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Abstract Reliable evaluation of Information Retrieval

systems requires large amounts of relevance judgments.

Making these annotations is not only tedious but also

complex for many Music Information Retrieval tasks.

As a result, performing such evaluations usually re-

quires too much effort. A low-cost alternative is the ap-

plication of Minimal Test Collections algorithms, which

offer very reliable results while significantly reducing

the required annotation effort. The idea is to represent

effectiveness scores as random variables that can be es-

timated, iteratively selecting which documents to judge

so that we can compute accurate estimates with a cer-

tain degree of confidence and with the least effort. In

this paper we show the application of Minimal Test Col-

lections to the evaluation of the Audio Music Similarity

and Retrieval task, run by the annual MIREX eval-
uation campaign. An analysis with the MIREX 2007,

2009, 2010 and 2011 data shows that with as little as

2% of the total judgments we can obtain accurate es-

timates of the ranking of systems. We also present a

method to rank systems without making any annota-

tions, which can be successfully used when little or no

resources are available.
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1 Introduction

The evaluation of Information Retrieval (IR) systems

requires a test collection, usually containing a set of

documents, a set of task-specific queries, and a set of

annotations that provide information as to what results

a system should return for each query [22,10]. Depend-

ing on the task, the set of queries may comprise the

collection of documents itself, and the type of annota-

tions can differ widely. In the field of Music IR (MIR),

building these collections is very problematic due to

the very nature of the musical information, legal re-

strictions upon the documents, etc. [7]. In addition, an-

notating a test collection is a very time-consuming and

expensive process for some MIR tasks. For instance,

annotating a single clip for Audio Melody Extraction

can take several hours. As a result, test collections for

MIR tasks use to be very small, biased, and unlikely to

change from year to year, posing serious problems for

the proper evolution of the field [17].

The annual Music Information Retrieval Evaluation

eXchange (MIREX) started in 2005 as an international

forum to promote and perform evaluation of MIR sys-

tems for various tasks [8]. MIREX was developed fol-

lowing the principles and methodologies that have made

the Text REtrieval Conference (TREC) [24] such a suc-

cessful forum for evaluating Text IR systems [6,23].

However, since its inception in 2005, the MIREX cam-

paigns have evolved in parallel to TREC, practically

ignoring all recent developments in the evaluation of

IR systems [17,10]. In fact, the last five years have wit-

nessed several works on low-cost, yet reliable evaluation

techniques, allowing the number of queries used to grow

up to as many as 40,000 [5]. One of these works is the

development of algorithms for evaluation with Minimal

Test Collections (MTC) [3,1,2].
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The idea behind MTC is that the results of an IR

evaluation experiment may be estimated with high con-

fidence even if the set of annotations is very incomplete.

In a typical setting, it means that we do not need to

judge all documents retrieved for a query, but only a

small fraction of it, to estimate with high confidence

which of two systems is better. In this paper we study

the application of MTC to the evaluation of Audio Mu-

sic Similarity and Retrieval (AMS) systems, as it is one

of the tasks that most closely resembles the ad hoc Text

IR scenario: for a given audio clip (the query), an AMS

system returns a list of music pieces deemed to be sim-

ilar to it. AMS is one of the most important tasks in

MIR, and it has been run in MIREX in five of the seven

editions so far (see Table 1).

Each edition of the AMS task requires the work of

dozens of volunteers to perform similarity judgments,

telling how similar two 30 second audio clips are. In

the last edition, in 2011, 6,322 of these judgments were

needed, meaning that at least 53 hours of assessor time

were needed to complete the judging task. In prac-

tice, though, collecting all these judgments takes sev-

eral days, even weeks [11]. But along with the Symbolic

Melodic Similarity (SMS) task, AMS is one of the cou-

ple of exceptions for which a new set of queries and

relevance judgments are put together every year. Most

of the MIR tasks just use the same collections over and

over again because they are too expensive to build, es-

pecially in terms of judging or annotation effort. There-

fore, the study of low-cost evaluation methodologies is

imperative for the development of proper test collec-

tions to reliably evaluate MIR systems and properly

advance the state of the art [17].

Developing low-cost evaluation methodologies is es-

sential for private, in-house evaluations too. A researcher

investigating several improvements of an existing MIR

technique is not really interested in knowing how well

they perform for the task (which is highly dependent on

the test collection anyway), but in which one performs

better. That is, she is interested in the comparative

evaluation of systems. MTC is specifically designed for

these cases: it minimizes the annotation effort needed

to find a difference between systems, iteratively select-

ing for judging those documents that are more informa-

tive to figure out the difference between systems, and

reusing previous judgments when available.

2 AMS Evaluation

Audio Music Similarity and Retrieval systems are eval-

uated according to an effectiveness measure that as-

sesses how well they would satisfy an arbitrary user

Year Teams Systems Queries Results Judgments Overlap
2006 5 6 60 1,800 3x1,629 10%
2007 8 12 100 6,000 4,832 19%
2009 9 15 100 7,500 6,732 10%
2010 5 8 100 4,000 2,737 32%
2011 10 18 100 9,000 6,322 30%

Table 1 Summary of MIREX AMS editions. In the 2006 edi-
tion three different assessors provided annotations for every
query-document pair. The task did not run in 2008.

for a given query [18]. In order to generalize the re-

sults of an evaluation experiment to an arbitrary query,

the MIREX evaluations use a random sample Q of 100

queries. Each system is run for every query, returning

a list of all documents in the collection D, ranked by

their similarity to the query. The effectiveness measure

used in MIREX is Average Gain of the top k documents

retrieved (AG@k), with k = 5 [8,19]. For an arbitrary

system A, AG@k is defined as:

AG@k =
1

k

∑
i∈D

Gi · I(Ai ≤ k)

where Gi is the gain of document i, Ai is the rank at

which system A retrieved document i, and I(x) is a

boolean indicator function that evaluates to 1 if the ex-

pression x is true and to 0 otherwise. Therefore, the

summation adds the gain of all documents in the col-

lection that were ranked by A in the top k.

