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ABSTRACT
In a collaborative-filtering recommendation scenario, biases in the
data will likely propagate in the learned recommendations. In this
paper we focus on the so-called mainstream bias: the tendency of a
recommender system to provide better recommendations to users
who have a mainstream taste, as opposed to non-mainstream users.
We propose NAECF, a conceptually simple but effective idea to
address this bias. The idea consists of adding an autoencoder (AE)
layer when learning user and item representations with text-based
Convolutional Neural Networks. The AEs, one for the users and
one for the items, serve as adversaries to the process of minimizing
the rating prediction error when learning how to recommend. They
enforce that the specific unique properties of all users and items
are sufficiently well incorporated and preserved in the learned
representations. These representations, extracted as the bottlenecks
of the corresponding AEs, are expected to be less biased towards
mainstream users, and to provide more balanced recommendation
utility across all users. Our experimental results confirm these
expectations, significantly improving the recommendations for non-
mainstream users while maintaining the recommendation quality
for mainstream users. Our results emphasize the importance of
deploying extensive content-based features, such as online reviews,
in order to better represent users and items to maximize the de-
biasing effect.
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1 INTRODUCTION
Collaborative Filtering (CF) models are the most investigated and
deployed models in the domain of recommender systems [4]. These
models assume that users who had similar preferences on items
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of a specific kind (e.g. books, movies) in the past may continue
having similar preferences on other items of the same kind. The
preferences of the users are expressed through their explicit (e.g.
ratings) or implicit (e.g. clicks, downloads) interactions with items.

Among the CF models, Matrix Factorization (MF) [15], which
tries to find a representation of both users and items in the same
latent factor space, has long been the most successful and most
widely deployed CF model. More recently, generalized factorization
models, such as factorization machines [30], have been proposed,
exploiting input beyond user-item interactions to learn the latent
space. Exploiting more input, such as contextual features and other
types of useful side information about users and items, was shown
to further improve the recommendation quality. The potential for
further improvement, for instance by relying on more abundant
input data including audio, visual and textual item descriptions or
social network dynamics, came only when deep neural networks
(DNN) [10] entered the recommendation domain and enabled more
sophisticated user/item representation space learning. In particular,
textual data acquired fromwebsites have been extensively exploited
for this purpose, allowing users to leave review comments for items
along with ratings. For this type of data, DNN-based user/item
modeling utilizing NLP techniques has been shown to achieve
significantly higher recommendation performance [8, 37, 44, 45] as
well as provide convincing explanations [6, 7, 26, 40].

While these developments have greatly contributed to the im-
provement of the overall recommendation accuracy, one problem
has remained largely unsolved, namely the presence of various
types of biases in the learned recommendation models. In this pa-
per we focus on the bias towards the so-called mainstream users. A
mainstream user often prefers items liked by many people and also
reacts negatively to items widely disliked by others [33]. Contrary
to this, non-mainstream users typically show interest on rarely-
visited items or have an opposite attitude towards widely accepted
or rejected items. Such a “grey sheep” property [46] makes these
users different from others, making it difficult for a CF algorithm
to identify similar peers. This leads to recommendations of a gen-
erally lower quality, because recommendations for these users are
based on neighbors with insufficiently similar preferences. Fur-
thermore, non-mainstream users are typically a minority and the
numerous consistent user-item interactions within the cluster of
mainstream users are likely to be dominant in steering the process
of learning the user/item representation space. Because of this, the
non-mainstream users and their preferred (“outlier”) items become
underrepresented in such a space, leading to inequality of the rec-
ommendation performance across the user population. This is the
mainstream bias, the tendency to provide better recommendations
to the mainstream users. Such bias could make non-mainstream
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users draw insufficient utility from a recommender system and
could discourage them from using it anymore. This could lead to
online businesses starting to lose customers. For the information
and news recommender systems, however, we foresee even more
serious consequences. Recommender systems may namely become
less inclusive with respect to non-mainstream opinions and (e.g.
political) views and in this way contribute to undesired long-term
effects, like intellectual segregation and societal polarization.

In this paper we build on the success of DNNs for developing
recommendation models and propose a simple but effective solution
towards neutralizing the mainstream bias. With our new recom-
mendation model, referred to asNeuralAutoEncoderCollaborative
Filtering (NAECF), we introduce adversarial conditions to the pro-
cess of learning the recommendation algorithm, which in this
specific case is realized as the minimization of the rating pre-
diction error. The adversarial conditions are imposed by autoen-
coders [5], a deep learning architecture widely used for recommen-
dation [18, 25, 35], added to a state-of-the-art DNN-based recom-
mendation framework. They enforce that the user and item repre-
sentations are learned in a way such that they preserve their specific
and unique properties before being fed to the rating predictor. Since
this preservation is achieved for all users, mainstream or not, the
autoencoders prevent that the learned representations are biased
towards the users with a mainstream taste. The results of experi-
ments conducted on different domains and scales of the real-world
datasets from Amazon [21] show that the representations learned
in this way indeed help to de-bias the produced recommendations
(predicted ratings in this case). Compared to the case without de-
ploying the adversarial conditions, our proposed method produces
significantly better recommendations for non-mainstream users
while largely maintaining the recommendation quality for main-
stream users. We clearly show that this performance improvement
largely stems from adding adversarial conditions to the process of
user and item representation learning. In addition, our experiments
demonstrate the benefit the non-mainstream users draw from the
application of content-based features such as online reviews, fur-
ther highlighting their value for achieving high recommendation
quality across the user community.

