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ABSTRACT
Direct optimization of IR metrics has often been adopted as an ap-
proach to devise and develop ranking-based recommender systems.
Most methods following this approach (e.g. TFMAP, CLiMF, Top-N-
Rank) aim at optimizing the same metric being used for evaluation,
under the assumption that this will lead to the best performance. A
number of studies of this practice bring this assumption, however,
into question. In this paper, we dig deeper into this issue in order to
learn more about the e�ects of the choice of the metric to optimize
on the performance of a ranking-based recommender system. We
present an extensive experimental study conducted on di�erent
datasets in both pairwise and listwise learning-to-rank (LTR) sce-
narios, to compare the relative merit of four popular IR metrics,
namely '', �% , =⇡⇠⌧ and '⌫% , when used for optimization and
assessment of recommender systems in various combinations. For
the� rst three, we follow the practice of loss function formulation
available in literature. For the fourth one, we propose novel loss
functions inspired by '⌫% for both the pairwise and listwise sce-
nario. Our results con�rm that the best performance is indeed not
necessarily achieved when optimizing the same metric being used
for evaluation. In fact, we� nd that '⌫%-inspired losses perform at
least as well as other metrics in a consistent way, and o�er clear
bene�ts in several cases. Interesting to see is that '⌫%-inspired
losses, while improving the recommendation performance for all
uses, may lead to an individual performance gain that is corre-
lated with the activity level of a user in interacting with items. The
more active the users, the more they bene�t. Overall, our results
challenge the assumption behind the current research practice of
optimizing and evaluating the same metric, and point to '⌫%-based
optimization instead as a promising alternative when learning to
rank in the recommendation context.
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1 INTRODUCTION
O�ine evaluation of ranking-based recommender systems gener-
ally relies on e�ectiveness metrics from Information Retrieval (IR).
These metrics quantify the quality of a ranked list of items in terms
of their relevance [44] and according to the particular evaluation
criteria they capture. Therefore, it has been seen as an intuitive and
logical choice to learn a ranking model for a recommender system
by directly optimizing the metric used for evaluation [26]. Di�erent
ranking approaches have been designed along this line, aiming at
achieving a better recommendation performance [25, 39–41].

Previous research shows, however, that optimizing the metric
used for evaluation is not necessarily the best approach. Di�erent
IR metrics re�ect di�erent aspects of retrieval performance [1, 21,
28, 36], and do so to di�erent extents. Although no metric covers
all evaluation criteria, there is evidence that some metrics are more
informative than others [3, 4, 49].This may enable them to, when
used for optimization, achieve the best performance in view of
a given evaluation metric other than itself, or even in view of
multiple target evaluation criteria. Empirical results show that the
advantage in informativeness can indeed be transferred into higher
e�ectiveness when these metrics are used for optimization. Results
on web search [12] and text retrieval [49] show that, when targeting
at less informative metrics such as %@10 and '', optimizing more
informative metrics, like �% or =⇡⇠⌧ , can perform even better
than optimizing the less informative metrics themselves.

The discussion above points to the possibility to achieve better
ranking performance according to the evaluation criterion captured
by metric - if we do not optimize for - , but for a more informative
metric. instead. This, however, is more likely to be successful when
the metrics - an . are highly correlated. From the perspective of
ranking e�ectiveness, correlation would typically arise between
metrics that share characteristics, such as top-weightedness and
localization. According to Mo�at [28], correlation in view of such
properties could tell something about the ability of the metrics
to reveal the same aspects of the system behavior, as opposed to
non-correlated metrics that reveal di�erent aspects of the system
behavior. Previous research on text retrieval and web search has
shown high level of correlation among many metrics, such as be-
tween =⇡⇠⌧ and�% , '' and�% , or %@: and�% [5, 16, 47]. When
targeting at maximizing one speci�c evaluation metric, one should
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therefore search among informative metrics correlated to the eval-
uation target to �nd the most e�ective optimization objective.

Motivated by the above, in this paper we revisit the choice of the
metric to optimize in a ranking-based recommendation scenario.
Our goal is to provide more insights into this optimization scenario,
broadening the possibilities to bene�t from such a metric choice,
compared to what is commonly reported in the literature.

Although several popular metrics like '', =⇡⇠⌧ and �% have
been applied to the task, '⌫% (Rank-Biased Precision) [31], another
important e�ectiveness metric widely used in traditional IR tasks,
has hardly been applied for training and/or testing recommendation
models. Nonetheless, '⌫% is an informative [2, 28, 29] and �exible
metric that incorporates a simple user model through a persistence
parameter. Since varying the value of the persistence parameter
makes '⌫% correlated with di�erent groups of metrics [30, 36],
'⌫% has the potential to optimize for di�erent metrics that re�ect
di�erent evaluation criteria [16, 31].

Following the spirit of existing metric optimization processes,
we propose novel objective functions inspired by '⌫% for both the
pairwise and listwise learning-to-rank (LTR) paradigms. In this
way, we enable '⌫% to join the other metrics and serve as both
the learning objective and evaluation target for our investigation.
Speci�cally for the listwise case, we will show that minimizing
the proposed '⌫%-based objective function provides an elegant
instrument to directly optimize for the ranking positions of the
relevant items. Furthermore, the proposed '⌫%-based listwise loss
function is independent of the persistence parameter ? , which
makes it possible to conduct '⌫%-based optimization using a single
uni�ed framework, regardless of the target persistence to evaluate.

