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1. Introduction 

The first Information Retrieval Education through Experimentation track (EIREX 2010) was run at the University 

Carlos III of Madrid, during the 2010 spring semester. 

EIREX 2010 is the first in a series of experiments designed to foster new Information Retrieval (IR) education 

methodologies and resources, with the specific goal of teaching undergraduate IR courses from an experimental 

perspective. For an introduction to the motivation behind the EIREX experiments, see the first sections of 

[Urbano et al., 2011]. For information on other editions of EIREX and related data, see the website at 

http://ir.kr.inf.uc3m.es/eirex/.  

The EIREX series have the following goals: 

� To help students get a view of the Information Retrieval process as they would find it in a real-world 

scenario, either industrial or academic. 

� To make students realize the importance of laboratory experiments in Computer Science and have them 

initiated in their execution and analysis. 

� To create a public repository of resources to teach Information Retrieval courses. 

� To seek the collaboration and active participation of other Universities in this endeavor. 

This overview paper summarizes the results of the EIREX 2010 track, focusing on the creation of the test 

collection and the analysis to assess its reliability. Next section provides a brief overview of our course and the 

student systems. Section 3 describes the process we followed to create the EIREX 2010 test collection, and 

Section 4 presents the evaluation results. Sections 5 and 6 analyze the reliability of our approach by studying the 

effects of the inconsistency and incompleteness of judgments. Section 7 wraps up with the conclusions. 

2. Teaching Methodology 

EIREX 2010 took place during the 2010 spring semester, in the context of the Information Retrieval and Access 

course [Urbano et al., 2010b], which is an elective course taken by senior Computer Science undergraduates. In 

this course we teach traditional IR techniques, and the main lab assignment consists in the development, from 

scratch, of a search engine for HTML documents. The development of this search engine is divided in three 

modules to hand in separately: 

� Module 1 contains the implementation of an indexer for a collection of HTML documents and a simple 

retrieval model for automatic ad hoc queries. 

� Module 2 incorporates query expansion in the retrieval process. 

� Module 3 adds simple Named Entity Recognition (NER) capabilities to aid in the “who” questions. 

In this edition we had 32 students, who created a total of 8 systems in groups of 4 students each. Thus, we had 

a total of 24 systems: 8 with basic retrieval, 8 with query expansion and 8 with NER. We try to encourage students 

by giving one extra point to the group who developed the most effective search engine (see Section 4). 

All these systems are evaluated with an IR test collection built with the students also from scratch (see 

Section 3). A test collection for Information Retrieval evaluation contains three major components: a document 

collection, a set of information needs (usually called topics), and the relevance judgments or ground truth 
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(usually assessed by humans) telling what documents are relevant to the topics [Voorhees, 2002]. The students 

run their systems for each topic, returning the list of documents in the collection deemed relevant to it. Then, we 

use some effectiveness measures to assess, according to the relevance judgments, how well the systems actually 

answered the information needs. This provides us with a ranking of the student systems in terms of effectiveness. 

Ideally, students would be given a training collection to develop and tune their systems, and then they would 

be evaluated with a different test collection. However, in this first EIREX edition we did not have a full collection 

available for training, and so a subset of the final test collection was provided as training data (see Section 3.1). 

Students were thus given a subcollection, which was used to develop their first module. We then evaluated them 

with the full collection and published the results. The same process was repeated for modules two and three.  

3. Test Collection 

The process we employ to create the EIREX test collections is different from those usually followed in other IR 

evaluation workshops such as the early ad hoc tracks of the Text REtrieval Conference (TREC) ran by NIST 

[Voorhees et al., 2005]. Although we follow very similar principles, working with students bears some limitations, 

mainly in terms of effort and reliability. The document collection cannot be as large as those usually employed in 

TREC, because undergraduate students do not have the adequate expertise to handle that much information and 

they would probably dedicate too much time to efficiency issues rather than effectiveness and the 

implementation and understanding of the IR techniques we explain. This limitation restricts the topics to use: if 

they had nothing in common, we would probably need too many documents to have sufficient diversity to 

include relevant material for each topic; but if they were somehow similar, probably fewer documents would be 

needed. Therefore, we decided that all topics should have a common theme, which in addition reflects more 

closely a real setting where students have to deploy an IR system for a company in a particular domain. For this 

first EIREX edition we chose the theme to be Computing, as it sure is a topic attractive to Computer Science 

students. Thus, the document collection depends on the topics and not the other way around as usual. 

