differences have zero skewness, which may

explain why it performed that poorly in [24]. In contrast, the t-test
is more robust to such skewness, which was similarly observed in

statistical studies given a moderately large sample size [3, 4, 18].

The difference is that the Wilcoxon test has the direct assumption

that the distribution of scores is symmetric, while the t-test as-
sumes that the (standardized) sample mean follows a Student’s t
distribution, which happens to be symmetric. The first assumption

is thus harder than the second one, where symmetricity is actually

a consequence of the assumption.

Unfortunately though, the experiment by Urbano et al. [24] sim-

ulated data that, in the majority of cases, came from zero-skew

models. One the one hand, it could be argued that they simply

chose the models that best described the TREC data. After all, the

real distribution could have zero skewness, and whatever skewness

is observed in the TREC data is just an artifact of the sampling of

topics. In any case, the purpose of the models is not to describe the

retrieval systems underlying the original TREC data, but to build a

realistic model of how a retrieval system behaves. Choosing models

based on AIC offers a trade-off between simple and parsimonious

models (usually chosen when optimizing the Bayesian Information

Criterion), and complex and overfitted models (usually chosen op-

timizing Log-Likelihood [26]. On the other hand though, it could

be argued that they should have fitted only asymmetric copulas

which, in most cases, would have had little skewness anyway.

In any case, our analysis shows that removing skewness actually

benefits the Wilcoxon test. Because most of the models fitted by Ur-

bano et al. were expected to have zero skewness, the test that had

the advantage was actually the Wilcoxon test! So all in all, while

our analysis points to a potential flaw in their experiment, it also

makes their case against the Wilcoxon test even stronger.

This paper is just a first attempt at clarifying the source of the

discrepancy. Further work should corroborate our findings in a con-

trolled setting, and explore all the factors at play in both simulation

approaches. Such work is important not only for the ultimate goal

of making sound recommendations as to what tests should be used

and when, but to further our understanding of the properties of IR

evaluation data and how they may affect our research conclusions.
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