Empirical results obtained on four real-world datasets point to
the following main insights:

(1) The assumption behind the practice to optimize and evaluate
ranking-based recommender systems using the same metric
does not necessarily lead to the best performance.

(2) '⌫%-inspired losses perform at least as well as other metrics
in a consistent way, and o�er clear bene�ts in several cases.
This makes '⌫% a promising alternative when learning to
rank in the recommendation context.

(3) '⌫%-based listwise optimization leads —relative to other
metrics— to a signi�cantly better ranking performance for
active users with more of the relevant interactions, compared
to less active users. However, this performance bias does not
come at the cost of reducing utility for inactive users. On the
contrary, the ranking performance improves for all users,
only to di�erent degrees.

The remainder of this paper is organized as follows. In Section 2,
we position our contribution in the context of the related previous
work. Section 3 describes the technical details of the models we
use for a direct optimization of IR metrics. Section 4 introduces the
design and protocols of our experiments, the results of which we
present and discuss in Section 5. Section 6 concludes the paper with
pointers to future work.

2 RELATEDWORK
Direct optimization of IR metrics is a logical way of building
ranking-based recommenders. Despite the fact that almost any

IR metric can be transformed into an objective function for op-
timization, the choice of metric to optimize for maximizing the
ranking e�ectiveness remains non-trivial. Intuitively, choosing to
optimize more informative metrics helps with achieving higher
ranking e�ectiveness. Several studies [3, 4, 49], inspired by Shan-
non [38] and Jaynes [20], have assessed the informativeness of IR
metrics by how well they constrain a maximum entropy distribu-
tion over the relevance of ranked items, in the sense that such
distribution accurately estimates the precision-recall curve or other
metric scores for the same items. The results indicate that more
complex metrics, such as =⇡⇠⌧ and�% , are more informative than
simpler metrics [47].

One way of achieving optimal ranking with respect to a given
metric is to deploy a pairwise LTR approach. The pairwise LTR par-
adigm considers relevant-irrelevant (positive-negative) item pairs,
and aims at maximizing the change in the considered IR metric
caused by a ranking position swap. This idea lays the foundation for
a batch of models, including LambdaRank [7], LambdaMart [6, 19]
and LambdaFM [50]. In particular, LambdaRank is widely used as
the underlying model in studies comparing the optimization of
di�erent metrics. LambdaRank-based results in [12, 49] show that
optimizing for informative metrics can lead to good performance,
not only when evaluating with the same metric, but also with oth-
ers. This insight invites to revisit pairwise learning recommender
systems by experimenting with other metrics to optimize, even
if they are not the evaluation target. Similarly, LambdaFM [50]
was deployed to assess e�ectiveness with respect to three metrics,
namely =⇡⇠⌧ , '' and �*⇠ , by optimizing for =⇡⇠⌧ . Optimal
performance was achieved with respect to =⇡⇠⌧ and ''.

Another way of achieving optimal ranking with respect to a
given metric is to deploy a listwise LTR approach. This approach
looks at the entire ranked list for optimization, and therefore bet-
ter resembles the concept of direct metric optimization than the
(indirect) pairwise LTR approach. Although straightforward and
close in nature to LTR, listwise methods have to deal with loss
functions containing integer ranking positions, which causes non-
smoothness and therefore non-di�erentiability. A common way to
deal with this problem is to approximate the indicator function by a
di�erentiable alternative. Co�Rank [48] was one of the �rst works
addressing this issue by choosing to minimize the (1 � =⇡⇠⌧) loss
with a structured estimation. Another popular method is to use a
smooth function, such as a sigmoid or ReLU [32], to approximate
the non-smooth indicator function. This method has been widely
applied for optimizing ⇡⇠⌧ [25], �% [39] and '' [40]. Rather than
optimizing the whole list and taking items at the bottom into ac-
count, Liang et al. [25] proposed Top-N-Rank, which focuses on the
top ranked items and uses a listwise loss with a cuto� to directly
optimize for ⇡⇠⌧@: .

Despite this rich track record of attempts to learn a ranking by
metric optimization, still insu�cient is known about what metric
to optimize for in order to obtain the best performance according
to some evaluation metric. Moreover, we believe that the scope
of the metrics to consider could further be expanded to broaden
the possibilities for improving ranking e�ectiveness beyond what
has been tried so far. In this paper, to conduct our experimental as-
sessment regarding ranking e�ectiveness for recommendation, we
follow both the pairwise and listwise LTR approaches, and consider



di�erent IR metrics to optimize and assess ranking performance.
Speci�cally, we add the '⌫% metric as a promising candidate to the
set of typically deployed '', �% and =⇡⇠⌧ .

3 METHODS
In this section we describe the design choices and methodology
behind our experimental approach to acquire new insights into the
issues related to generating recommendations through optimizing
IRmetrics.We start by introducing our underlying recommendation
model with the notation and terminology used throughout the
paper. Then, we describe the four IR metrics we choose to optimize.
Finally, we de�ne the corresponding objective functions we deploy
for optimization in both the pairwise and listwise cases. In this way,
we put special emphasis on the de�nitions of objective functions
for '⌫% that we introduce in this paper.