The gain of a document is a measure of how much

information the user will gain from inspecting that re-

sult. In MIREX, there are two different scales [11,19]:

the Broad scale is a 3-point graded scale where a doc-

ument is considered either not similar to the query

(gain 0), somewhat similar (gain 1) or very similar (gain

2); and the Fine scale, where the gain of a document

ranges from 0 (not similar at all) to 100 (identical to the

query)1. These gain scores are assigned by humans, who

make similarity judgments between queries and docu-

ments. After all the judging is done, every system gets

an AG@k score for each query, and then they are ranked

by their mean score across all queries.

To minimize random effects due to the particular

sample of queries chosen, the Friedman test is run with

the Average Gain scores of every system to look for

significant differences, and the Tukey’s HSD test is then

used to correct the experiment-wide Type I error rate

[19]. The grand results of the evaluation are therefore

scale-dependent pairwise comparisons between systems,

telling which one is better for the current set of queries

Q, and whether the observed difference was found to

be statistically significant.

1 In early editions of MIREX it was defined from 0 to 10,
with one decimal digit. Both definitions are equivalent.
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3 Evaluation with Incomplete Judgments

The evaluation methodology used in MIREX is expen-

sive in the sense that a complete set of similarity judg-

ments is needed: the top k documents retrieved by every

system have to be judged for every query. However, we

may investigate how to compare systems so that we do

not need to judge all documents and still be confident

about the result of an evaluation experiment.

The idea is to use random variables to represent gain

scores. The upside is that their value can be estimated

fairly well for most documents; the downside is that

these estimates will have some degree of uncertainty.

The goal of MTC is to select for judging those docu-

ments that allow us to compute good estimates of the

difference between systems with very few judgments.

3.1 AG@k as a Random Variable

Let Gi be a random variable representing the gain of

document i. The distribution of Gi is multinomial and

depends on the similarity scale used: for the Broad scale

Gi can take one of 3 values, and for the Fine scale it can

take one of 101 values. The expectation and variance of

Gi are as follows:

E[Gi] =
∑
l∈L

P (Gi = l) · l (1)

V ar[Gi] =
∑
l∈L

P (Gi = l) · l2 − E[Gi]
2

where L is the set of possible relevance levels:

LBroad = {0, 1, 2}
LFine = {0, 1, ..., 100}

Whenever document i is judged and assigned a gain

l, its expectation and variance are fixed to E[Gi] = l

and V ar[Gi] = 0; that is, no uncertainty about Gi.

Given this definition of the gain of an arbitrary doc-

ument, we can now define the AG@k of an arbitrary

system as a random variable too.

Under the assumption that the gain of one docu-

ment is independent of the others, the expectation and

variance of AG@k are defined as:

E[AG@k] =
1

k

∑
i∈D

E[Gi] · I(Ai ≤ k) (2)

V ar[AG@k] =
1

k2

∑
i∈D

V ar[Gi] · I(Ai ≤ k)

Having AG@k defined this way allows us to estimate

its value from an incomplete set of judgments. With no

judgments at all, the variance of the estimator would

be maximum, but as judgments are made the variance

decreases. With all k documents judged, the variance is

zero and the estimate equals the true AG@k score.

3.2 Difference in AG@k

Using equations (2) we can estimate the AG@k score of

a system. But we are really interested in knowing which

of two systems performs better, that is, the sign of their

difference in AG@k. For arbitrary systems A and B:

∆AG@k =
1

k

∑
i∈D

Gi · I(Ai ≤ k)− 1

k

∑
i∈D

Gi · I(Bi ≤ k)

=
1

k

∑
i∈D

Gi · (I(Ai ≤ k)− I(Bi ≤ k)) (3)

If ∆AG@k is positive, we can conclude system A
performed better than system B (worse if negative) for

the query. We can see that only documents retrieved

by one system and not by the other will contribute to

∆AG@k: documents retrieved by both systems will con-

tributeGi−Gi = 0. Therefore, judging these documents

will not tell us anything about the difference. Thus, the

larger the overlap between the systems’ outputs, the

fewer the judgments necessary to figure out which one

is better. Because the two systems are independent of

each other, the expectation and variance are2:

E [∆AG@k]=
1

k

∑
i∈D

E[Gi]·(I(Ai≤k)−I(Bi≤k)) (4)

V ar[∆AG@k]=
1

k2

∑
i∈D

V ar[Gi]·(I(Ai≤k)−I(Bi≤k))
2

Now that we can compute an estimate of the differ-

ence for one query, let us generalize to a set of queries

Q, computing the mean of the ∆AG@k scores for all

of them. As they are sampled randomly3 [8,19], queries

are independent of each other, so the expectation and

variance are:

E
[
∆AG@k

]
=

1

|Q|
∑
q∈Q

E [∆AG@kq] (5)

V ar
[
∆AG@k

]
=

1

|Q|2
∑
q∈Q

V ar [∆AG@kq]

With these estimates we can rank all systems by

their difference in AG@k. In addition, for a given set

of judgments, we can compute P
(
∆AG@k ≤ 0

)
, that

is, the probability of system A performing worse than

system B. If P
(
∆AG@k ≤ 0

)
≤ α then we can conclude

that system A performs worse than B with α confidence

(1 − α confidence of B being worse than A). If, while

judging documents, we reach a certain confidence in the

sign, say 95%, we can stop judging.