The proposed NAECF approach is, to the best of our knowledge,
the first to enforce preserving the unique user and item properties
as the adversary to the process of learning how to recommend. This
allows us to effectively address themainstream bias in recommender
systems, which has not been extensively studied this far.

A recommender system can be designed to either predict ratings
or rank items. Despite the latter is picking up momentum in the
field, we still choose in this paper to follow the rating prediction
paradigm. The main reason for this lies in the core of our contribu-
tion, which is to investigate how a state-of-the-art recommendation
framework may be extended in order to de-bias the process of gen-
erating recommendations. Since the framework we build upon was
evaluated in terms of rating prediction, we follow this same para-
digm in this paper. Nonetheless, the user-item representation space
generated by the autoencoders can serve to predict both ranking
and ratings, so we do not consider our choice to limit the broad
application of our proposal to the recommendation practice.

The results of the paper can be fully reproduced with data and
code available online1.

2 RELATEDWORK
Our work relates mainly to two topics: biases in recommender
systems and review-based user/item modeling.

2.1 Biases in Recommender Systems
Potential biases in the training data have already been recognized in
early work on matrix factorization for recommendation. Koren et al.
[15] introduced a correction in the dot-product rating prediction
formula to incorporate rating biases across users, that is, how the
rating scale is interpreted by different users. Another bias related to
ratings is the anchoring bias; it emerges from the influence of pre-
vious recommendations to a user on that user’s future ratings. Ado-
mavicius et al. [3] explored two approaches to neutralize this bias.
The first approach involves computational post-hoc adjustments
of the ratings that are known to be biased. The second approach
involves a user interface by which the system tries to prevent this
bias during rating. A different sort of bias is the popularity bias, due
to which popular items may be recommended more frequently than
other, less popular items (e.g., long-tail). Abdollahpouri et al. [1]
proposed an add-on to a general collaborative filtering algorithm by
which a trade-off between accuracy and long-tail coverage can be
tuned. More recently, the discussion about biases has increasingly
been conducted in the context of resolving ethical and societal is-
sues when deploying recommender systems in practice, such as
polarization [29], fairness [22] and discrimination [19], giving a
further boost to the research on this topic.

In this paper we focus on the aforementioned mainstream bias.
While being conceptually close to popularity bias [2, 17], there is an
important difference between the two. Popularity bias could lead
to a separation between more and less popular items, similar to the
separation of items into those being interesting to mainstream and
non-mainstream users. However, popularity bias is not informative
regarding the way a recommender system serves different groups of
users. According to Steck [36], users may tend to provide feedback
on popular items simply by following (being influenced by) other
users. In this way, their preferences are likely to be unconsciously
driven away from their real interest. By focusing on mainstream-
ness, we explicitly look at the bias in the user population.

Kowald et al. [17] demonstrated that non-mainstream music lis-
teners are likely to receive the worst recommendations. Schedl and
Bauer [34] investigated music preferences across age groups. They
observed that, although only taking a small proportion of users, kids
and adolescents have significantly different preferences from other
age groups in terms of music genres, and the recommendation per-
formance on these two groups is also distinctive among all users. To
repair the unfairness caused by the mainstream bias, several recent
works aim at identifying non-mainstream music listeners and using
the power of cultural aspects [24, 33] and human memories [16]
to better profile these underrepresented users in recommender
systems. Despite the reported progress, existing methods to allevi-
ate the mainstream bias usually rely on their specific definitions
of mainstreamness, which may limit the findings. Furthermore,
1https://github.com/roger-zhe-li/wsdm21-mainstream
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these methods tend to split users into different mainstreamness
groups for individual training. This setting may cause the loss of
recommendation accuracy due to not exploiting the cross-group
collaborative information. The approach proposed in this paper
aims at neutralizing the mainstream bias in a more generic fashion
and without divisions within the user population.

2.2 Review-based User/Item Modeling
Supported by the rapid development of natural language processing
(NLP) techniques, online reviews have increasingly been identified
as an important source of useful information for addressing data
sparsity issues in recommendation. Exploiting these reviews has
led to several advanced recommendation concepts, pioneered by
Collaborative Deep Learning (CDL) [39]. This concept introduces a
hierarchical Bayesianmodel using Stacked Denoising Autoencoders
(SDAE) to reconstruct the rating matrix from encoded textual re-
views. Another method, DeepCoNN [45], unifies the processes of
learning the user/item representation and rating prediction in an
end-to-end model. The unification is achieved through a combina-
tion of Convolutional Neural Networks (CNN) and factorization
machines. Due to the sequential nature of reviews, Recurrent Neu-
ral Networks (RNN) and attention models are also widely used
for user and item feature learning. Wu et al. [42] trained the re-
view representations and ratings jointly within a Long Short-Term
Memory (LSTM) framework for movie recommendation. Chen et al.
[6] extended the DeepCoNN concept by incorporating attention
factors into NARRE, a DeepCoNN-based framework, to provide
convincing explanations. MPCN [37] is another attention-based
model, which uses two hierarchical attention layers to infer the
review importance. Although the use of text reviews has partially
resolved the data sparsity issues, a more direct way to achieve
this is to increase the scale of the training data. As an example,
AugCF [41] was proposed on top of DeepCoNN to augment review
and rating data using Generative Adversarial Networks [11]. All
models mentioned above represent users and items following the
same principle, and the representations are derived from the same
data source. Contrary to this, NPA [43] and NeuHash-CF [12] rep-
resent users and items in different ways. While they model the
items using content-based information, the users are represented
by one-hot coded userID.