3.1 Recommendation Model
Recommender systems are meant to recommend "items" (in a gen-
eral meaning of the term) to users according to their preferences.
For a system with " users and # items, ground-truth user-item
interaction data can be represented by a matrix . with dimen-
sions" ⇥# . We consider a binary relevance scenario in this paper,
which implies that elements in . are either ~D8 = 1, indicating a
positive interaction (preference) between a user D and an item 8 , or
~D8 = 0, indicating either a negative interaction (e.g. a ‘dislike’), or
no interaction between D and 8 . We refer to items with the positive
(negative) interaction as the positive (negative) items. We assume
that an arbitrary user D generated<D positive interactions across
all items.

Following the practice from other ranking-based recommenda-
tion approaches that target direct metric optimization [23, 25, 40],
in this paper we choose Matrix Factorization (MF) [35] as the recom-
mendation model. Although collaborative �ltering can be achieved
via more advanced methods such as Neural Collaborative Filter-
ing [18], Collaborative Variational Autoencoders [24] and Graph
Neural Networks [11, 17], we still choose the base Matrix Factor-
ization model because our aim in this paper is to study the relative
merits of metrics. A more comprehensive experiment to assess
generalizability with other models is left for future work.

The users and items are thus represented by latent factor ma-
trices *"⇥⇡ and +#⇥⇡ , respectively, where ⇡ is the number of
latent factors. Using the latent vectors of users and items, a rec-
ommendation model can predict the relevance of items for each
user, and store the scores in the matrix �"⇥# , with the element
5D8 representing the predicted relevance of item 8 to user D. The
ranking position 'D8 corresponding to the relevance score 5D8 , is an
integer ranging from 1 to # , calculated from a pairwise comparison
between the predicted relevance score for item 8 and all other items:

'D8 = 1 +
#’

9=1\8
I
�
5D 9 > 5D8

�
, (1)

where I(·) denotes the indicator function.

3.2 Metrics
As introduced before, we consider four metrics to optimize when
training the ranking mechanism of a recommender system: '',

�% , =⇡⇠⌧ and '⌫% . These metrics, assessing the recommendation
performance for user D, can be formulated as follows:

=⇡⇠⌧ (D) = ⇡⇠⌧ (D)
8⇡⇠⌧ (D)

=

Õ#
8=1 (2~D8 � 1) /log2 ('D8 + 1)Õ<D

8=1 1/log2 (8 + 1)
, (2)

�% (D) = 1
<D

#’
8=1

~D8
'D8

#’
9=1

~D 9 I('D 9  'D8 ) , (3)

''(D) =
#’
8=1

~D8
'D8

#÷
9=1

�
1 � ~D 9 I('D 9 < 'D8 )

�
, (4)

'⌫% (D;?) = (1 � ?)
#’
8=1

~D8?
'D8�1 . (5)

According to the '⌫% formulation originally proposed by Mo�at
and Zobel [31], ? is a constant parameter ranging from 0 to 1,
indicating the degree of persistence of a user. A high persistence
models a user that is willing to explore items deep down the ranked
list. The theoretical upper limit of'⌫% is 1 when# is in�nite, which
means 1 is never reached in practice [36]. To align the range of '⌫%
with other metrics used in the paper and in this way make it more
comparable, we choose to optimize='⌫% instead, which normalizes
the bare '⌫% by the maximum obtainable with< positive items:

='⌫% (D;?) = '⌫% (D;?)
8'⌫% (D;?)

=

Õ#
8=1 ~D8?

'D8�1Õ<D
8=1 ?

8�1 = / (?,<D )'⌫% (D; ?) , (6)

where / (?,<D ) = 1/(1 � ?<D ), serving as a normalization factor.

3.3 Pairwise Metric Optimization
Following the same rationale as in Section 3.1, we choose Lamb-
daRank [7], the base Lambda gradient ranking model, as the pair-
wise LTR approach. We do not consider the more complex Lamb-
daMART [6] and LambdaFM [50] to avoid the e�ect of other factors
such as model ensemble and dynamic negative sampling strategy.
Derived from RankNet [8], LambdaRank aims at obtaining smooth
gradients for optimization by calculating the performance gain
from swapping the position of documents 8 and 9 in a ranked list.
For the _-optimization of '', �% and =⇡⇠⌧ , we follow the exist-
ing approaches proposed by Donmez et al. [12]. To the best of our
knowledge, LambdaRank using '⌫% has not been formally pro-
posed yet, so we de�ne the _-optimization of ='⌫% following the
same principles.

The cost for _-optimizing an item pair (8, 9) for user D is

⇠D8 9 = �(D8 9>D8 9 + ln
⇣
1 + 4(D8 9>D8 9

⌘
, (7)

where (D8 9 equals +1 or �1 depending on whether the ground truth
label ~D8 is larger than that of ~D 9 , and the term >D8 9 ⌘ 5D8 � 5D 9
represents the di�erence of the predicted relevance scores. The
derivative of the cost with respect to >D8 9 can be formulated as

X⇠D8 9
X>D8 9

= �(D8 9 +
(D8 94(D8 9>D8 9

1 + 4(D8 9>D8 9
= �

(D8 9

1 + 4(D8 9>D8 9
. (8)



In order to reward the positive gains and punish the negative,
the _-gradient for ='⌫% can thus be written as

_D8 9 = (D8 9

�����='⌫% ('D8 ,'D 9 ; ?) X⇠D8 9X>D8 9

���� , (9)

where 'D8 and 'D 9 are the ranking positions of the item pair, calcu-
lated as in Eq. (1), and �='⌫% ('D8 ,'D 9 ;?) is the di�erence between
the corresponding nRBP values. This leads to the '⌫%-based _-
gradient formulated as

_D8 9 = (D8 9

�������
/ (?,<D ) (1 � ?)