Based on the theme chosen, we come up with a set of candidate topics. The problem at this point is how to 

build a document collection making sure that some relevant material is included for every topic. The procedure 

chosen consists in issuing queries to Google Web Search just as if we were trying to satisfy the information needs 

ourselves, manually using term proximity operators, query expansion, etc. Based on these searches and a brief 

inspection of their first results, we can discard topics apparently too difficult, with very few documents, or for 

which there do not seem to be clearly relevant documents. Once the final topic set is established, we use a focused 

web crawler [Urbano et al., 2010a], to download all web pages returned by Google for each topic. The union of all 

these web pages conform the complete document collection. 

At this point we have a document collection and a set of topics, so next we need relevance judgments. 

Another difference here is that students have to make all relevance judgments before they start developing, as 

otherwise some might try cheating and judge all documents retrieved by their system as relevant. In addition, 

having them inspect the documents to assess their relevance helps later on during development because they 

know what kind of documents their systems will have to handle. Judging every document for every topic is 

completely impractical because it requires too much effort, so instead a sample of documents is judged for each 

topic (i.e. the topics’ pools). To come up with a reliable pool of documents despite student systems do not directly 

contribute, we use well-known and freely available IR tools instead: Lemur1 and Lucene2 (call these the pooling 

systems). We thus proceed to index the complete document collection and obtain the results provided by 

different configurations of the pooling systems for each of the topics, trying to exploit as much as possible our 

previous knowledge about the topic and the information documents must contain to be considered relevant. For 

instance, if the topic asked for information about the CEO of a company, we would include the name of the 

person in the query. With these results we come up with the pools of documents students have to. 

Pools are formed differently too: if we calculate depth-k pools (joining the top k results from the pooling 

systems), some topics might have considerably more documents to judge than others, as the final number 

depends on the overlap among the results. If some students were assigned a pool significantly larger than others, 

they could just judge carelessly once they think they have done enough work compared to their classmates. To 

prevent this situation we compute size-k pools instead: pools with the minimum depth such that the total size is at 

least k documents. Thus, each topic has a pool of documents with different depth, although all pools have very 

similar sizes and so all students judge more or less the same amount of documents. 

                                                                 

1 http://www.lemurproject.org 
2 http://lucene.apache.org 
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Topic Downloaded Pool size Pool depth Kappa Overlap Precision Recall 

001 328 100 28 0.362 0.484 0.811 0.545 

002 417 100 26 0.243 0.233 0.233 1.000 

003 616 100 30 0.517 0.763 0.906 0.829 

004 220 102 25 0.470 0.536 0.769 0.638 

005* 417 101 17 - - - - 

006** 768 102 19 0.468 0.548 0.622 0.821 

007 547 100 25 0.456 0.407 0.889 0.429 

008 729 100 23 0.096 0.158 0.818 0.164 

009 374 100 37 0.625 0.550 1.000 0.550 

010 609 101 26 0.217 0.111 1.000 0.111 

011 218 100 56 0.192 0.200 0.250 0.500 

012* 338 100 19 - - - - 

013 384 100 21 0.333 0.269 0.269 1.000 

014 247 100 58 0.342 0.403 0.595 0.556 

015 435 102 34 0.624 0.667 0.810 0.791 

016 417 103 28 0.433 0.444 0.526 0.741 

017 516 101 23 0.574 0.364 0.500 0.571 

018 474 101 20 0.735 0.708 0.895 0.773 

019* 488 100 15 - - - - 

020 459 105 20 0.395 0.263 0.278 0.833 

021† 79 - - - - - - 

022† 689 - - - - - - 

Average 444 101 28 0.417 0.418 0.649 ± 0.054 0.646 ± 0.054 

Total 9,769 1,967 - - - - - 

Table 1. Summary of the EIREX 2010 test collection. * for topics judged by one faculty member, ** judged by 

two faculty members. † for the noise topics. 

Although unlikely, the results provided by the pooling systems might still leave out relevant documents. To 

assure that all pools have some relevant material, we always include Google’s top kG results for each topic, as we 

checked when selecting topics that some relevant web pages were included there. Also, we add kN random 

documents crawled from noise topics, which we created by excluding specific terms appearing in the topic set 

descriptions. These noise documents allow us to check for quality in the relevance judgments, as they should all 

be judged not relevant for any topic. If we found students judging these noise documents as relevant, we would 

have an indication of possible negligence. Therefore, all pools have kN noise documents, the first kG documents 

retrieved by Google, and documents retrieved by the pooling systems up to a minimum of k documents 

altogether. The union of all documents in these pools conform the biased document collection. This is the 

collection we provide students with to run and evaluate their systems. 