Despite the remarks expressed in literature state that reviews
serve the recommendation better as regularizers than features [32],
the models mentioned above have been reported to achieve re-
markable overall recommendation accuracy, showing the benefit of
using textual review data as input. In this paper, we look at online
reviews from a different angle and further than accuracy alone. We
analyze their value in achieving better user representations that
allow us to balance the recommendation quality across users. We
show that, with our proposed recommendation model, reviews can
be instrumental in neutralizing the mainstream bias.

3 PROPOSED MODEL: NAECF
The architecture of the proposed NAECF model is illustrated in
Fig. 1. The scheme shows that with NAECF we pursue two learning
goals simultaneously: maximizing the recommendation accuracy
and reconstructing the users’ and items’ original feature vectors

Figure 1: Overall architecture of NAECF.

in the autoencoders. These feature vectors consist of the texts of
user reviews, so we refer to the process taking place in the two
AEs as “text reconstruction”. Recommendation accuracy may be
achieved by optimizing for rating prediction or ranking prediction.
Since DeepCoNN [45], the strongest baseline for comparison, is
designed for rating prediction, we also take rating prediction as the
criterion for recommendation optimization. This allows us to assess
specifically the effect of enforcing user and item reconstruction as
an adversarial condition to recommendation optimization on the
mainstream bias. If the effect is there, it can also be expected if a
ranking prediction scheme is expanded in the same way.

3.1 Model Formulation
The data we use consist of tuples (𝑢, 𝑖, 𝑟𝑢𝑖 , 𝑐𝑢𝑖 ), representing a user
𝑢 providing a rating 𝑟𝑢𝑖 to item 𝑖 and leaving a review text 𝑐𝑢𝑖 for
said item. Based on Fig. 1, we see the realization of the overall goal
of NAECF by minimizing the following loss:

𝐿 = 𝐿𝑅 +𝑤 (𝐿𝑈 + 𝐿𝐼 ) , (1)

where 𝐿𝑅 , 𝐿𝑈 and 𝐿𝐼 are, respectively, the mean rating prediction
loss, and the mean text reconstruction losses for users and items.
The constant 𝑤 is a weight determining the relative influence of
user and item AEs compared to the rating prediction module. The
three losses are defined by the following expressions:

𝐿𝑅 =
1
𝑁𝑅

∑
𝑢,𝑖

𝑙𝑜𝑠𝑠𝑅 (𝑢, 𝑖) (2)

𝐿𝑈 =
1
𝑁𝑈

∑
𝑢

𝑙𝑜𝑠𝑠𝑈 (𝑢) (3)

𝐿𝐼 =
1
𝑁𝐼

∑
𝑖

𝑙𝑜𝑠𝑠𝐼 (𝑖) , (4)

where 𝑁𝑅 , 𝑁𝑈 and 𝑁𝐼 represent the number of interactions, users
and items in the training set, respectively. Normalizing by these
terms makes the effect of the weight𝑤 invariant to the statistics of
the dataset.



Figure 2: Architecture of the convolutional autoencoder for
text feature transformation and extraction.

3.2 Learning for Rating Prediction
In NAECF, the rating prediction loss for an individual user-item
interaction is computed as a traditional squared loss

𝑙𝑜𝑠𝑠𝑅 (𝑢, 𝑖) =
(

𝑟𝑢𝑖 − 𝑟𝑢𝑖

𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛

)2
, (5)

where 𝑟𝑢𝑖 is the predicted rating given by user 𝑢 to item 𝑖 . The loss
is normalized by the limits of the rating scale used in the dataset, so
that 𝐿𝑅 is bounded between 0 and 1. The prediction is computed for
the interaction 𝑧 = (𝒙𝑢 ,𝒚𝑖 ) between vectors 𝒙𝑢 and 𝒚𝑖 , encoding
the user and item text feature representations, respectively. 𝒙𝑢 and
𝒚𝑖 are the latent factors, low-rank representations of users and
items, extracted as the bottlenecks of the corresponding AEs, as
indicated by the green and blue blocks in Fig. 1. We follow the
settings of DeepCoNN [45] with a Factorization Machine layer [31],
and compute rating prediction as

𝑟𝑢𝑖 = 𝑎0 +
|𝑧 |∑

𝑚=1
𝑎𝑚𝑧𝑚 +

|𝑧 |∑
𝑚=1

|𝑧 |∑
𝑛=𝑚+1

⟨𝒗𝑚, 𝒗𝑛⟩𝑧𝑚𝑧𝑛 (6)

where 𝑎0 denotes the global bias and 𝑎𝑚 denotes the strength of
first order interactions in 𝑧. Second order interactions are modeled
by ⟨𝒗𝑚, 𝒗𝑛⟩ =

∑ |𝑧 |
𝑓 =1 v̂𝑚,𝑓 v̂𝑛,𝑓 .

3.3 Learning for Textual Feature
Transformation and Reconstruction

The latent factors 𝒙𝑢 and 𝒚𝑖 are used not only for rating prediction,
as indicated in the previous section, but also to reconstruct the
original user and item representations in the computation of text
reconstruction losses. We use an encoder to generate latent factors,
which takes an initial user representation𝑉𝑢 or item representation
𝑉𝑖 . We deploy the strategy proposed byDeepCoNN [45], that applies
TextCNNs [13] for feature transformation. For an arbitrary user 𝑢,
we extract all review texts they authored and concatenate them into
a single long document. Similar to the top NLPmodels like BERT [9]
and GPT-2 [28], here we adopt a cutoff length𝑇𝑈 to truncate words
exceeding the limit. For users with fewer than 𝑇𝑈 words, we pad
empty words, denoted by <UNK> and initialized by zeros. This way
all users are represented by the same number of review tokens.