⇣
~D8?'D8�1 � ~D 9?'D9�1

⌘
1 + 4(D8 9>D8 9

������� . (10)

3.4 Listwise Metric Optimization
Pairwise methods, such as LambdaRank, can easily avoid the issue
of non-smoothness of the optimized ranking metrics. However, and
despite their success, eluding this issue in the listwise approach
remains an open problem [12]. Successfully addressing this chal-
lenge is important because, in that way, the optimization process
becomes more intuitive, straightforward and natural [27]. As men-
tioned in Section 2, methods have already been proposed for list-
wise optimization of '', �% and =⇡⇠⌧ . The underlying principle
is to approximate the non-di�erentiable indicator function with
a smooth alternative. This has been done by deploying either a
sigmoid function [39, 40] or the Recti�ed Linear Unit (ReLU) [32]
as proposed in [25]. To make a consistent comparison, in this paper
we use a sigmoid for all metrics.

Apart from the di�erence in the choice of the smoothing function,
compared to TFMAP [39] and CLiMF [40], Top-N-Rank [25] is also
distinctive for the way the approximated ranking position '̃D8 is
modeled. TFMAP and CLiMF model '̃D8 using only the predicted
score 5D8 . In contrast, Top-N-Rank infers the predicted ranking
position by looking at the whole recommendation list. It follows the
idea from Eq. (1) to get the ranking position by pairwise comparison,
which is closer in nature to sorting.

Taking all the above into account, and following the same ratio-
nale as in Sections 3.1 and 3.3, we do not contemplate more complex
techniques such as Boosting [15, 45] or multi-agent learning [52],
so that metrics are compared on a base recommendation model de-
rived from Top-N-Rank. Speci�cally, we replace ReLU by a sigmoid
function and approximate the ranking position as

'̃D8 = 1 +
#’

9=1\8
f (5D 9 � 5D8 ) , (11)

where f (G) = 1/(1 + 4�G ). Accordingly, the approximation of the
indicator functions in Eqs. (3) and (4) can be formulated as

I('D 9 < 'D8 ) = I(5D 9 > 5D8 ) ⇡ f (5D 9 � 5D8 ) , (12)
#’
9=1
I('D 9 'D8 ) = 1+

#’
9=1
I('D 9 <'D8 ) ⇡ 1+

#’
9=1\8

f (5D 9� 5D8 ) . (13)

Top-N-Rank, however, optimizes metrics with a cuto�, so it does
not use information from all items. As indicated by Donmez et al.
[12], optimizing =⇡⇠⌧ on the whole item list can lead to signif-
icantly better =⇡⇠⌧@10 performance than directly optimizing
=⇡⇠⌧@10. Consequently, we choose to eliminate the cuto�. Since

the target is to maximize the approximated IR metrics, we can con-
sider their additive inverse as the loss functions for optimization.
Based on the above, the '', �% and =⇡⇠⌧ loss functions for user
D can be formulated as follows:

!=⇡⇠⌧ (D) = �
Õ#
8=1 (2~D8 � 1)/log2 ('̃D8 + 1)Õ<D

8=1 1/log2 (8 + 1)
, (14)

!�% (D) = � 1
<D

#’
8=1

~D8

'̃D8

©≠
´
1 +

#’
9=1\8

~D 9f (5D 9 � 5D8 )™Æ
¨
, (15)

!'' (D) = �
#’
8=1

~D8

'̃D8

#÷
9=1\8

�
1 � ~D 9f (5D 9 � 5D8 )

�
. (16)

To the best of our knowledge, no method has been proposed yet
for '⌫%-based listwise optimization. Inspired by the loss de�nitions
for the other metrics, and again choosing to work with the normal-
ized formulation of ='⌫% , we introduce the method for de�ning
the corresponding loss function as follows.

By virtue of the monotonicity of the logarithm function, the
recommendation model that optimizes ='⌫% (D;?) also optimizes

ln
✓
='⌫% (D;?)

<D

◆
= ln

✓
'⌫% (D;?)

<D

◆
� ln (8'⌫% (D; ?)) . (17)

Note that the second term is a constant for each user, so we focus
on the �rst term. Based on Jensen’s inequality, we can derive a
lower bound for the �rst term as follows:

ln
✓
'⌫% (D;?)

<D

◆
= ln(1 � ?) + ln

 
1
<D

#’
8=1

~D8?
'̃D8�1

!

� ln(1 � ?) + 1
<D

#’
8=1

ln
⇣
~D8?

'̃D8�1
⌘

= ln(1 � ?) + 1
<D

#’
8=1

~D8 ('̃D8 � 1) ln(?) .

(18)

Note that the last equality holds because only ~D8 = 1 contributes
to the summation, and the two remaining logarithmic terms are
constant across users.

Because ? 2 (0, 1), ln(?) is negative, so maximizing the formula-
tion in Eq. (18) becomes equivalent to minimizing

Õ#
8=1 ~D8 ('̃D8 �1).