3.1. Topics 

The EIREX 2010 test collection contains a total of 20 topics, all of which pertain to the Computing theme we chose. 

All topic descriptions have a common structure (see Figure 1), with a unique id, a title and a description of what 

is considered to be relevant to the topic. To keep things simple in this first edition, we decided to have all topics 

share the same generic description of relevance levels (see Section 3.4). 

<topic id="2010-019"> 

  <title>Where are Google’s data-centers located?</title> 

  <relevance> 

    <level value="2">The document is not related to the topic. It may contain some common terms, but still not related 

to the topic.</level> 

    <level value="1">The document is related to the topic, but does not satisfy the information need. It may contain a 

hyperlink to a relevant document.</level> 

    <level value="0">The document is related to the topic and does satisfy the information need.</level> 

  </relevance> 

</topic> 

 Figure 1. A sample EIREX 2010 topic description. 
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The topic titles were used as input queries to the student systems, so they can all be considered short automatic 

runs in TREC’s terminology [Voorhees et al., 2005] (i.e. there is no human intervention in creating the queries 

from the topic descriptions). They are rather short, with only 9 words on average, ranging from 5 to 14 words. 

Due to the lack of a training collection, this year we provided students with a very small subset containing topics 

005, 006, 012 and 019, for which we made the relevance judgments ourselves (see Section 3.4). Topics 021 and 022 

were used as noise topics to obtain nonrelevant documents3. 

3.2. Documents 

The complete document collection contains all documents returned by Google for the final set of 20 topics plus the 

2 noise topics (see Table 1). A total of 9,769 web pages were crawled for all 22 topics, which account for 735 MB. 

The median size per document is 49 KB, with a mean of 77 KB. The median number of words per document is 

1,307, with a mean of 2,668. These documents were used just as downloaded, with no postprocessing involved. 

The biased collection, containing only documents in the pools (see Section 3.3), had a total of 1,967 documents, 

which account for 161 MB. The median size per document is 44 KB, with a mean of 84 KB. The median number of 

words per document is 1,319, with a mean of 3,119. That is, both document collections have roughly the same 

characteristics in terms of size and word count, though the biased collection is a little more skewed. 

3.3. Pools 

For each of the 20 topics in the collection, we ran the 12 pooling systems described in Table 2. We used various 

configurations of Lemur version 4.11 and Lucene version 3.0.1, which basically differed on the stemmer, the 

treatment of stop words, the retrieval model employed and the use of query expansion. 

Id System Parse HTML Stemmer Stop words Model Query expansion 

p0001 Lemur 4.11 Yes Krovetz No Okapi BM25 No 

p0002 Lemur 4.11 Yes Krovetz No Okapi BM25 Yes 

p0003 Lemur 4.11 Yes Krovetz Yes Okapi BM25 No 

p0004 Lemur 4.11 Yes Krovetz Yes Okapi BM25 Yes 

p0005 Lemur 4.11 Yes No No Okapi BM25 No 

p0006 Lemur 4.11 Yes No No Okapi BM25 Yes 

p0007 Lemur 4.11 Yes No Yes Okapi BM25 No 

p0008 Lemur 4.11 Yes No Yes Okapi BM25 Yes 

p0009 Lucene 3.0.1 No No Yes Vectorial TF/IDF No 

p0010 Lucene 3.0.1 Yes No Yes Vectorial TF/IDF Yes 

p0011 Lucene 3.0.1 Yes Porter Yes Vectorial TF/IDF No 

p0012 Lucene 3.0.1 Yes Porter Yes Vectorial TF/IDF Yes 

Table 2. Summary of the EIREX 2010 pooling systems. 

For each topic, we joined the top kG documents retrieved by Google and kN random documents from the two 

noise topics. In this EIREX 2010 edition we chose kG=kN=10 documents. Then, we pooled results from the 12 

pooling systems until at least 100 documents were in the pool altogether. As shown in Table 1, pool sizes ranged 

between 100 and 105, with an average of 101 documents. Therefore, all students judged more or less the same 

amount of documents. Pool depths ranged between 15 and 58, with an average 28, showing that the pooling 

systems tended to agree much more for some topics than for others. Note that the biased collection contains 1,967 

unique documents, but the sum of all pool sizes is 2,018. Therefore, several documents were retrieved for more 

than one topic: 49 were retrieved for 2 topics and 1 was retrieved for 3 topics. 