Table 1: Statistics of the datasets.

Dataset #users #items #ratings Sparsity #words
Instant videos 5,130 1,685 37,126 99.57 19M
Digital music 5,541 3,568 64,706 99.67 73M
BeerAdvocate 3,703 37,580 393,035 99.72 198M

Then we introduce a look-up layer to get the initial individual word
embeddings from a pre-trained model. By concatenating them, we
obtain user embedding 𝑉𝑢

1:𝑇𝑈 . Similarly, we obtain item embedding
𝑉 𝑖
1:𝑇𝐼 for item 𝑖 .
Encoding these initial 𝑉𝑢

1:𝑇𝑈 and 𝑉 𝑖
1:𝑇𝐼 embeddings results in the

latent factors, which then serve as input to a decoder that we intro-
duce to create reconstructed embeddings𝑉𝑢

1:𝑇𝑈 and𝑉 𝑖
1:𝑇𝐼 . The archi-

tecture of the decoder is symmetric to the encoder with deconvolu-
tion and unpooling layers, as shown in Fig. 2. All hyper-parameters
used in the decoding stage are the same as in the encoding stage.

The success of reconstructing initial user and item embeddings
is modeled by the text reconstruction losses, which are computed
for each user and item. In order to have scores on a bounded scale,
we rely on the cosine similarity to measure text reconstruction loss.
Unlike most cases in text analysis where embedding values are
positive, the original pre-trained embeddings we use in this paper
do have negative values, making the cosine similarity range from
-1 to 1. Therefore, we also normalize cosine similarities so that the
scales of 𝐿𝑈 and 𝐿𝐼 are comparable to that of 𝐿𝑅 . This leads to the
following formulation of the individual text reconstruction losses:

𝑙𝑜𝑠𝑠𝑈 (𝑢) =
(
1 − 𝑐𝑜𝑠

(
𝑉𝑢
1:𝑇𝑈 ,𝑉

𝑢
1:𝑇𝑈

)
2

)2
, (7)

𝑙𝑜𝑠𝑠𝐼 (𝑖) =
(
1 − 𝑐𝑜𝑠

(
𝑉 𝑖
1:𝑇𝐼 ,𝑉

𝑖
1:𝑇𝐼

)
2

)2
, (8)

where 𝑐𝑜𝑠 stands for the cosine similarity between the original
vectors and the reconstructed ones.

3.4 Model Learning
We use Adaptive Moment Estimation (Adam) [14] to minimize the
overall loss function in Eq. (1). This way, training converges fast
and the learning rate is adapted during the process.

4 EXPERIMENTAL DESIGN
Here we present a series of experiments designed to evaluate the
proposed NAECF model through the following research questions:

• RQ1: Does NAECF improve the recommendation for non-
mainstream users, creating a better balance across users?

• RQ2: What is the effect of using reviews and textual feature
transformations on mainstream and non-mainstream users?

• RQ3: What is the correlation between recommendation ac-
curacy and the difficulty of user feature reconstruction?

4.1 Data and Metrics
In this paper we focus on improving the recommendation for non-
mainstream users, and investigate the power of text reviews for
this purpose. Therefore, the selected datasets are all review-based



(see Table 1). We use two Amazon real-world datasets2 covering dif-
ferent recommendation domains, namely instant videos and digital
music, and another dataset from BeerAdvocate [20]3. The ratings
all range from 1 to 5. However, in the Amazon datasets ratings are
integers, while in the BeerAdvocate dataset they are multiples of
0.5. Users in the Amazon datasets have at least 5 interactions. To
align with this setting, we filter the BeerAdvocate dataset using the
same threshold. Due to unavailability of computational resources,
we randomly sampled 25% of users to form a BeerAdvocate subset.

Following the original setting of DeepCoNN [45] and its latest
related research [32], we use the Google News pre-trained word
vectors [23] to generate pre-trained word embeddings. Each word
in the review is thus represented as a 300-dimension vector.

We evaluate the rating prediction accuracy by computing the
conventional Root-Mean-Square Error on the test set:

𝑟𝑅𝑀𝑆𝐸 =

√∑
𝑢,𝑖 (𝑟𝑢𝑖 − 𝑟𝑢𝑖 )2

𝑁
. (9)

where 𝑁 is the number of ratings. To evaluate recommendation
performance for individual users, we also report per-user RMSE
(𝑢𝑅𝑀𝑆𝐸, as opposed to 𝑟𝑅𝑀𝑆𝐸) for further investigation. We cap
the predicted ratings to [1, 5], so there are no out-of-bounds values.

4.2 Baselines
We compare the performance of our proposed NAECF model with
two related recommendation models:

• Matrix Factorization [15]. We use MF as a classical,
pure similarity-based CF baseline. All non-textual hyper-
parameters in NAECF are reused.

• DeepCoNN [45]. This is the pioneering work and state-of-
the-art method that introduces deep learning techniques
to build a text-based recommender system. User and item
features are extracted in parallel, and their interaction is
realized by means of factorization machines (FM). Although
there are other text-based models following a similar archi-
tecture, such as NARRE [6] and [41], that may outperform
DeepCoNN, the components they added for better recom-
mendation performance are mainly attention layers or data
augmentation modules, introducing no significant change
in the model architecture. Therefore, to focus on the effect
of autoencoders in NAECF, we still adopt DeepCoNN as the
strongest and most relevant baseline.