In this way, our '⌫%-based optimization of the ranking treats all
relevant items equally and aims at bringing them close to the top.
Although convenient and intuitive, this function does not have
common bounds across users. Therefore, if used alone as the opti-
mization objective, it would make the training process sensitive to
speci�c users. To (partially) resolve this issue, we come back to the
second term in Eq. (17), �nd its own “lower bound” using Jensen’s
inequality and subtract it from Eq. (18) to make the lower bound
equal 0 for all users. After dropping the logarithms, the regulated
='⌫% loss for user D can now be denoted as

!='⌫% (D) =
#’
8=1

~D8 ('̃D8 � 1) �
<D’
9=1

( 9 � 1) . (19)

In this way, the optimization of ='⌫% becomes equivalent to an
elegant direct optimization for the rank position of the relevant
items. In view of the fact that the ideal situation leads to ranking all
relevant items at the top, the listwise loss inspired by '⌫% shows



potential for achieving high ranking e�ectiveness across di�erent
evaluation criteria, making it an informative metric. Furthermore,
!='⌫% is independent of ? , which makes it possible to conduct '⌫%-
based optimization for di�erent ? values in one uni�ed framework.
We note here once again that the regularization in Eq. (19) only has
e�ect on the lower bound of the loss value range. The loss value
remains user-sensitive and can still be arbitrarily large depending
on the number of interactions<D . We analyze the consequences of
this in Section 5.3.

3.5 Model Learning
In recent years, Adaptive Moment Estimation (Adam) [22] has
become one of the most popular optimizers. Compared to tradi-
tional optimizers like Stochastic Gradient Descent (SGD), its in-
sensitivity to hyper-parameters and faster convergence makes it
widely deployed in machine learning models. Despite these advan-
tages, Adam tends to su�er from convergence and generalization
power [29, 51]. Because in this paper we investigate the generaliza-
tion power of optimizing for di�erent metrics, we still choose to
optimize all our models with SGD.

4 EXPERIMENTAL DESIGN
Our goal is to investigate the capabilities of metrics used for opti-
mization when the recommendation performance is assessed by
the same or other metrics. In the following we explain the selection
of datasets and experimental protocol for our experiments.

4.1 Datasets
We selected four widely-used and real-world datasets to experi-
ment with a diverse set of data. Two of them, CiteULike-a [46]
and Epinions [43], contain unary data, while the other two, Sports
& Outdoors and Home & Kitchen, are datasets with graded rat-
ings from Amazon [33]. Amazon datasets contain integer relevance
scores ranging from 1 to 5, so we need to binarize them before they
can be used by our LTR methods. We choose to consider as positive
only ratings of 4 and 5, which surely re�ect a positive preference,
and every other rating as a negative preference. In addition, and
as is common in experimentation with recommenders, the absence
of a rating is also taken as a negative interaction in all datasets
[42]. As shown by Cañamares et al. [10], although users with few
ratings might exist in commercial services, they are usually �ltered
out in o�ine experiments because the lack of data leads to unre-
liable performance measurements. To address this issue, we only
keep users with at least 25 relevant interactions in all datasets. The
post-processed dataset statistics are shown in Table 1.

4.2 Experimental Protocol
We use LensKit [14] to randomly split the data into training and
test sets , stratifying by user: we sample 80% of their interactions
for training, and leave the rest for testing. As a result, each user
has at least 20 relevant interactions in the training set, and at least
5 in the test set. The evaluation metrics used are '', �% , =⇡⇠⌧
and '⌫% with ? equal to 0.8, 0.9 and 0.95, so that we can assess
recommendation performance under di�erent degrees of user per-
sistence. For pairwise optimization using LambdaRank, these six
metrics are in line with six separate loss functions. In the listwise

Table 1: Dataset statistics.

Dataset #users #items #ratings Density
CiteULike-a 2,465 16,702 157,527 0.383%
Epinions 4,690 32,592 325,154 0.213%

Sports & Outdoors 9,123 119,404 342,311 0.031%
Home & Kitchen 20,531 222,472 795,845 0.017%

context, however, we have in total 4 loss functions because the
loss for ='⌫% is independent of ? . All models are trained with a
considerable number of epochs (3,000), so that every metric has
a more than reasonable chance to achieve its best performance.
For each model, we select the epoch yielding the best performance
on the corresponding evaluation metric. For the optimization of
listwise ='⌫% , the optimal epoch is chosen for each of the 3 values
of ? separately, so that we actually have 3 di�erent models.

To reduce random error due to data splitting, we adopt a Monte
Carlo cross-validation approach [13] and create three independent
splits per dataset. Shi et al. [39] indicate that, for IR metrics that
only rely on the ranking positions of relevant items, there is no
need to consider all irrelevant items when training. As a result,
a negative sampling process can signi�cantly speed up training
without hurting the overall performance. Negative sampling is,
however, not only bene�cial for e�ciency. According to Cañamares
and Castells [9], removing some (or even a signi�cant number
of) negative items from both the training and test sets can make
the evaluation more informative and less biased with, balancing
popularity and the average relevance of items across users. Such
a strategy can therefore also make the evaluation more e�ective.
We choose to inform the negative sampling process by the number
of relevant items for each user, so we sample as many negative
items as positives, twice as many, or �ve times as many; we denote
this as the Negative Sampling Ratio (NSR). These negative items,
along with the 80% of positives, form the complete training set for
a user. In order to align the distributions of training and test sets,
we complete the test set using the same approach: the remaining
20% of positives, plus 100%, 200% or 500% as many negatives.