3.4. Relevance Judgments 

We applied a cleaning process to all web pages before being displayed to the assessors, turning them into a basic 

black and white document to make the reading task easier. We also removed all scripts, embedded objects and 

HTML elements not related with page rendering. Assessors were able to use a basic search option, and they of 

course did not know whether documents were from the Google top results or noise topics. Judging took about 2 

hours per assessor and topic, so the task could be completed in about one class session. Students never had access 

to the relevance scores of the documents, as all files were encrypted for submission back to the course instructors. 

                                                                 

3 Noise topics have no description in the topics file. 
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All ~100 documents per topic were judged by two students, except for topics 005, 012 and 019, which were 

judged by one faculty member; and topic 006, which was judged by two faculty members. We used a 3-point 

relevance scale from 0 to 2: nonrelevant, somewhat relevant, and highly relevant. Documents that could not be 

judged due to technical problems when rendering were judged as -1 (1% of the times). On average, students 

judged 24 documents per topic as somewhat relevant and 13 as highly relevant. In addition, of all the 326 

judgments on noise documents, only once did a student judge the document as relevant. 

4. Evaluation Results 

All 20 topics were used to evaluate the 24 student systems (3 modules for each of the 8 student groups). We used 

NDCG@100 (Normalized Discounted Cumulated Gain at 100 documents retrieved) as the main measure to rank 

systems, and AP@100 (Average Precision), P@10 (Precision) and RR (Reciprocal Rank) as secondary measures, 

using a 2-point relevance scale conflating the somewhat and highly relevant levels. 

System NDCG@100 AP@100 P@10 RR 

03.3 0.699 ± 0.022 0.536 ± 0.029 0.621 ± 0.039 0.745 ± 0.053 

03.2 0.685 ± 0.021 0.52 ± 0.029 0.598 ± 0.038 0.712 ± 0.049 

03.1 0.683 ± 0.022 0.519 ± 0.029 0.583 ± 0.039 0.711 ± 0.037 

01.1 0.683 ± 0.022 0.51 ± 0.026 0.553 ± 0.030 0.691 ± 0.038 

01.3 0.68 ± 0.022 0.503 ± 0.026 0.538 ± 0.041 0.678 ± 0.037 

01.2 0.671 ± 0.020 0.484 ± 0.025 0.53 ± 0.034 0.675 ± 0.048 

05.3 0.661 ± 0.024 0.48 ± 0.027 0.53 ± 0.040 0.667 ± 0.049 

07.1 0.66 ± 0.021 0.476 ± 0.032 0.528 ± 0.035 0.661 ± 0.045 

05.1 0.653 ± 0.024 0.472 ± 0.031 0.528 ± 0.035 0.661 ± 0.058 

07.3 0.652 ± 0.024 0.464 ± 0.031 0.528 ± 0.040 0.65 ± 0.049 

02.1 0.634 ± 0.025 0.455 ± 0.029 0.517 ± 0.040 0.649 ± 0.055 

05.2 0.629 ± 0.023 0.448 ± 0.030 0.513 ± 0.042 0.644 ± 0.052 

07.2 0.628 ± 0.024 0.442 ± 0.031 0.505 ± 0.041 0.633 ± 0.054 

04.1 0.528 ± 0.018 0.345 ± 0.029 0.42 ± 0.043 0.59 ± 0.041 

08.1 0.522 ± 0.022 0.335 ± 0.019 0.381 ± 0.026 0.499 ± 0.038 

08.2 0.508 ± 0.018 0.32 ± 0.018 0.366 ± 0.027 0.455 ± 0.046 

02.3 0.508 ± 0.018 0.32 ± 0.018 0.36 ± 0.022 0.455 ± 0.046 

02.2 0.507 ± 0.018 0.319 ± 0.018 0.345 ± 0.034 0.447 ± 0.020 

08.3 0.486 ± 0.012 0.297 ± 0.013 0.345 ± 0.034 0.447 ± 0.020 

04.2 0.472 ± 0.018 0.291 ± 0.023 0.321 ± 0.029 0.446 ± 0.039 

04.3 0.472 ± 0.018 0.291 ± 0.023 0.321 ± 0.029 0.422 ± 0.045 

06.3 0.349 ± 0.017 0.163 ± 0.015 0.295 ± 0.023 0.418 ± 0.045 

06.1 0.347 ± 0.017 0.163 ± 0.015 0.295 ± 0.023 0.409 ± 0.044 

06.2 0.325 ± 0.015 0.15 ± 0.012 0.282 ± 0.021 0.313 ± 0.016 

Mean σ 0.020 0.024 0.034 0.043 

Table 3. Mean and standard deviation of the NDCG@100, AP@100, P@10 and RR scores for the 24 