4.3 Experimental Protocol
We randomly split the datasets into training, validation and test sets
with proportions 80%, 10% and 10%, respectively. To address the
influence of the data splitting strategy, we set 10 different random
seeds and thus use 10 different splits. While all users have at least 5
interactions in total, a random split may distribute these interactions
unevenly across sets, such that there may be users with only one
rating in the training set. To address this potentially unreliable
situation, we only account for users with at least 3 interactions in
the training set for evaluation.

2http://jmcauley.ucsd.edu/data/amazon/
3http://snap.stanford.edu/data/web-BeerAdvocate.html

We first do a grid search on the two Amazon datasets separately
to fix the hyper-parameters on DeepCoNN. Then we reuse them
for the investigation of NAECF. The hyper-parameters tuned are
listed below, with the optimal values indicated in bold:

• Number of latent factors for DeepCoNN and NAECF:
{5, 10, 20, 50, 100, 200, 500}. All latent factors are initialized
with a Uniform distribution between −0.01 and 0.01.

• Learning rate: {0.00001, 0.0001, 0.001, 0.01, 0.03, 0.1}.
• Dropout rate to avoid overfitting: {0, 0.1, 0.2, 0.5}.
• Batch size: {32, 64, 128, 256, 512, 1024}.
• Number of words: {128, 256, 512, 1024, 2048}.
• Length of CNN kernels: {2, 3, 4}.

Using the DeepCoNN architecture as reference, we investi-
gate the impact of text reconstruction loss with different weights.
Since our main concern in this paper is the effect of adding ad-
versarial conditions via AEs to the original DeepCoNN setting,
we weight the user and item AEs with the same weight 𝑤 , as
shown in Eq. (1). Specifically, we consider weight values in the set
{0, 0.1, 0.2, 0.5, 1, 2, 5, 10}. Note that NAECF reduces to DeepCoNN
when 𝑤 = 0. Similar to the fine-tuning of the hyper-parameters,
the optimal weight is selected on the validation set.

Autoencoders act as adversaries to the rating prediction process,
so their activation may lower the overall validation 𝑟𝑅𝑀𝑆𝐸. There-
fore, we deploy a two-stage training strategy: we set𝑤 = 0 in the
first 50 epochs as a pre-training process to get the model ready to
train for NAECF, and then change𝑤 to the value we are tuning for
the next 50 epochs.

Since NAECF does not chase the best overall performance, but
rather a better balance across users, we follow a different validation
strategy for𝑤 . First, we separate users in bins based on their𝑢𝑅𝑀𝑆𝐸

score with DeepCoNN; to stress more on the performance for non-
mainstream users, we use the 4 uneven bins defined by percentiles
10, 50 and 90 of the 𝑢𝑅𝑀𝑆𝐸 distribution. The performance gain
with respect to DeepCoNN is then computed using these bins as
strata, assigning smaller importance to the first and last bins, that
is, users with a good recommendation and users who are extremely
difficult to model. This way, the assessment of model capability is
better aligned with our purposes. Gain is thus defined as follows:

Δ = 0.1Δ1 + 0.4Δ2 + 0.4Δ3 + 0.1Δ4, (10)

where Δ𝑏 indicates the mean 𝑢𝑅𝑀𝑆𝐸 difference between Deep-
CoNN and NAECF in user bin 𝑏, and bin weights reflect the fraction
of users they contain out of the total sample. A positive Δ value
means NAECF improves upon DeepCoNN.

All models are implemented in PyTorch [27], with CUDA and
CuDNN for acceleration on an NVIDIA GeForce GTX 1080Ti GPU.

5 RESULTS
In this section, we present and analyze the experimental results.
As a summary, Table 2 presents the mean performance of all mod-
els over the 10 splits per dataset. It can be seen that DeepCoNN
and NAECFs show significantly better recommendation accuracy
than MF (paired 𝑡-test, 𝑝 < 0.05 [38]), and that NAECF and Deep-
CoNN perform similarly overall, provided that the weight of the
text reconstruction loss is not too high. Furthermore, in Section 5.1

http://jmcauley.ucsd.edu/data/amazon/
http://snap.stanford.edu/data/web-BeerAdvocate.html


Table 2: 𝒓𝑹𝑴𝑺𝑬 over 10 data splits for all recommendation models in all three datasets (mean± std.dev.). Bold for best results
per dataset. * for results statistically different from the best (𝒕-test, 𝒑 < 0.05).

Dataset MF DeepCoNN NAECF
𝑤 = 0.1 𝑤 = 0.2 𝑤 = 0.5 𝑤 = 1.0 𝑤 = 2.0 𝑤 = 5.0 𝑤 = 10.0

Instant Video 1.1600 ±.0264* 0.9744 ±.0145 0.9732 ±.0149 0.9749 ±.0122 0.9754 ±.0159 0.9757 ±.0169 0.9798 ±.0212 0.9896 ±.0221* 0.9967 ±.0221*
Digital Music 1.0466 ±.0097* 0.9078 ±.0138 0.9083 ±.0115 0.9106 ±.0128 0.9097 ±.0114 0.9104 ±.0128 0.9118 ±.0134 0.9167 ±.0108 0.9219 ±.0146*
BeerAdvocate 1.0442 ±.0048* 0.6722 ±.0090 0.6707 ±.0064 0.6692 ±.0035 0.6746 ±.0059* 0.6756 ±.0082* 0.6785 ±.0098* 0.6899 ±.0137* 0.7068 ±.0278*

Table 3: Weights 𝑤 yielding the best performance gain per
split on the validation set.