2 The indicator functions are squared in the variance so all
documents have a positive contribution to the total variance.
3 Note that this is rarely true in Text Information Retrieval.
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Fig. 1 Distribution of AG@5 assuming a uniform distribu-
tion of gains for the Broad (left) and Fine (right) scales. The
red lines are normal distributions with means E[AG@5] and
variances V ar[AG@5].

3.3 Distribution of ∆AG@k

To compute the confidence in the sign, we need to know

the distribution of ∆AG@k. For a relevance scale with

only two levels (similar and not similar), AG@k is ba-

sically the same as P@k (precision at k), which can be

approximated by a normal distribution under a bino-

mial or uniform prior distribution of Gi [2]. In our case,

the Broad scale has 3 possible levels, and the Fine scale

has 101 levels.

Let us define Γ k as the set of all |L|k possible assign-

ments that can be made for k documents. The proba-

bility of AG@k being equal to a value z is:

P (AG@k = z) :=
∑
γk∈Γk

P
(
AG@k = z|γk

)
· P
(
γk
)

that is, if we can compute the probability of making

each γk assignment, we can just sum the probabilities

of those that lead to AG@k = z. In our case, there
are 35=243 possible assignments of relevance with the

Broad scale and 1015 ≈10.5 billion assignments with

the Fine scale. However, we still need information about

the distribution of each Gi in order to compute P
(
γk
)
.

But AG@k turns out to be a special case. Let G be a

random variable representing the gain of the top k doc-

uments retrieved by a system for all possible queries,

and let the set {AG@k1, ..., AG@k|Q|} be a random

sample of size |Q| where each AG@kq is the average

gain of k documents sampled from G. By the Central

Limit Theorem, as |Q| → ∞ the distribution of the

sample mean AG@k =
∑
AG@kq/|Q| approximates a

normal distribution, regardless of the underlying distri-

bution of G. Therefore, with a large number of queries
∆AG@k can be approximated by a normal distribution,

because it is the sum of two variables approximately

normal themselves.

The left plot in Figure 1 shows the histogram of

possible AG@5 scores with the Broad scale assuming a

uniform distribution of assignments; and the right plot

shows the scores observed in a random sample of 1 mil-

lion assignments with the Fine scale. The red lines are

normal distributions with means E[AG@k] and vari-

ances V ar[AG@k]. We can see that the normal distri-

butions do indeed approximate very well.

Therefore, we can use the normal cumulative density

function Φ to approximate the probability of A being

worse than B as:

P
(
∆AG@k ≤ 0

)
= Φ

 E
[
∆AG@k

]√
V ar

[
∆AG@k

]
 (6)

which measures the area under the curve that is to the

left of zero. From here we can define the confidence CAB

in the sign of ∆AG@k as the maximum between the

probability of it being positive and it being negative:

CAB =max
(
P
(
∆AG@k≤0

)
,1−P

(
∆AG@k≤0

))
(7)

Whenever we pass a threshold on confidence, say

CAB ≥ 95%, we can stop judging and conclude which

system is better based on the sign of E
[
∆AG@k

]
.

3.4 Document Selection

Equations (4) and (5) can be used to estimate the dif-

ference between two systems with an incomplete set of

judgments, but the problem is: which documents should

we judge? Ideally, we want to judge only those that

are most informative to know the sign of the differ-

ence in AG@k. For just two systems it is obvious from

equation (3): only documents retrieved by one system

but not by the other one are informative. For an arbi-
trary number of queries, we can just refer to a query-

document pair as a single document (i.e. the gain of a

document for a particular query).

However, with an arbitrary number of systems a

particular document could be informative for more than

just one of the pairwise comparisons. We can assign a

weight wi to every query-document i, equal to the num-

ber of pairwise system comparisons for which judging

query-document i would affect the estimate of ∆AG@k.

Being S the set of all system pairs, the weight of an ar-

bitrary document i is defined as:

wi =
∑

(A,B)∈S

(I(Ai ≤ k)− I(Bi ≤ k))
2

(8)

At all times, we will want to judge those documents

with the largest weight because they will have the largest

effect on the ranking. Algorithm 1 lists MTC to rank a

set of systems S with 1− α confidence.

For the stopping condition we compute the mean

confidence across all system pairs: if it is sufficiently
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Algorithm 1 MTC for ∆AG@k

while 1
|S|

∑
(A,B)∈S CAB ≤ 1− α do

i∗←argmaxiwi for all unjudged query-document pairs
judge query-document i∗ (obtain true gaini∗)
E [Gi∗ ]← gaini∗

V ar [Gi∗ ]← 0
end while

large, we stop judging altogether. We call this the confi-

dence in the ranking. We note though that MTC can be

used with a different stopping condition. For instance,

we may require at least 95% confidence in all compar-

isons, as opposed to an average of 95% as we do here.