student systems over 1,000 random combinations of trels, ordered by mean NDCG@100 score.  

Given that most topics were judged by two different assessors, there is no single ground truth to evaluate 

systems; so we decided to create a sample by randomly combining assessors for each topic that was judged twice. 

There were 17 such topics, so there are 217=131,072 possible combinations, though for practical reasons we created 

a sample of 1,000. Call each of these a trel (for topic relevance set). Table 3 and the plots in Figure 2 show the 

mean scores for each of the four measures over the 1,000 trels, along with the range of scores observed. 

Systems behaved remarkably well compared to usual TREC ad hoc results [Voorhees et al., 2005], probably 

due to the methodology followed to build the test collection (see Section 3). Documents were crawled for a 

prefixed set of topics, and if topics were quite different from one another (which we attempted to avoid), 

documents would probably be very different too. That is, it might be somewhat clear, from an algorithmic 

perspective, what documents pertain to what topics, although systems would still have to rank relevant 

documents properly. This can be observed in Figure 3. The left plot shows, for each group’s best system, the ratio 

of documents retrieved at different cutoffs that were crawled for the topic. Call this measure C@k (Crawl). We can 

see that for the top systems over 90% of the documents retrieved were actually crawled for the particular topics 

for k<60, and over 70% by the end cutoff k=100. The right plot displays the R@k scores (Recall), showing that the 
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top systems retrieved about 90% of the relevant documents by the end cutoff k=100, indicating that systems did 

not have much trouble in finding the relevant material for each topic (we used the union trels here, see 

Section 5.2, as they contain the larger proportion of relevant judgments). Most importantly, we can see a direct 

relationship between the C@k and R@k scores and the ranking of systems, indicating that the top systems 

performed better because they retrieved more documents from Google’s results and did not overlap with the 

documents crawled for other topics. 

  

  

Figure 2. Mean NDCG@100 (top left), AP@100 (top right), P@10 (bottom left) and RR (bottom right) scores 

for the 24 student systems over 1,000 random combinations of trels, as well as the union and intersection 

trels. Errorbars show the range of scores observed, while the yellow and blue regions correspond to 2 and 

2.6 standard deviations around the means (95% and 99% CI). 

 

  

Figure 3. Mean C@k (left) and R@k (right) with the union trels for the best system per student group. The 

grey vertical line marks the mean number of relevant documents across topics (51). 
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5. Inconsistency of Relevance Judgments 

One of the major critics of IR systems evaluations following TREC-like methodologies is the subjective nature of 

relevance, which can affect the results when using different assessors. It has been shown that such differences in 

relevance assessments do have an impact on the measured performance of systems, but that the ranking of 

systems is hardly altered, which is what matters given the comparative nature of these experiments 

[Voorhees, 2000][Voorhees, 2002]. We made a similar meta-analysis on our collection, trying to measure the 

reliability of the judgments made by students. 

5.1. Assessor Agreement 

In her study, Voorhees collected relevance judgments from 3 different people and for each of the 50 TREC-4 

topics. She measured the average agreement between each topic's three assessors, calculating the overlap of 

judgments (the size of the intersection of relevant documents divided by the size of the union of relevant 

documents), and the precision and recall using one assessor’s judgments as ground truth and the other’s as a 

retrieval run (note that the precision of assessor A with respect to assessor B is the recall of B with respect to A 

and vice versa). She observed overlap levels between 0.301 and 0.494, precision ratios between 0.605 and 0.819 

and recall ratios between 0.528 and 0.695 [Voorhees, 2000].  

