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Álvaro Sarasúa
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ABSTRACT2

Metaphors are commonly used in interface design within Human-Computer Interaction (HCI).3
Interface metaphors provide users with a way to interact with the computer that resembles a4
known activity, giving instantaneous knowledge or intuition about how the interaction works. A5
widely used one in Digital Musical Instruments (DMIs) is the conductor-orchestra metaphor, where6
the orchestra is considered as an instrument controlled by the movements of the conductor. We7
propose a DMI based on the conductor metaphor that allows to control tempo and dynamics and8
adapts its mapping specifically for each user by observing spontaneous conducting movements9
(i.e. movements performed on top of fixed music without any instructions). We refer to this as10
mapping by observation given that, even though the system is trained specifically for each user,11
this training is not done explicitly and consciously by the user. More specifically, the system adapts12
its mapping based on the tendency of the user to anticipate or fall behind the beat and observing13
the Motion Capture descriptors that best correlate to loudness during spontaneous conducting.14
We evaluate the proposed system in an experiment with twenty four (24) participants where we15
compare it with a baseline that does not perform this user-specific adaptation. The comparison is16
done in a context where the user does not receive instructions and, instead, is allowed to discover17
by playing. We evaluate objective and subjective measures from tasks where participants have to18
make the orchestra play at different loudness levels or in synchrony with a metronome. Results19
of the experiment prove that the usability of the system that automatically learns its mapping20
from spontaneous movements is better both in terms of providing a more intuitive control over21
loudness and a more precise control over beat timing. Interestingly, the results also show a22
strong correlation between measures taken from the data used for training and the improvement23
introduced by the adapting system. This indicates that it is possible to estimate in advance how24
useful the observation of spontaneous movements is to build user-specific adaptations. This25
opens interesting directions for creating more intuitive and expressive DMIs, particularly in public26
installations.27
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1 INTRODUCTION

Computational Audio deals with the intersection between Computer Science and Audio Analysis,29
Processing and Synthesis. It is, in this sense, a field that involves two possible directions of study:30
extracting information and knowledge from audio, or turning available information and knowledge to31
acoustic information for a variety of applications. In an interaction context, this information can be the32
actions or movements that a user or instrumentalist makes when using a Digital Musical Instrument (DMI).33
Musical Human-Computer Interaction (HCI) focuses on developing techniques to make this transfer from34
actions or movements to acoustic information in a way that allows a more intuitive and expressive control35
of the resulting music.36

Metaphors are commonly used in interface design within HCI. Probably the most ubiquitous example is37
the desktop metaphor (Blackwell, 2006), where elements in the Graphical User Interface (GUI) are depicted38
and arranged replicating an office desktop. The rationale behind using interface metaphors is to provide the39
user a way to interact with the computer that resembles a known activity, giving instantaneous knowledge40
or intuition about how the interaction works. The field of New Interfaces for Musical Expression (NIME)41
has developed around the International Conference on NIME1, which started out as a workshop at the42
Conference on Human Factors in Computing Systems2 in 2001. NIME works inherit many of the practices43
and methods of HCI, including the common use of metaphors for the design of DMIs. Fels et al. (2002)44
argue that the application of a metaphor to a musical interface has the effect of increasing its transparency,45
understood as the physiological distance, from the perspective of the player and the potential audience,46
between the input and output of a DMI mapping.47

Note that these metaphors are not limited to the design of GUI elements to interact with through traditional48
computer input devices, such as mouse and keyboard. HCI, and particularly NIME, deal with interaction49
through different modalities such as touch, movement, etc. A good way to understand how a metaphor50
may work in the case of a DMI is through a toy example. We can imagine a DMI consisting on a control51
interface with two sliders controlling an oscillator: the position of the first controls the frequency of the52
oscillator, and the velocity at which the other is moved controls the amplitude. It would be easy to learn53
this functioning through experimentation, but we could expect a user to have an immediate intuition of it if54
we indicated her that the instrument is controlled as a violin: the first slider corresponding to the position55
of the left hand on the fingerboard, the second one replicating the action of the bow. Even more, we could56
place these sliders in a violin-shaped object and expect the user to have an intuition of the functioning57
without providing any indications. Mimicking real-world instruments as the violin following this kind58
of rationale is common (Carrillo and Bonada, 2010; Poepel and Overholt, 2006). Another widely used59
metaphor is the conductor-orchestra one, where the instrument is designed to work as an orchestra that60
follows the movements of the conductor.61

The commonly considered first computer music system using this metaphor is the Conductor Program62
by Mathews (1976). Mathews developed different input sensors for the Conductor Program, including the63
Daton (Mathews and Barr, 1988) and the most popular Radio Baton (Boie, 1989; Mathews, 1991), which64
incorporates low-frequency radio transmitters whose 3D position over a plate is measured by an array of65
receiving antennas. With two Radio Batons, one of them (usually the one held in the right hand) is used to66

1 http://www.nime.org/
2 CHI, one of the most relevant conferences on HCI: https://sigchi.org/conferences/conference-history/chi/
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trigger beats when its distance to the plate is smaller than a certain threshold; the position of the other one67
can continuously control other parameters such as the overall loudness or the dynamic balance between68
different instruments. In this pioneer system we observe some characteristics shared by interfaces using69
this metaphor: (1) they are controlled using gestures that resemble those of a real conductor, (2) the control70
consists on the modification of an existing musical piece –usually by controlling its tempo and dynamics–71
and (3) the interaction occurs in real time, with the user being able to listen to the effects of her gestures on72
the musical outcome.73