In order to maximize the performance of the assessed models, we
�ne-tuned the learning rate of SGD and performed a search in the
range {0.001, 0.01, 0.1} for LambdaRank and {0.001, 0.01, 0.1, 1, 3, 10}
for listwise models. We also conducted a preliminary exploration
on the number of latent factors for Matrix Factorization within the
range {8, 16, 32, 64, 128}. The results showed that, although there
is a positive correlation between the ranking e�ectiveness and the
latent space dimensionality, such a correlation has no impact on
the relative performance of di�erent losses. Therefore, we do not
analyze the e�ect of dimensionality in this paper and simply �x the
number of latent factors at 32 throughout the experiments.

We implement all models in PyTorch [34]. To accelerate the
training process, we use CUDA and CuDNN on an NVIDIA GeForce
GTX 1080Ti GPU.

5 RESULTS
In this section we compare the e�ectiveness of di�erent metrics
when used for optimization in ranking-based recommender. The
goal of the analysis is threefold. First, in Section 5.1 we focus on
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Figure 1: Overall performance of pairwise and listwisemethods. metric_optimdenotes themetric-based losses for optimization,
and a panel row denotes an evaluation metric. All results are averaged over the 3 data splits. Note that y-axes vary per row.

the overall performance of pairwise and listwise models and inves-
tigate whether the practice of optimizing for the metric used in
evaluation is justi�ed in ranking-based recommendation. Then, in
Section 5.2 we conduct a deeper analysis on the impact of a metric
chosen for optimization on the ranking e�ectiveness assessed by
di�erent evaluation metrics. In doing so, we especially focus on the
performance of the '⌫%-inspired objective functions introduced
in this paper. Finally, in Section 5.3 we investigate the e�ect of
di�erent metric optimization strategies on the recommendation
utility for active and inactive users, with special emphasis on the
impact of the missing upper bound of the '⌫%-based listwise loss
function proposed in Eq. (19).

Due to space constraints, we do not report all the results ob-
tained in our experiments. The reported results are, however, fully
representative of the complete set of results that led to the �nal
observations, conclusions and recommendations for future work.1

5.1 Should we Optimize the Metric Used to
Evaluate?

Fig. 1 shows the performance of all pairwise and listwise learning
objectives on all 6 evaluation metrics. While a negative correlation
can be observed between recommendation e�ectiveness and the
NSR, this does not necessarily mean that the models trained with
more irrelevant items are worse. Because the training and test sets
follow the same distribution, more negative items in the test set
just make the relevance prediction task harder.

Several observations can be made from this �gure. First, in both
pairwise and listwise models, optimizing '' consistently yields
signi�cantly worse performance, even when the evaluation tar-
get is also ''. This observation supports previous �ndings that

1All data, code and full results are available at
https://github.com/roger-zhe-li/sigir21-newinsights.

optimizing other metrics can achieve higher '' test scores than
optimizing '' itself [12]. The explanation for this is two-fold. First,
'' does not exploit all the information in the training data because
it only focuses on the �rst relevant item, resulting in suboptimal
models compared to optimizing other metrics. Second, as indicated
by Webber et al. [47], '' is not well correlated with other infor-
mative metrics, such as =⇡⇠⌧ and �% , which may optimize for
'' but not the other way around. Because the performance gap
of optimizing '' is stable and signi�cant, we do not include it in
further analysis and instead focus on the other 5 learning objectives
(metric_optim), but still with all 6 evaluation metrics.

Second, listwise and pairwise methods behave di�erently when
optimizing ='⌫% . In the pairwise context, the recommendation
performance obtained by optimizing di�erent ='⌫% losses is varied.
Speci�cally, we �nd that optimizing with ? = 0.95 outperforms opti-
mizing with ? = 0.8 or ? = 0.9. This �nding is consistent with prior
research showing that '⌫% .95 is better correlated with informative
metrics than with other di�erent ?’s [30, 36]. Such an inner-'⌫%
advantage can also be explained by the nature of the metric. Be-
cause ? models user persistence, a high value takes relevant items
lying deeper in the list into account during training. This allows
the model to account for more information, which bene�ts its per-
formance. Although higher ? also brings a slower weight decay,
which does not favor prediction for the top of a recommendation
list, this e�ect is insigni�cant for systems with binary relevance,
where we do not need to put highly relevant items ahead of mod-
erately relevant ones. In the listwise context, however, the results
obtained when optimizing for ='⌫% with di�erent ? values are in
general homogeneous. This shows that our ?-independent ='⌫%
loss provides a generic method to optimize for multiple '⌫% metrics.
In this way, the concern of choosing a speci�c ? for optimization is
addressed in a simple and e�ective way.
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Figure 2: The frequency for each metric-based loss (metric_optim) of achieving the best performance on speci�c evaluation
metrics (metric_eval), in all 3 data splits and all 3 NSR’s.

Last but not least, in both listwise and pairwise paradigms opti-
mizing =⇡⇠⌧ , �% and '⌫%-inspired losses achieves similar stable
performance across di�erent datasets, NSRs and evaluation targets.
Such an observation, combined with the �nding that optimizing ''
leads to the worst ranking e�ectiveness when evaluating with '',
suggests that the practice to optimize and evaluate recommender
systems with the same metric is not necessarily the best. A more
detailed analysis on the relative advantages of individual metrics is
given in the next section.