In such cases, the definition of wi could differ from that

in equation (8). For instance, we could consider just the

system pairs for which CAB < 1−α, and make their con-

tribution to wi proportional to CAB. We could further

modify the algorithm by considering the magnitude of

the difference between systems instead of just its sign

[18]. This would allow us to estimate system differences

from the perspective of expected user satisfaction, for

instance by computing P
(
∆AG@k ≤ −0.3

)
instead of

P
(
∆AG@k ≤ 0

)
.

4 Estimation of Gain Scores

Equations (6) and (7) allow us to compute the con-

fidence in the sign of the difference between two sys-

tems. But tracking back to equations (1), we still need

to know what the distribution of Gi is; that is, what

P (Gi = l) is for each of the labels in the similarity

scale used. There are two immediate choices: a fixed dis-

tribution for each document i, maybe estimated from

judgments in previous MIREX editions; or a distribu-

tion for each document as returned by a model fitted

with various features.

4.1 Distribution of Gain Scores

A simple choice is to assume that every similarity as-

signment is equally likely [3,20]. For the Broad scale,

all three assignments would have probability 1/3, while

for the Fine scale each assignment would have proba-

bility 1/101. According to equations (1), an arbitrary

unjudged document would have expectation 1 and vari-

ance 2/3 in the Broad scale, and in the Fine scale it

would have expectation 50 and variance 850.

A better alternative is to estimate the gain score

of each document individually [2,1,4]. The problem re-

duces then to fitting a model that, given certain features

about a query-document, allows us to estimate its gain

score. We may consider two frameworks for creating

such a model: classification and regression. The classi-

fication approach is not appropriate because it ignores

the order of the labels. In the Broad scale, for instance,

it means that if the true gain of a document were 0, an

estimation of 1 would be as good as an estimation of 2,

while the latter is clearly worse. Linear regression is not

appropriate either, because the predicted gains could be

well outside the limits [0-2] and [0-100]. This could be

solved with truncated regression [13], but we would still

need to make assumptions about its underlying distri-

bution. Multinomial regression has the same problem

as classification, namely that it ignores the order of the

levels in the outcome.

Ordinal logistic regression is the most appropriate

framework [12,4]. The dependent variable is modeled

as an ordinal variable and, as opposed to classification

and multinomial regression, the order of the levels is

therefore taken into account. For an arbitrary similar-

ity scale L = {l1, ..., l|L|}, the model for our ordinal

variable is:

log
P (Gi ≥ lj |fi)
P (Gi < lj |fi)

= αj +

|fi|∑
k=1

βk · fik (9)

where βk are the parameters to fit, αj is the fitted in-

tercept for the particular level lj , and fi is the feature

vector for document i. Once the model is fitted, we can

use the inverse logit function to compute P (Gi ≥ lj |fi).
Then, the probability of Gi being equal to some simi-

larity level lj is computed as4:

P (Gi = lj |fi) = P (Gi ≥ lj |fi)−P (Gi ≥ lj+1|fi) (10)

This proportional odds model is generalized by the

Vector Generalized Additive Model (VGAM) [26], which

is implemented in standard statistical packages such as

R [25] and facilitate the above calculations.

Therefore, the ordinal logistic framework allows us

to estimate the distribution P (Gi = l) in equations (1),

which in turn enables the computation of expectation

and variance as usual. As opposed to using the uni-

form distribution, this model is expected to produce

estimates closer to the true score and with reduced

variance. As a result, the confidence calculations as per

equation (7) are expected to be more reliable and re-

quire fewer judgments to pass a threshold like 95%.

4.2 Features Used and Fitted Models

We consider two types of features to use in the above

model in order to estimate gain scores: output-based

features and judgment-based features.

4 Note that P (Gi ≥ l1|fi) is always 1.
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4.2.1 Output-based Features

This set of features represent different aspects of the

system outputs, so they can still be used when there

are no judgments at all. For an arbitrary document d

and query q:

– pSYS: percentage of systems that retrieved d for q.

Intuitively, the more systems retrieve d, the more

likely for it to be similar to q.

– pTEAM : percentage of research teams participat-

ing in MIREX that retrieved d for q. Systems by the

same team are likely to return similar documents,

so the effect of pSYS could be biased if teams par-

ticipate with a large number of systems. pTEAM

can be used to reduce this bias.

– OV : degree of overlap between systems, to calibrate

inherent similarities among systems when using the

pSYS and pTEAM features.

– aRANK : average rank at which systems retrieved d

for q. Documents retrieved closer to the top of the

results lists are expected to be more similar to q.

– sGEN : whether the musical genre of d is the same as

q’s (either 1 or 0), as documents of the same genre

are usually considered similar to each other [14].

– pGEN : percentage of all documents retrieved for q

that belong to the same musical genre as d does.

– pART: percentage of all documents retrieved for q

that belong to the same artist as d does. Note that

a feature like sGEN for artists does not make sense

because all retrieved documents by q’s artist are fil-

tered out [9,8].

4.2.2 Judgment-based Features

This set of features takes advantage of known judg-

ments to produce better predictions:

– aSYS: average gain score obtained by the systems

that retrieved d for q. Intuitively, a document re-

trieved by good systems is likely to be a good result.

– aDOC : average gain score of all the other documents

retrieved for q. Likewise, this feature models query

difficulty: if documents retrieved for q are not simi-

lar, d is not likely to be similar either.

– aGEN : average gain score of the documents retrieved

for q that belong to the same genre as d does.