In our collection, we have 20 topics, 17 of which were evaluated by two different assessors. We also measured 

the agreement between each topic’s assessors using overlap, precision and recall, besides Cohen’s Kappa with 

equal weights (see Table 1). The average Kappa score is fairly high: 0.417 across all 17 topics. The mean overlap 

across topics is 0.418, which is highly within the range observed by Voorhees for TREC assessors. Finally, the 

precision and recall averages are 0.649 and 0.646 respectively, which agree with Voorhees’ finding that a practical 

upper bound on performance is 65% precision at 65% recall, as that is the level at which humans tend to agree 

with one another [Voorhees, 2000]. However, these scores depend on who we consider assessor A and who 

assessor B, so we computed the precision-recall ratios over a random sample of 1,000 combinations. About 95% of 

the observations were between 0.539 and 0.757. Therefore, the judgments made by our students seem to be as 

reliable as those of TREC assessors, because the agreement scores are comparable. 

5.2. Effect on System Performance 

Using the 1,000 random trels from Section 4 we can measure the differences in effectiveness scores due to having 

different relevance assessors. We also created two special trels: the union (where a document has the largest 

relevance level given by either judge) and the intersection (with the lowest relevance level given by either judge). 

Note that the union trels model a very permissive assessor, while the intersection trels model a restrictive one. 

Therefore, we have 1,002 different trels to evaluate the 24 student systems. Figure 2 shows the results for mean 

NDCG@100, AP@100, P@10 and RR scores. 

Table 4 shows the minimum and maximum largest differences observed across all systems when using 

various sets of trels: for each system we computed its minimum and maximum scores across all 1,000 trels, and 

then record the difference; the table reports the minimum and maximum such (largest) differences across all 24 

systems. Differences in NDCG@100 are between 0.068 and 0.145, and between 0.061 and 0.189 for AP@100, which 

are much smaller than for P@10 and RR. These differences are larger than those observed by Voorhees (between 

0.05 and 0.1 for mean AP in TREC-4). However, this is expected because in our case the relevance judgments were 

made in a 3-point scale, introducing more variability; the students have much less experience than TREC 

assessors; and we  have less than half the number of topics used in TREC, resulting in more unstable results to 

begin with [Buckley et al., 2000]. Also, the mean AP@100 scores of the student systems are larger than those 

observed in TREC-4 in the first place (between 0 and 0.4), so the relative differences are virtually the same. As 

found by Voorhees, the changes in performance are highly correlated across topics: if a system gets a higher score 

with a particular set of trels, the other systems tend to do so.  

 NDCG@100 AP@100 P@10 RR 

95% CI (± 2σ) 0.048 - 0.1 0.05 - 0.128 0.082 - 0.170 0.064 - 0.231 

All 1,000 trels 0.068 - 0.145 0.061 - 0.189 0.110 - 0.260 0.081 - 0.339 

union - intersection 0.098 - 0.167 0.084 - 0.244 0.165 - 0.35 0.088 - 0.354 

Table 4. Observed minimum and maximum largest system effectiveness differences when using various 

combinations of trels: around systems mean’s 95% confidence intervals (top), between all 1,000 random 

trels (middle), and between the union and intersection trels (bottom). 
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However, most differences lie in a much narrower interval. The yellow shaded regions in Figure 2 represent 

the intervals within which 95% of the observations can be found per system (4 standard deviations long). The 

largest such interval is 0.1 for NDCG@100 and 0.128 for AP@100, which are quite small relative to the absolute 

effectiveness figures. The results in Table 3 (bottom row) and Table 4 support the use of NDCG@100 as the main 

measure to rank systems because it is shown to be the most stable under different assessors, followed by AP@100, 

P@10 and RR. These results agree with previous studies on the effect of topic set size on measure stability 

[Buckley et al., 2000][Sakai, 2007]. When comparing the union and intersection trels, differences are much larger 

as expected, especially for P@10 and RR, where there are observations over 0.35 (about half the average 

effectiveness). 

5.3. Effect on System Ranking 

We obtained 5,000 random pairs of trels and calculated the Kendall’s τ correlation coefficient between the 

rankings of systems resulting from evaluating them with those two trels. Doing so, we measure how different the 

ranking of systems would be if using a different (yet possible) set of trels. As Table 5 shows, the correlations are 

quite high for NDCG@100 and AP@100, averaging to 0.926 and 0.927 respectively. 

 NDCG@100 AP@100 P@10 RR 

Mean ± σ 0.926 ± 0.028 0.927 ± 0.028 0.868 ± 0.048 0.739 ± 0.078 

Minimum 0.804 0.775 0.7 0.464 

Maximum 1 1 1 1 

Table 5. Kendall’s τ correlation between the system rankings resulting from 5,000 random pairs of trels. 