5.2 Is XHV More E�ective as Optimization
Metric than Others?

Fig. 2 shows how often each metric achieved the best test perfor-
mance, across evaluationmetrics, when used for optimization. Since
frequencies are counted from 3 splits and 3 NSR’s for each evalua-
tion metric, the frequency is expected to have a row-wise sum of
9. Of course, it is possible for di�erent losses to tie and obtain the
best result for a certain case, so the row-wise sum is actually larger
than 9 for several evaluation metrics, specially in the listwise case.
Overall, we �nd that in both pairwise and listwise scenarios most
of the best performance cases are achieved when optimizing '⌫%-
inspired metrics. More importantly, in LambdaRank we even �nd
that optimizing ='⌫% .95 shows a signi�cant and clear advantage
over all the other metrics.

Even though '⌫%-based losses seem to achieve the best per-
formance, Fig. 1 suggests that di�erences could be too small or
indistinguishable from random error, so next we proceed to a sta-
tistical analysis. First, we standardize performance scores within
dataset-NSR combination to avoid homoscedasticity, because Fig. 1
evidences very di�erent scales per dataset andNSR. This way, scores
are comparable across metrics. We then �t a linear model on the
standardized scores, using as independent variables the loss func-
tion, dataset and NSR, as well as their 2-factor interactions with
loss function.2 To properly compare the e�ect of each loss function
while controlling for the other factors, we compute their Estimated
Marginal Means (EMM) [37], as well as 95% con�dence and pre-
diction intervals, that is, what to expect on average over multiple
training runs, and what to expect of an individual training run.

Fig. 3 presents the EMM standardized performance scores of all
metric-based losses except ''. These overall results show that, in

2The inclusion of dataset and NSR main e�ects does not inform the model in any way
because of the standardization, but we keep them to follow the hierarchy principle of
linear models.
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Figure 3: Estimated Marginal Mean (standardized) score for
each metric_optim. Each panel represents an evaluationmet-
ric. Small bounded segments represent 95% con�dence inter-
vals. Long unbounded segments are prediction intervals.

LambdaRank, optimizing ='⌫% .95 achieves the best performance
across all 6 evaluation metrics and shows a consistent and statisti-
cally signi�cant advantage over the other losses. In listwise models,
our '⌫%-inspired loss also achieves a statistically signi�cant advan-
tage over the others on all 6 evaluation metrics. These observations
demonstrate the power of optimizing ='⌫% .

To further explore the stability of such performance gain across
di�erent datasets, we show in Fig. 4 the EMM scores, but faceted
by dataset. Although the general superiority of '⌫%-based learning
objectives is statistically signi�cant on average, the overlapping
prediction intervals indicate that it is not always necessarily the
best option. In LambdaRank, the ='⌫% .95 loss performs best in
all datasets except Epinions, where it is not statistically di�erent
from the =⇡⇠⌧ and�% losses. Interestingly, we see that optimizing
='⌫% .8 lies in the opposite extreme and consistently achieves the
worst performance. Even its prediction interval seldom overlaps
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Figure 4: Estimated Marginal Mean (standardized) score for each metric_optim, by evaluation metric (rows) and dataset
(columns). Small bounded segments represent 95% con�dence intervals. Long unbounded segments are prediction intervals.

with that of optimizing ='⌫% .9 or ='⌫% .95. In listwise recommen-
dation, the '⌫%-inspired loss shows signi�cant superiority over�%
in a nearly consistent fashion, except for some notable cases like
evaluating '' in the Epinions dataset or '⌫% .95 in the Home &
Kitchen dataset. It also performs signi�cantly better than =⇡⇠⌧
in general, but both losses yield otherwise similar performance in
several cases, especially in the Epinions and Sports & Outdoors
datasets. On the CiteULike dataset, however, the advantage of '⌫%-
based models is very clear and there is even no overlap between
the prediction intervals, except when evaluating ''.

All in all, we draw the conclusion that optimizing ='⌫% .95 can
help achieve recommendation e�ectiveness at least not worse than
when optimizing other informative metrics, such as =⇡⇠⌧ and
�% . Furthermore, the performance of optimizing ='⌫% on di�er-
ent metrics is homogeneous, which means that our '⌫%-inspired
listwise loss is able to help maximize '⌫% scores regardless of ? .
Moreover, according to the unreported results from our training
logs, this homogeneity is not only achieved in evaluation scores,
but also in the convergence process. When training with listwise
'⌫%-inspired losses, we manage to get the optimal '⌫% values on
all three ? values at a similar stage. In some models, the epochs to
get all three optimal '⌫% scores are even the same, which means
that the epoch with the optimal '⌫% .95 score also provides good
scores on '⌫% .8 and '⌫% .9, and that we have the possibility to
validate on only one ? value to satisfy di�erent needs expressed
by di�erent values of ? . Hence, our listwise ='⌫% optimization
can serve as a generic choice for rank-based recommendation. We
can explain this by the nature of our listwise ='⌫% loss. With our
transformation in Eq. (19), we do not assign di�erent weights to
items ranked at di�erent positions. Instead, we aim at bringing all
relevant items to the top of the list, and treat all positive items as

equally important. This provides the model with more abundant
information to train.

The observations above point to the conclusion that, although
the superiority brought by optimizing for '⌫%-based losses is not
always signi�cant and not fully consistent across datasets, we are
still provided with a promising alternative metric to optimize in
rank-based recommender systems. By optimizing '⌫%-based losses,
we are able to get at least comparable performance as optimizing
=⇡⇠⌧ and �% , with very clear bene�ts in many cases. In the fol-
lowing section, we will conduct an analysis seeking the source of
performance advantage of '⌫%-based listwise losses.