– aART: average gain score of the documents retrieved

for q and by the same artist as d’s.

4.2.3 Fitted Models

We used data from the MIREX 2007, 2009, 2010 and

2011 editions of the Audio Music Similarity and Re-

trieval task to fit the models following the regression

framework described in Section 4.1. Starting with a sat-

urated model, we simplified to a model, called Ljudge,

using the features pTEAM, OV, aSYS and aART. All

these features showed a very significant effect on the re-

sponse (p < 0.0001). While other features did improve

the model, they did so very marginally, so we decided

to keep it as simple as possible. The coefficient of deter-

mination R2 can be used to assess the goodness of fit,

measuring the proportion of variability in the outcome

that is accounted for by the model. The predictions of

Ljudge are particularly good, with an adjusted R2 score

of approximately 0.9 (the value R2 = 1 means that the

model offers a perfect fit of the data).

Even though Ljudge produces very good results, we

can only use it to estimate the Gi scores of documents

for which we can compute both aSYS and aART. How-

ever, because our goal is to reduce the amount of judg-

ing as much as possible, we will not be able to esti-

mate the gain scores for most of the documents until

we have made a fair amount of judgments. Therefore,

we decided to fit another model, called Loutput, that

only uses output-based features. With this model, we

can always estimate Gi scores, even when there are no

judgments available at all.

Proceeding as before, we simplified to a model us-

ing the features pTEAM, OV, pART, sGEN, pGEN

and the sGEN:pGEN interaction. Despite all features

showed again a significant effect (p < 0.0001), the pre-

dictions were significantly worse than with Ljudge, re-

sulting in an adjusted R2 score of approximately 0.35.

When fitting the models for the Fine scale, we fur-

ther simplified by breaking the scale down to 10 levels

rather than the original 101. Therefore, we actually use

the scale {0, 11, 22, ..., 99}. In order to avoid overfitting,

when estimating the gain scores for one MIREX edition

we excluded all data from that edition when fitting the

model. Therefore, we actually fitted Ljudge and Loutput
for each scale and each edition. See the appendix for

more details regarding the models.

4.3 Estimation Errors in Practice

To check the accuracy of the Gi estimates we again

used the similarity judgments collected in MIREX 2007,

2009, 2010 and 2011 (see Table 2). First, we computed

the Root Mean Square Error (RMSE) between every

document’s true gain score and its estimation. The er-

rors with the uniform prior distribution are ≈0.8 with

the Broad scale and ≈ 30 with the Fine scale. Both

regression models consistently produce less error, with

the Ljudge model having an error of ≈ 0.27 with the

Broad scale and ≈ 8.9 with the Fine scale; that is, the

error is reduced to about one third.
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Broad scale Fine scale

Year
Uniform Loutput Ljudge Uniform Loutput Ljudge

RMSE V ar RMSE V ar RMSE V ar RMSE V ar RMSE V ar RMSE V ar
2007 0.813 0.667 0.639 0.436 0.260 0.067 31.9 850 24.3 601 8.83 70
2009 0.812 0.667 0.632 0.454 0.254 0.069 31.1 850 23.4 626 8.76 73
2010 0.794 0.667 0.706 0.394 0.283 0.07 30.2 850 26.1 549 8.94 73
2011 0.789 0.667 0.690 0.390 0.304 0.078 29.6 850 25.2 561 9.36 72

Table 2 Average error and variance of the Gi estimates computed with the uniform distribution and regression models.
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Fig. 2 Confidence in the ranking of systems as the number of judgments increases. The dashed lines mark the point at which
95% confidence is reached for the first time.

In MIREX 2006 three different assessors provided

judgments for each query-document pair [11,8]. If we

consider one assessor’s judgments as the truth, and

the other’s as mere estimates, we find that the average

RMSE among assessors was 0.795 with the Broad scale
and 31.2 with the Fine scale. We note that these errors

are extremely similar to the errors of the Loutput model

(see Table 2), and quite larger than the errors of the

Ljudge model. Therefore, we argue that the errors we

make when using MTC or ranking without judgments

are comparable to the differences we should expect just

by having a different human assessor in the first place

[21,11]. The MIREX evaluations assume arbitrary final

users, so these errors can be ignored for all practical

purposes. If no arbitrary users were assumed, but spe-

cific users were considered for instance in personaliza-

tion [18], then our estimates would be erroneous to the

degree reported here.

We also compared the average variance of the esti-

mates. In Section 4.1 we saw that the variance in the

uniform estimates is 2/3 with the Broad scale and 850

with the Fine scale. As Table 2 shows, the regression

models improve the estimates also in terms of variance.

The Ljudge model reduces variance by one order of mag-

nitude: ≈ 0.07 with Broad judgments and ≈ 72 with

Fine judgments. Thus, the regression models provide

better estimates and reduce variance to achieve high

confidence in the sign differences earlier in the process.

5 Results

We simulated the use of MTC to evaluate all systems

from the MIREX 2007, 2009, 2010 and 2011 Audio Mu-

sic Similarity and Retrieval task (see Table 1). The

number of pairwise system comparisons are 66, 105,

28 and 153, respectively. Recall that the Loutput and

Ljudge models for one edition are fitted ignoring all in-

formation from that same edition, thus avoiding overfit-

ting. When using MTC with the regression models, all

Gi scores are estimated at the beginning with Loutput,

and updated every 20 judgments, when possible, with

Ljudge.