In her study, Voorhees found correlations between 0.841 and 0.996 in mean AP, with an average of 0.938; 

concluding that correlations above 0.9 can be considered reliable [Voorhees, 2000]. In our case, the distribution of 

correlations for NDCG@100 and AP@100 are extremely similar, and over 80% of the correlations were larger than 

0.9 for both measures. Indeed, none of the ranking swaps between two systems were significant (Wilconxon 

sign-rank test, α=0.05). As expected, the correlations with P@10 and RR are much lower because there are more 

unstable measures. 

  

  

Figure 4. Mean NDCG@100 (top left), AP@100 (top right), P@10 (bottom left) and RR (bottom right) 

increments, over 1,000 random combinations of trels, as a function of pool size (lower is better). Error bars 

show the range of increments observed, while the yellow and blue regions correspond to 2 and 2.6 

standard deviations around the means (95% and 99% CI). 
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6. Incompleteness of Relevance Judgments 

Another drawback of TREC-like evaluations is that the sets of relevance judgments are incomplete, because only 

the documents in the pool are judged [Voorhees, 2002]. Of course, if a system does not have the opportunity to 

contribute much to the pool it is expected to have its effectiveness diminished, as it might have retrieved relevant 

material which is unknown. In the worst case, a brand new system using these collections did not contribute at all 

to the pools, and so the evaluation could be unreliable. This is our case, as the systems developed by the students 

did not contribute directly to the pools, only the Lemur and Lucene systems did (the pooling systems). The effect 

of incompleteness has been studied with TREC dada, concluding that the early ad hoc tracks were quite robust to 

the incompleteness problem [Zobel, 1998]. Next, we analyze our collection in the same line. 

6.1. Effect on System Performance 

We generated pools of size 20, with the 10 noise documents and the top 10 retrieved by Google for each topic. 

Then, we added documents from the pooling systems to a minimum pool size of 25, 30, 35, and so on, up to the 

final pools of at least 100 documents. This gives us 17 different pools, each of which can be evaluated with the 

1,000 different trels from Section 4. We evaluated the 24 student systems for each pool and each trel. Then, for 

each increment of 5 documents in the pool, we calculated the difference in effectiveness for each system, between 

the two pools, and for all 1,000 trels. The difference is measured as the percentage increased in effectiveness from 

the smaller to the larger pool, so that it is directly comparable with Zobel’s findings (differences between 0.5% 

and 3.5%, with some observations of up to 19% in TREC-3). Figure 4 shows how the average difference in 

effectiveness diminishes as the pool size increases. 

In the case of NDCG@100, pool sizes larger than 55 show subsequent increments mostly below 1%, and no 

difference is observed over 2% (see Table 6). By the end, with pools of 100 documents, most increments are below 

0.5% (the blue shaded area corresponds to a 99% confidence interval around the means). In the case of AP@100 

the pool size needs to be at least 85 for the average difference to drop below 1%, while some differences above 2% 

can still be found. These results show that the pools seem to be reliable compared to TREC’s, although a larger 

pool size would further increase the reliability of AP@100 and P@10. However, it is noticeable how well RR 

behaves on average. This is due to the fact that RR only needs one single relevant document (per topic) to 

compute the score, and those single documents are usually found at the top of the pools. Thus, the RR score 

differences rapidly converge towards zero. For other measures such as AP@100, more documents are needed for 

the score differences to converge, and so larger pools are required. Nonetheless, RR still shows the worst 

differences because of its stability issues: until the truly top relevant document retrieved is judged, scores with 

small pools can be very different to the real scores. 