Dataset Split
1 2 3 4 5 6 7 8 9 10

Instant Video 2 5 0.1 10 1 5 0.1 0.1 0 0.5
Digital Music 0 0 5 5 2 0.1 2 0.1 0.1 0.5
BeerAdvocate 0.1 0.2 0 0.5 0 0.2 0.5 0.1 0.1 0.2

we show that NAECF, while maintaining similar overall recom-
mendation quality as DeepCoNN, manages to create a significantly
better balance across users thanks to the introduction of the user
and item reconstruction losses as adversaries to the rating predic-
tion optimization. Finally, in Section 5.2 we dive deeper into the
ability of the autocorrelates to reconstruct users from the learned
representations, and how this correlates with the recommenda-
tion performance per user. This analysis sheds more light on the
mechanics underlying NAECF and the reported results.

5.1 Performance Balance Across Users
In order to answer research questions RQ1 and RQ2, we investigate
the effect of autoencoders and text reviews on the recommendations
for non-mainstream and mainstream users.

5.1.1 Effect of autoencoders. As an adversarial learning model,
NAECF has two conflicting goals: minimizing the text reconstruc-
tion losses 𝐿𝑈 and 𝐿𝐼 versus minimizing the rating prediction loss
𝐿𝑅 . If the weight of the text reconstruction loss is too small, au-
toencoders cannot exert sufficient influence on the training process,
making them ineffective regarding the mainstream bias. Conversely,
if the text reconstruction loss dominates the training process, we
expect to have a significant drop in terms of overall rating predic-
tion accuracy. Following the validation process in Section 4.3, we
chose the weight 𝑤 with the best gain Δ on the validation set as
the optimal one.

Table 3 reports the optimal validation-set weight per split. As
the table shows, in 5 of the 30 splits a weight 𝑤 = 0 achieved the
best gain; note that such cases correspond to a simple re-training
of DeepCoNN. However, in the vast majority of cases a weight dif-
ferent from zero yielded a better performance gain, although there
does not appear to be a single optimal weight for the autoencoders
in NAECF. Overall, this suggests that𝑤 is a hyperparameter to tune
on a case by case basis, and that autoencoders are expected to help
when the characteristics of the data allow for it; sometimes they
do not lead to a substantial gain over DeepCoNN. Furthermore,
and based on detailed 𝑟𝑅𝑀𝑆𝐸 results not reported in the paper, we
see that the weights with the best performance gains often lead
to lower overall performance (7, 6, and 6 out of 10 seeds in three

Table 4: Test-set performance gains averaged over splits
(higher is better): per-bin gain 𝚫𝒃 and overall gain 𝚫. * for
gains statistically different from 0 (𝒕-test, 𝒑 < 0.05).

Dataset Δ1 Δ2 Δ3 Δ4 Δ
Instant Video -0.0035 0.0256* 0.0267* -0.0308* 0.0175*
Digital Music 0.0036 0.0184* 0.0106* -0.0167* 0.0103*
BeerAdvocate 0.0119 0.0117* 0.0063* -0.0115* 0.0073*

datasets). This contrast shows that a high score on an overall accu-
racy metric like 𝑟𝑅𝑀𝑆𝐸 does not necessarily reflect a good balance
across individual users.

After the optimal weights are chosen on the validation set, we
turn our attention to the corresponding test-set results. In Table 4
we report the average performance gains of NAECF over Deep-
CoNN, both per bin and overall. The table shows that users in the
central bins (ie. central 80% of users) receive a statistically signifi-
cant performance gain on all datasets, which is exactly the users
that we specifically target in NAECF. For the two Amazon datasets,
these are also the bins receiving the largest gains; for the BeerAd-
vocate dataset it is the first bin that has the highest gain, though
the difference is not significant from the second bin. In fact, the
gains and losses observed for the 10% of users in the first bin are
not statistically different from zero, which means that users that al-
ready receive good performance are neither helped nor punished by
NAECF. Therefore, the application of autoencoders as adversaries
to the rating prediction problem does not sacrifice performance for
the mainstream users. Finally, we observe that the 10% of users in
the last bin do receive a statistically significant performance loss.
While unfortunate, such loss is a collateral damage on a minority of
users who are hard to satisfy anyway, in benefit of the bulk of users
who now receive better recommendations. Averaging gains across
bins, as indicated in Eq. (10), we see that NAECF yields statistically
better results than DeepCoNN on all datasets. This indicates the
overall success for NAECF to create a better balance across users. In
general, we help most of the non-mainstream users without hurting
mainstream users.

Figure 3 shows the test-set performance gain for the different
data splits. We can first notice that the optimal weight, selected
based on the gain on the validation set, turned into a slight loss
in the test set for only one split in the Instant Video dataset (Δ =

−0.0054), and one split in the Digital Music dataset (Δ = −0.001).
Detailed results not reported in the paper show that this is mainly
due to a drop in Δ4, representing the users that are hard to optimize
for in any case. In 5 cases the optimal weight was 𝑤 = 0, which
yields a gain Δ = 0.4 For the majority of cases though (23 out of 30

4Due to the stochastic nature of the training process, one retraining of DeepCoNN
may yield a slight gain with respect to another, but it should be zero on expectation.
Therefore, we set Δ = 0 when 𝑤 = 0.