Figure 2 shows how the confidence in the ranking

of systems increases as more judgments are made. This

confidence in the ranking can be interpreted as the ex-

pected confidence in the sign of ∆AG@k of any two

systems picked at random. MTC with the estimates

based on the uniform distribution need about 60% of

the judgments to reach 95% confidence in the rank-



8 Julián Urbano, Markus Schedl

Broad scale Fine scale
Year Total Judgments Judgments Accuracy τ Judgments Accuracy τ
2007 4,832 200 (4.1%) 0.955 0.909 80 (1.7%) 0.955 0.909
2009 6,732 300 (4.5%) 0.971 0.943 440 (6.5%) 0.952 0.905
2010 2,737 13 (0.5%) 0.893 0.786 2 (0.1%) 0.857 0.714
2011 6,322 120 (1.9%) 0.941 0.882 120 (1.9%) 0.941 0.882

Table 3 Judgments needed by MTC to reach 95% confidence in the ranking of systems and accuracy of the sign estimates at
that point. All Gi scores are estimated with Loutput and Ljudge.
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Fig. 3 Accuracy of the ranking of systems as the number of judgments increases. The dashed lines mark the point at which
95% confidence is reached for the first time.

ing. However, it is clearly outperformed by MTC with

the learned distribution. As Table 3 shows, the judging

effort is dramatically reduced: the median percentage

of judgments needed with the Broad scale is 3%, and

as little as 1.8% with the Fine scale. Considering that

a single MIREX assessor makes about 220 judgments

per edition [8,11], the use of MTC would significantly

reduce the required manpower to just 1 or 2 assessors.

We can see that very high confidence levels can be

achieved with considerably fewer judgments, but how

good are the estimates of the sign of ∆AG@k? Fig-

ure 3 shows how the accuracy of the estimated ranking

tends to increase as more judgments are made, where

accuracy is defined as the proportion of sign estimates

that are correct across all systems pairs:

Accuracy =
correct

total

In particular, Table 3 reports the performance of MTC

when judging until the average confidence achieved is

95%. The accuracy is above 0.95 for the 2007 and 2009

collections, and as high as 0.941 for 2011. However, for

2010 it drops below 0.9 for 2010. Nonetheless, in no case

is an estimate wrong between two systems for which the

true ∆AG@k is statistically significant.

Another traditional way of comparing the estimated

ranking and the true ranking is to compute Kendall’s

τ correlation coefficient between the two, defined as:

τ =
correct− incorrect

total

Kendall’s τ ranges between 1 (exact same rankings) and

-1 (opposite rankings), with 0 meaning that half of the

pairs are swapped. Rankings with correlations above

0.9 are usually considered equivalent if we account for

the effect of having one or another assessor make the

judgments [21,11]. Formally, 0.9 Kendall correlation is

achieved with 5% of incorrect estimates, which corre-

sponds to 0.95 accuracy. As Table 3 shows, correlations

are above 0.9 in the 2007 and 2009 collections, but a lit-

tle below in 2011 and, especially, in 2010. However, we

note that with only 28 system pairs in 2010, just a sin-

gle incorrect estimate would drop τ to 26/28 = 0.929;

so low correlations are expected with this collection.

This dramatic effect of one single erroneous estimate

can be easily seen in Figure 3. Nonetheless, the median

correlation across collections is as high as 0.896 with

the Broad scale and 0.894 with the Fine scale. We note

again that all mistakes are produced between systems

that are not significantly different anyway.
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Broad scale Fine scale
Conf. In bin Acc. In bin Acc.
[0.50, 0.60) 7 (2.0%) 0.714 13 (3.7%) 0.615
[0.60, 0.70) 15 (4.3%) 0.733 13 (3.7%) 0.846
[0.70, 0.80) 11 (3.1%) 0.818 7 (2.0%) 0.714
[0.80, 0.90) 24 (6.8%) 0.833 24 (6.8%) 0.833
[0.90, 0.95) 15 (4.3%) 0.733 15 (4.3%) 0.667
[0.95, 0.99) 31 (8.8%) 1.000 22 (6.2%) 0.909
[0.99, 1) 249 (70.7%) 0.992 258 (73.3%) 0.996

Table 4 Accuracy vs. confidence in the sign estimates when
running MTC to 95% confidence in the ranking.

5.1 Accuracy of the Individual Estimates

Despite the average confidence in the ranking gener-

ally corresponds to the average accuracy of the sign

estimates, there can be the case where the average con-

fidence is biased by a few comparisons for which we are

extremely confident. The question now is: how trust-

worthy are each of the individual estimates? We ran

MTC with all four collections and the two similarity

scales, and stopped judging when the average confi-

dence was at least 95%. The 352 system pairs from all

four collections were divided by confidence in the sign

of the individual E[∆AG@k].

Ideally, we would want accuracy to correspond to

confidence (e.g. 0.80 accuracy in all pairs with 0.80 con-

fidence), and Table 4 shows that this is generally the

case. However, confidence seems slightly overestimated

in the range [0.90-0.99], though we note again that there

are just too few occurrences in that range to compute

a reliable accuracy score. Nonetheless, over 70% of the

times confidence is larger than 0.99, where almost all

estimates are indeed correct. On the other hand, hav-

ing such a high proportion of very confident estimates

seemingly tends to overestimate the average confidence

in the ranking, which is here used as stopping condition

in Algorithm 1.