5.3 When to Deploy XHV for
Recommendation?

The analysis in the previous section indicated that optimizing ='⌫%
can provide recommendation performance comparable to that of
=⇡⇠⌧ and�% or even better. We may trace back the source of such
e�ectiveness and identify the best way to deploy it if we analyze the
properties of the '⌫%-based objective functions in the pairwise and
listwise context. Similarly to the =⇡⇠⌧ and �% losses, the pairwise
='⌫% loss in Eq. (10) guarantees strict bounds for the swap loss
for each user, so that users are treated equally regardless of how
many interactions they have. Contrary to this, the loss used for
listwise ='⌫% in Eq. (19) is directly related to the predicted rank
positions, which makes it have a di�erent upper bound across users.
Active users with more positive interactions are more likely to have
larger loss values during training, specially for large #('. Such
an imbalance may bene�t active users, but perhaps at the cost of
sacri�cing the utility for inactive users. We investigated whether
this e�ect indeed occurs in our experiments.

Fig. 5 shows the performance di�erence between the ='⌫% .95
loss and�% or=⇡⇠⌧ loss for every user, as a function of the number
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Figure 5: Score di�erence between optimizing nXHV .95 and GV or nJIM (higher is better for nXHV .95), when NSR=500%, as a
function of the number of positive items for the user. Curves show spline-smoothed �ts with 95% con�dence intervals.

of positive items they contain in the training set. We deliberately
choose to compare ='⌫% .95 because it achieves overall best results,
and �% and =⇡⇠⌧ for being the two next best losses, also with a
properly bounded loss function. In addition, we only show results
here for #(' = 500%, as it is expected to amplify the aforemen-
tioned bias, if any. We �nd that the '⌫%-inspired losses indeed
perform di�erently under pairwise and listwise environments. In
LambdaRank, where the ='⌫% .95 loss is also strictly bounded, we
do not observe a clearly positive or negative correlation between
the performance di�erence and the user activity level. In several
cases, for active users with more items available for training, opti-
mizing =⇡⇠⌧ and �% is even more advantageous than optimizing
='⌫% .95. This means that active users did not bene�t from the
fully bounded ='⌫% loss, and there is no e�ectiveness imbalance
between active and inactive users.

However, this observation does not hold in listwise models, as
evidenced by the clear and signi�cant positive correlation in all
datasets except Epinions: active users do indeed bene�t the most.
More interestingly, this bene�t for active users is not in detriment of
the inactive users. As we can see in the �gure, compared to optimiz-
ing =⇡⇠⌧ and �% , optimizing the listwise ='⌫% .95 loss bene�ts all
users on the CiteULike dataset, and achieves similar e�ectiveness
for inactive users on the other 3 datasets. This superiority con�rms
our assumption that active users, whose listwise ='⌫% loss magni-
tudes are larger than for other users, can indeed get more e�ective
recommendations due to a training process biased towards their
utility, without negatively in�uencing the less active users. Such
an insight is potentially interesting for some business applications
of recommender systems, where it is bene�cial to maximally serve
loyal users without losing the stickiness of less active users.

6 CONCLUSION
Direct optimization of IR metrics has long been a hotspot in the
research on ranking-based recommender systems. The intuitive and
logical common practice is to build models by optimizing the same
metric that will be used for evaluation. In this paper, we reported

the results of an extensive experimental study aiming at acquiring
new insights about the strength of the foundations behind this
practice and at learning more about what metric to optimize in
order to maximize recommendation e�ectiveness. For this purpose,
we expanded the scope of metrics usually deployed to de�ne the
objective functions for LTR approaches and focused on '⌫% as a
promising alternative to other metrics such as �% , =⇡⇠⌧ and ''.

Experimental evidence on both pairwise and listwise frameworks
show that optimizing �% , =⇡⇠⌧ and ='⌫% generally outperforms
optimizing '', and that optimizing ='⌫% is generally no less ef-
fective than optimizing =⇡⇠⌧ or �% . These �ndings challenge the
practice to optimize and evaluate ranking-based recommender sys-
tems using the same metric. Furthermore, the new generic listwise
'⌫%-inspired loss proposed in this paper was shown to be able to
achieve the optimal performance for di�erent values of the user
persistence parameter, without the need to specify this parameter
explicitly. Optimizing this loss even signi�cantly outperformed the
direct optimization of =⇡⇠⌧ and �% in some cases, showing the
high potential of '⌫% for developing ranking-based recommender
systems. Finally, and due to the lack of a common upper bound
across users, our proposed listwise ='⌫% loss bene�ts active users
more than =⇡⇠⌧ and �% , but without hurting the e�ectiveness
for inactive users. This makes optimization of the proposed '⌫%-
based listwise loss interesting for some business application cases
favoring loyal users.

For future work, we will experiment with more advanced recom-
mendation models and larger datasets to study the extent to which
our conclusions and insights generalize to other settings. We will
also analyze to what extent the exclusion of very inactive users
a�ects our conclusions, especially with regards to the bounds of
='⌫% losses. Furthermore, it would be interesting to theoretically
investigate the source of the e�ectiveness of '⌫% even deeper.Our
results show that it is a promising metric to optimize when learning
to rank for recommendation, pointing to the possibility of �nding
even more IR metrics that could show similar potential.
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