Figure 3: Test-set performance gain Δ on each of the 10 data
splits, sorted within dataset.

splits), the optimal weight selection achieves a higher gain Δ and
therefore helps achieve a better overall balance in recommendation
performance across mainstream and non-mainstream users. If we
consider only top 90% users to select the best weight, there are
in total 28 out of 30 splits (except 2 in the Digital Music dataset)
where NAECF shows superiority over DeepCoNN. However, this
does not mean that a higher weight is always better for reaching
a balance across users. For the BeerAdvocate dataset, 83% of the
top-3 weights selected via the validation process are not larger
than 0.5. For the two Amazon datasets, and although the optimal
weights distribute over all weight candidates, unreported results
still show that weights no larger than 2.0 take 85% of the top-3
best results. This observation matches our expectation that a mild
weight value is more likely to bring a better trade-off between the
overall recommendation accuracy and the balance across users.
Based on these observations, we provide a positive answer to RQ1.

5.1.2 Effect of text reviews. We hypothesize that exploiting elab-
orate user- and item-related information, in our case in the form
of online reviews, not only contributes to overall recommendation
performance [6, 45], but also to neutralizing the mainstream bias.
While non-mainstream users are relatively underrepresented in the
user space, it should at least help if their individual representations
are as elaborate as possible to model their preferences better.

In order to verify this hypothesis, we investigate the effect of
this additional information compared to the case where it is not
used, such as in a classical collaborative-filtering models like MF.
We deliberately do not compare MF with NAECF because we would
confound the use of text reviews for boosting recommendation
accuracy and balancing across users. Instead, we choose to compare
with DeepCoNN, which may anyway be regarded as a special case
of NAECF and, architecture-wise it is the closest to collaborative
filtering in the NAECF family. As such, a superiority of DeepCoNN
over MF will indirectly mean a superiority of NAECF as well.

Fig. 4 shows the 𝑢𝑅𝑀𝑆𝐸 improvements on the test set made by
DeepCoNN, compared to MF on all 3 datasets. As the figure shows,
our expectations are met on all three datasets. The improvement on
𝑢𝑅𝑀𝑆𝐸 scores has a clearly positive correlation with the baseline
𝑢𝑅𝑀𝑆𝐸 achieved by MF, meaning that it is the users who received
worse recommendations in MF, the ones who benefit the most from
the inclusion of textual features in DeepCoNN. We note that, close
to the origin of the plots, we see that DeepCoNN leads to slight
performance loss for the users for which MF achieved the best
performance. This is however an artifact of the evaluation process.
Note that users with a 𝑢𝑅𝑀𝑆𝐸 close to zero in MF have almost

Figure 4: 𝒖𝑹𝑴𝑺𝑬 gain over MF (positive is better) of Deep-
CoNN and a retrainedMFmodel, on all 10 data splits. Curves
represent a spline-smoothed fit.

no room for improvement, so any other model we compare with
will probably perform worse. Similarly, other models will likely
perform better for the users with very high 𝑢𝑅𝑀𝑆𝐸 in MF, because
it is just not possible to perform worse. To illustrate and account
for this effect, Fig. 4 also compares with a retrained MF model,
displaying both the overall correlation and the loss close to the
origin. These serve as a sort of baseline to assess the improvement
of DeepCoNN (ie. rather than comparing the red curve with the
𝑦 = 0 axis, compare it with the blue curve). We can thus confirm
the superiority of DeepCoNN, as 𝑢𝑅𝑀𝑆𝐸 scores are always higher
than on a retrained MF model.

Finally, and similar to the comparison between DeepCoNN and
NAECF stated in Eq. (10), here we also compare DeepCoNN and MF
in terms of gain Δ. The values on three datasets are 0.1175, 0.1017
and 0.3282, respectively. Such a significant improvement shows the
effectiveness of review-based features in creating balance across
different users, by which we provide an answer to RQ2.

In summary, we confirmed that NAECF creates a better balance
across users by significantly improving the recommendation ac-
curacy for non-mainstream users, subject to a good selection of
the weight hyper-parameter. We also compared the review-based
DeepCoNN and the CF-based MF, and found that the improvement
stems mainly from a better optimization for non-mainstream users
who are harder to handle in bare collaborative filtering. This way,
NAECF’s superiority lies in the use of review text, not only to boost
rating prediction, but also as an adversary to ensure better user
representation. Ultimately, these findings direct an open question
to the correlation between the text reconstruction loss and the
recommendation accuracy, which we study next.

5.2 User Feature Reconstruction
Mainstream users are generally active and display common behav-
ioral patterns. This makes it easier for them to be matched with
proper neighbors in collaborative filtering, ultimately giving them
more accurate recommendations. At the same time, good perfor-
mance on similarity-based user modeling will make them easier
to reconstruct in the NAECF autoencoders, and should therefore
have a lower text reconstruction loss after training. This should
be reflected by a positive correlation between 𝑢𝑅𝑀𝑆𝐸 scores and
user reconstruction losses 𝑙𝑜𝑠𝑠𝑈 . Because DeepCoNN does not con-
tain any text reconstruction module, the loss should be randomly



Figure 5: NAECF 𝒍𝒐𝒔𝒔𝑼 by test-set 𝒖𝑹𝑴𝑺𝑬 , for each weight𝑤 .
Lines represent a spline-smoothed fit.

distributed and uncorrelated with 𝑢𝑅𝑀𝑆𝐸; we verified this in the
data but do not report it here. However, intuition tells us that main-
stream users should have low reconstruction losses. The failure
of DeepCoNN to reflect this expectation means there is room for
improvement to create a better balance across users, which is con-
firmed by our findings in the previous section.