5.2 Ranking Systems Without Judgments

As discussed above, the confidence in the ranking is

quite high with very few judgments, so next we ask the

question: how well can we rank systems with no judg-

ments at all? Soboroff et al. [16] first studied this prob-

lem with systems submitted to TREC, showing that

randomly considering documents as relevant correlated

positively with the true TREC rankings. Rather than

using random judgments, we use the estimates provided

by the Loutput regression model. Note that the Ljudge
model cannot be used because it does require some

known judgments.

Table 6 shows the confidence in the rankings when

making no judgments at all. Confidence is very high

Broad scale Fine scale
Conf. In bin Acc. In bin Acc.
[0.50, 0.60) 16 (4.5%) 0.500 16 (4.5%) 0.625
[0.60, 0.70) 17 (4.8%) 0.882 15 (4.3%) 0.867
[0.70, 0.80) 15 (4.3%) 0.800 15 (4.3%) 0.733
[0.80, 0.90) 24 (6.8%) 0.792 24 (6.8%) 0.792
[0.90, 0.95) 16 (4.5%) 0.875 13 (3.7%) 0.846
[0.95, 0.99) 33 (9.4%) 0.909 31 (8.8%) 0.903
[0.99, 1) 231 (65.6%) 0.996 238 (67.6%) 0.996

Table 5 Accuracy vs. confidence in the sign estimates when
ranking systems in all collections and with no judgments.

Broad scale Fine scale
Year Conf. Acc. τ Conf. Acc. τ
2007 0.941 0.909 0.818 0.946 0.924 0.848
2009 0.925 0.933 0.867 0.929 0.943 0.886
2010 0.947 0.893 0.786 0.949 0.857 0.714
2011 0.939 0.948 0.895 0.942 0.948 0.895

Table 6 Confidence and accuracy of the estimated ranking
when no judgments are made.

across collections, with a median of 0.942. The accu-

racy of the rankings is again quite high: the medians

are 0.921 with the Broad scale and 0.934 with the Fine

scale, which correspond to median τ correlations of

0.843 and 0.867 respectively. The overall performance is

worse than running MTC and making a few judgments,

but it is still very good considering that no judgments

are needed.

The next question is again: how trustworthy are

each of the individual estimates? As in Table 4, Ta-

ble 5 bins all 352 individual system comparisons by

confidence, showing the corresponding accuracy in each

bin. Similarly, we see that confidence is slightly overes-

timated in the range [0.80-0.99] and that, in general,

confidence tends to be lower than when running MTC.

Nonetheless, about 66% of the times confidence is again

above 0.99, where virtually all estimates are correct.

Therefore, estimating system differences with the gain

scores predicted by Loutput is a very reasonable method

for developers to compare their systems when no judg-

ing resources are available. In particular, it can prove

to be very useful at suggesting which systems perform

very differently and which are very similar and thus

require judging effort to gain more confidence.

6 Conclusions

We have shown how to adapt the Minimal Test Collec-

tions (MTC) family of algorithms for the evaluation of

the MIREX Audio Music Similarity and Retrieval task.

We showed that the distribution of AG@k scores is nor-

mally distributed, which allows us to look at it as a ran-

dom variable whose expectation may be estimated with
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a certain level of confidence. This confidence is propor-

tional to the number of similarity judgments available,

and MTC ensures that the set of judgments we make

to reach some confidence level is minimal.

Using data from the previous MIREX AMS evalua-

tions, we fitted a model that allows us to predict gain

scores when no judgments are available, and another

model that considerably improves the predictions when

judgments are available. Aided by these two models,

MTC is shown to dramatically reduce the judging effort

needed to rank systems with 95% confidence. We sim-

ulated the MIREX AMS evaluations from 2007, 2009,

2010 and 2011, and showed that the average number

of judgments needed is just 3% with the Broad scale

and 1.8% with the Fine scale. The average accuracy of

the estimated rankings is 0.948 with the Broad scale

and 0.947 with the Fine scale, showing that MTC cou-

pled with our models does not only require very little

effort, but also produces accurate estimates. In fact,

when systems show a statistically significant difference

our estimates are always correct.

We further showed that these models can be used

to rank systems without the need of making any judg-

ments at all. Even though overall accuracy is slightly

lower than when running MTC, we showed that the

individual confidence scores can be trusted. Also, we

showed that the estimation errors are negligible in prac-

tice, because they compare to the disagreements pro-

duced by different human assessors. This method can

thus be employed to quickly check if there is a substan-

tial difference between systems.

In general, the Fine scale seems to require fewer

judgments than the Broad scale, while at the same time

produces similarly accurate estimates. In previous work

we also showed that the Fine scale is slightly more pow-

erful and similarly stable as the Broad scale for a variety

of measures [19], and that it is better correlated with

final user satisfaction too [18]. Therefore, the evidence

so far seems to indicate that the Fine scale works bet-

ter than the Broad scale, suggesting its use alone in the

MIREX AMS evaluations. Dropping the Broad scale

would also lower the cost of the evaluations, at least in

terms of judging time.

7 Future Work

Two clear lines for future work can be identified. In this

paper we used two sets of features to fit the regression

models that allow us to predict gain scores: features

based on the output of the systems and metadata, as

well as features based on the known judgments. While

these features work well in practice, a third set of fea-

tures to consider could take advantage of the actual

musical content used in the test collections, such as the

similarity between the current document and those that

have been judged as highly similar to the query. Unfor-

tunately, the collection used in MIREX is not public, so

we were not able to study these features here. Nonethe-

less, further research should definitely explore this line.