Pool size 
NDCG@100 AP@100 P@10 RR 

Mean ± σ Max Mean ± σ Max Mean ± σ Max Mean ± σ Max 

20 → 25 4.77 ± 0.87 10.94 6.91 ± 1.49 13.54 12.07 ± 1.47 20.18 9.57 ± 1.42 18.34 

25 → 30 2.25 ± 0.49 5.25 3.79 ± 0.82 7.19 7.6 ± 1.05 14.29 6.4 ± 1.35 14.99 

30 → 35 2.02 ± 0.30 3.41 3 ± 0.50 5.93 4.72 ± 0.70 12.86 2.28 ± 0.65 6.72 

35 → 40 1.54 ± 0.24 2.8 2.89 ± 0.48 5.46 4.09 ± 0.59 7.02 1.33 ± 0.57 7.12 

40 → 45 0.93 ± 0.18 1.98 1.87 ± 0.34 3.57 2.8 ± 0.51 7.45 0.7 ± 0.42 2.92 

45 → 50 1.05 ± 0.13 2.5 1.85 ± 0.25 3.71 2.55 ± 0.33 7.14 1.18 ± 0.30 9.14 

50 → 55 0.64 ± 0.14 1.69 1.29 ± 0.26 2.92 1.74 ± 0.41 5.41 0.73 ± 0.24 3.56 

55 → 60 0.63 ± 0.09 1.48 1.47 ± 0.19 3.43 1.79 ± 0.28 6.63 0.22 ± 0.14 1.91 

60 → 65 0.46 ± 0.10 1.29 1.11 ± 0.24 3.3 0.92 ± 0.26 2.83 0.64 ± 0.34 5.05 

65 → 70 0.36 ± 0.09 1.48 0.92 ± 0.20 2.42 0.94 ± 0.24 2.94 0.79 ± 0.32 4.24 

70 → 75 0.44 ± 0.07 1.02 1.1 ± 0.14 2.12 0.97 ± 0.16 2.69 0.23 ± 0.11 2.61 

75 → 80 0.47 ± 0.07 0.97 1.08 ± 0.16 1.84 1.17 ± 0.24 2.99 0.48 ± 0.18 3.17 

80 → 85 0.31 ± 0.08 1.25 0.71 ± 0.15 2.64 0.8 ± 0.22 4.02 0.42 ± 0.25 3.89 

85 → 90 0.34 ± 0.07 0.93 0.85 ± 0.15 1.82 0.91 ± 0.28 3.68 0.41 ± 0.30 3.77 

90 → 95 0.2 ± 0.05 0.53 0.52 ± 0.11 1.22 0.57 ± 0.15 2.25 0.09 ± 0.07 1.39 

95 → 100 0.28 ± 0.06 0.8 0.91 ± 0.11 1.92 0.99 ± 0.15 3.26 0.39 ± 0.07 2.47 

Table 6. Mean, standard deviation and maximum of the percentage increments in NDCG@100, AP@100, 

P@10 and RR over 1,000 random combinations of trels, as a function of pool size. 
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7. Conclusions 

The first edition of the Information Retrieval Education through Experimentation (EIREX) was run as an attempt 

to bring TREC-like evaluations to the IR undergraduate classroom. Doing so, we get students involved in the 

whole process of building a search engine and a test collection to evaluate it. Our goal is to introduce students in 

this kind of laboratory experiments in Computer Science, with a special focus on how to evaluate their systems 

and analyze the results. We have described how to adapt TREC’s ad-hoc methodology to build such collections 

for an IR course. The first main difference is that the documents in the collection are gathered after selecting the 

topics, and not the other way around as usual. The second main difference is related to the pools of documents to 

judge: the systems developed by the students cannot contribute directly to the pools to prevent cheating, and the 

judging effort is limited because the students cannot be asked to judge as many documents as we would want. 

Due to this limitation, the pools are formed differently, with the help of freely available IR tools. 

The question is whether such small-scale experiments are reliable or not, which is again an excellent question 

to investigate with the students, so they learn how to analyze them from a critical point of view to look into 

possible threats to validity [Voorhees, 2002][Urbano, 2011]. The main threats to validity in our case are the 

inconsistency and incompleteness of relevance judgments, so we measured the reliability of our methodology 

with typical meta-analysis techniques. We observed high agreement scores between students, and very high 

correlations between system rankings when using different sets of relevance judgments. In terms of 

incompleteness, we estimated that pools of size 100 and different depths are quite reliable and do not seem to 

affect the evaluation significantly. We conclude that the judgments made by students can be trusted, and that the 

pooling method proposed seems to work reasonably well for these small-scale evaluations. 

In the future, we plan to keep building one new test collection each year. Given that the inconsistency of 

judgments does not significantly affect the outcome of the experiments, we will try to put our efforts into having 

more topics. In addition, we plan on having students propose the topic set themselves, with per-topic description 

of what is considered relevant. A related issue is trying to develop a topic set such that the similarity of 

documents between topics is larger and so finding the relevant ones is harder. We also plan on studying the use 

of better quality control techniques upon the relevance judgments made by students, looking at it as a typical 

crowdsourcing task. 
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