Therefore, we now look into the correlation between user recon-
struction loss 𝑙𝑜𝑠𝑠𝑈 and 𝑢𝑅𝑀𝑆𝐸 recommendation accuracy. Fig. 5
shows the relationship for each of the evaluated weights𝑤 . We can
see clear differences across datasets, but there are several qualitative
commonalities. First, the majority of users are not mainstream even
if they have a rather low 𝑢𝑅𝑀𝑆𝐸 score. Second, higher weights
generally lead to lower reconstruction losses and therefore to bet-
ter user representations. This is expected because a high weight
makes the text reconstruction losses dominate the overall loss in
Eq. (1), but the figure further shows that the relative relationship
between 𝑙𝑜𝑠𝑠𝑈 and 𝑢𝑅𝑀𝑆𝐸 is pretty consistent across weights. In-
terestingly, the BeerAdvocate dataset shows some fluctuations with
high weights. This evidences that the optimal weight needs proper
tuning, because excessively high weights lead to substantial perfor-
mance loss and 𝑢𝑅𝑀𝑆𝐸 scores become less stable as a consequence.
As reported in Table 3, the optimal weights for this dataset are
rather small indeed in comparison with the other two datasets.

We also followed the earlier approach of dividing users in four
bins according to the 𝑢𝑅𝑀𝑆𝐸 distribution. Fig. 6 similarly shows
the relationship between 𝑙𝑜𝑠𝑠𝑈 and 𝑢𝑅𝑀𝑆𝐸 with all the evaluated
weights, but differentiating among user bins.We can clearly observe
that, as expected, the relationship is monotonically positive except
for the last bin in the Digital Music dataset. This confirms again that
users who are better represented receive more accurate recommen-
dations. As reported in Table 4, mainstream users in bin 1 do not
always benefit from NAECF because they already receive good rec-
ommendations and there is little room for improvement, regardless
of how well they are reconstructed. Fig. 6 confirms this specially in
the two Amazon datasets, where bin 1 users receive nearly perfect
recommendations. But NAECF improves performance specially for
the 80% of non-mainstream users in bins 2 and 3, because those are
harder to represent to begin with. Fig. 6 confirms that these users
generally have the highest reconstruction losses indeed. Together
with the correlations in Fig. 5, we see the relationship between
the mainstreamness of users and the difficulty to represent them.
Notwithstanding, the bottom 10% of users in bin 4 are too extreme
to find proper representations, so the autoencoders hardly work
for them. We even observed in Fig. 6 a negative correlation on the

Figure 6: NAECF 𝒍𝒐𝒔𝒔𝑼 by test-set 𝒖𝑹𝑴𝑺𝑬 , with all evaluated
weights𝑤 . Error bars show standard deviations per user bin.

Instant Video and Digital Music datasets when 𝑢𝑅𝑀𝑆𝐸 is large.
This confirms that NAECF sacrifices performance for these extreme
users in favor of the others. Although unfortunate, we find this be-
havior acceptable because these users often display such particular
tastes and patterns that it is hard for them to benefit from virtually
any CF-based recommendation model.

6 CONCLUSION AND FUTUREWORK
Rating accuracy has long been an important criterion to evalu-
ate recommender systems, if not the most important. Previous
research has therefore focused mainly on maximizing the overall
performance averaged over users. However, traditional collabora-
tive filtering methods focus more strongly on recommending items
that have positive interactions by similar users. In this situation,
it is hard for CF models to work well with non-mainstream users
that have special tastes or habits. Because non-mainstream users
are rather a minority, this problem may not have a strong effect on
the overall accuracy, yet it may create an unfair imbalance across
users. To address this problem, we proposed a conceptually simple
but effective model named NAECF, which minimizes the rating
prediction loss while keeping the user and item properties pre-
served in the learned user and item representations. Preservation
of user and item properties is imposed as an adversarial condition
by minimizing reconstruction losses in addition to rating predic-
tion error. This prevents these representations from being biased
towards mainstream users.

We conducted experiments on three real-world datasets, and
found that NAECF achieves an overall rating accuracy that is on
par with the state-of-the-art. However, its strength is in the better
balance it achieves across users thanks to a significant improvement
of the recommendation accuracy for non-mainstream users, with-
out significantly harming the mainstream ones. This improvement
is achieved through an optimal trade-off between rating prediction
and text reconstruction. Our results confirm a clear correlation
between how well users are represented and the quality of their
recommendations, evidencing that side information may be instru-
mental not only for boosting overall accuracy, but also to minimize
possible biases in the learned models.

Future work will be conducted in several directions. First, we
will investigate whether the conclusions drawn here for rating
prediction generalize to the ranking paradigm, which is gaining
popularity in the recommendation field. Second, in this paper we
treated users and items as equally important through a single text



reconstruction weight. One may argue that improving the represen-
tation of users alone is not enough, because the model also needs a
good item representation to know what to recommend. However,
users and items may have different impacts, and we would like to
explore this question by implementing two weights in the NAECF
loss. Third, we introduced side information from text reviews in or-
der to achieve a better balance across users. However, text reviews
are just an example of additional content-based resources such as
images and demographic information that can be used to achieve
a similar function. We would like to further investigate the effect
of other side information in the future and, perhaps more impor-
tantly, how to effectively incorporate such information in NAECF
to eliminate the mainstream-bias. Finally, we are also interested in
combining NAECF with explainable recommendation, so that we
can provide convincing explanations to non-mainstream users.
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