Also, by no means are our models the only ones pos-

sible; other features or frameworks might prove better

to predict gain scores. For instance, trying to predict

gain scores on a per-system or per-query basis would

probably improve the results.

The most important direction for further research

is the study of low-cost evaluation methodologies for

other MIR tasks. In accordance with previous work [19],

we have shown here that the effort in evaluating a set

of AMS systems can be greatly reduced, leaving open

the possibility of building brand new test collections

for other tasks for which making annotations is very ex-

pensive. For instance, the group of volunteers requested

by MIREX for the annual evaluation of the AMS and

SMS tasks could probably be better employed if some

of them were instead dedicated to incrementally add

new annotations for the other tasks in clear need of

new collections [15].

Another clear setting for the application of low-cost

methodologies is that of a researcher evaluating a set

of systems with a private document collection, a sce-

nario very common in MIR given the legal restrictions

when sharing music corpora [7]. Those researchers, and

in most cases public forums too, do not have the possi-

bility of requesting large pools of external volunteers for

annotating their collections. Thus, being able to evalu-

ate systems with the minimal effort is paramount. To

this end, low-cost evaluation methodologies must be in-

vestigated for the wealth of MIR tasks.

But in most of these tasks researchers rely on test

collections annotated a priori, which can be very ex-

pensive and time consuming to build. However, we have

seen that not all annotations are necessary to accurately

rank systems. For instance, if two Audio Melody Ex-

traction algorithms predict the same F0 (fundamental

frequency) in a given audio frame, whether that F0 pre-

diction is correct or not is not useful to know which of

the two systems is better. The adoption of a posteriori

evaluation methodologies such as MTC can take advan-

tage of this idea to greatly reduce the annotation cost or

allow the use of significantly larger collections. Getting

to that point, though, requires a shift in the current

evaluation practices. But given the benefits of doing so,

both in terms of cost and reliability, we strongly en-

courage the MIR community to study these evaluation

alternatives and progressively adopt them for a more

rapid and stable development of the field.
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Appendix

The models described in Section 4 to predict gain scores

were fitted ignoring all data from the MIREX edition

they were used for. For future editions though, we can

use models fitted with all the available data from 2007,

2009, 2010 and 2011. Table 7 lists the fitted param-

eters, for both models and both similarity scales, for

their use in future AMS evaluation experiments. Com-

pared to the models fitted for each individual collection

(see Table 2), these models produce similarly accurate

estimates.

Broad scale Fine scale
Parameter Loutput Ljudge Loutput Ljudge

pTEAM 2.3677 2.0900 2.2223 1.4405
OV 1.9749 0.2420 2.0652 0.1139

pART 3.2041 – 2.9179 –
sGEN 1.9030 – 2.0174 –
pGEN 5.4144 – 5.4605 –

sGEN:pGEN -2.9848 – -3.4288 –
aSYS – 1.1490 – 0.0115
aART – 7.1853 – 0.2128

α1 -3.2513 -5.5370 -1.7043 -2.1862
α2 -5.3349 -12.2572 -2.6087 -4.6920
α3 – – -3.2373 -6.9954
α4 – – -3.7705 -9.2063
α5 – – -4.2464 -11.2362
α6 – – -4.8460 -13.5847
α7 – – -5.5678 -15.8001
α8 – – -6.6135 -18.2491
α9 – – -8.4655 -21.2480

adjusted R2 0.362 0.916 0.344 0.904
RMSE 0.651 0.275 24.1 8.97
V ar 0.422 0.071 591 72

Table 7 Parameters fitted for the regression models using
all data from MIREX 2007, 2009, 2010 and 2011; and errors
of the estimates (bottom).

As an example, let us use Loutput to estimate the

Broad score of a document whose true score is 2 and

has the following features: pTEAM=0.25, OV=0.8053,

pART=0.0217, sGEN=1 and pGEN=0.8478. Plugging

these features and the parameters in Table 7 into equa-

tion (9):

log
P (Gi ≥ 2)

P (Gi < 2)
= −5.3349 +

+ 2.3677 · 0.25 + 1.9749 · 0.8053 +

+ 3.2041 · 0.0217 + 1.9030 · 1 +

+ 5.4144 · 0.8478− 2.9848 · 1 · 0.8478 =

= 0.8798

log
P (Gi ≥ 1)

P (Gi < 1)
= −3.2513 +

+ 2.3677 · 0.25 + 1.9749 · 0.8053 +

+ 3.2041 · 0.0217 + 1.9030 · 1 +

+ 5.4144 · 0.8478− 2.9848 · 1 · 0.8478 =

= 2.9634

Next, we use the inverse logit function:

P (Gi ≥ 2) =
e0.8798

1− e0.8798
= 0.7068

P (Gi ≥ 1) =
e2.9634

1− e2.9634
= 0.9509

Plugging into equation (10):

P (Gi = 2) = 0.7068

P (Gi = 1) = 0.9509− 0.7068 = 0.2441

P (Gi = 0) = 1− 0.9509 = 0.0491

Finally, plugging into equation (1) we can compute

the expectation and variance of Gi:

E[Gi] = 0.2441 + 0.7068 · 2 = 1.6577

V ar[Gi] = 0.2441 + 0.7068 · 22 − 1.65772 = 0.3233
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