Systems that followed the Conductor Program implement refinements or modifications in different74
aspects. On many occasions, a big effort is devoted to the development of new input devices (Haflich and75
Burnds, 1983; Keane and Gross, 1989; Morita et al., 1989; Marrin and Paradiso, 1997; Marrin and Picard,76
1998) or the adaptation of existing ones to this use (Brecht and Garnett, 1995; Garnett et al., 2001). The77
complexity of mapping strategy often varies depending on the context of each application. This term is78
used to define how the input (the movements or actions performed by the user) and output (the control79
parameters for the resulting sound) are connected (Paradiso, 1997; Rovan et al., 1997).80

For beat control, as in Mathews’ case, the most commonly found strategy is to use information directly81
derived from the position of the hand or a hand-held device to trigger beats or control tempo (Haflich and82
Burnds, 1983; Keane and Gross, 1989; Morita et al., 1989; Borchers et al., 2002; Lee et al., 2004; Bergen,83
2012; Toh et al., 2013; Rosa-Pujazon and Barbancho, 2013). In all of these works, as in Mathews’, the84
”beat induction” instant in the gesture (the ictus) is assumed to correspond to the change from downward to85
upward motion (except in the case of Lee et al. (2004), where there is no beat but just tempo control, and86
Rosa-Pujazon and Barbancho (2013), who use horizontal hand movements).87

Temporal modeling strategies have also been exploited to provide control over tempo, for example using88
Hidden Markow Models (HMMs) (Usa and Mochida, 1998; Kolesnik, 2004) or neural networks (Brecht89
and Garnett, 1995; Ilmonen and Takala, 1999). Regarding the control of dynamics, the volume is sometimes90
controlled with specific gestures such as raising and lowering one hand (Toh et al., 2013; Rosa-Pujazon91
and Barbancho, 2013), but it has been more common to map parameters derived from the execution of92
the gesture (e.g. its size) to the resulting loudness (Morita et al., 1989; Usa and Mochida, 1998; Lee et al.,93
2004; Toh et al., 2013). Fabiani (2011) explored mapping semantic qualities extracted from movement to94
semantic qualities of the music, such as the mood.95

An important aspect in systems where tempo is controlled by triggering beats is to provide accurate96
control on the exact time when the orchestra plays following the gesture. As previously explained, most97
works consider that the ictus corresponds to the change from downward to upward motion, so beats are98
triggered when this change is detected.99

However, Lee et al. (2005) identified some usability breakdowns when qualitatively analyzing how people100
performed with their systems in public spaces (Borchers et al., 2002; Lee et al., 2004), and decided to101
analyze with more detail the temporal relationship between users’ conducting gestures and the beat on a102
musical piece. In order to do that, they asked professional conductors and non-conductors to “conduct”103
a fixed musical clip from the Radetzky March using up-down movements making them aware that their104
movements were not affecting the resulting sound. They found that conductors tended to anticipate the105
music beat by an average of 150 ms, while non-conductors anticipated by just 50 ms, also showing larger106
variance in the placement of the gesture beat with respect to the music beat. The hypothesis of Lee et al.,107
following the conclusions from their study, was that incorporating this knowledge to conducting systems108
could improve their usability.109
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In the case of Lee et al. (2005), the comparison between different expertise profiles was done using a110
fixed gesture (up-down hand movements). We believe, however, that in the case of public installations, it111
is potentially more engaging to allow users to freely perform with spontaneous movements. With this in112
mind, we performed a study (Sarasúa and Guaus, 2014; Sarasúa and Guaus, 2014) where we analyzed113
the movements of different participants when asked to “conduct” on top of a musical excerpt. In our case,114
the difference was that we did not ask to perform any specific gesture like up-down movement, nor did115
we ask them to focus on any specific aspect of the performance like the beat. We just asked participants116
to perform the movements they would do to make the orchestra sound as in the recording and then we117
analyzed how they synchronized to the beat and how their movements were related to the loudness of the118
piece. We observed different tendencies among participants. For example, some of them tended to move119
more energetically in loud parts (as suggested by a strong correlation between loudness and quantity of120
motion computed from the velocity of all body joints), while others tended to raise their hands higher (as121
suggested by a strong correlation between loudness and the vertical position of the hands). Regarding122
the timing, we did not observe general tendencies for different musical expertise, but we observed that123
the beats that we extracted from the participants’ hand movement tended to be lagged with respect to the124
annotated beats differently, and consistently, for each participant.125

Similarly to the case of Lee et al. (2005), we hypothesize that an interactive conducting system that126
adapts its parameters to the observations from spontaneous conducting movements can see its usability127
improved and also become more intuitive. However, following the conclusions from the aforementioned128
study, these adaptations must be user-specific (and not just based on different expertise profiles). This is129
something that cannot be assumed and needs to be thoroughly tested, provided that it is different to follow130
fixed music than actually conducting it. In the context of this work, we consider that a system has better131
usability if the user has better ability to take precise control over it. For the particular case of interest of our132
work, where we want to allow users to use spontaneous movements (as opposed to giving them instructions133
on how to perform), we refer to a system as more intuitive if, in a similar context where no instructions are134
given, it provides more precise control to the user (i.e. the user is better able to learn how to perform).135

In this context, we propose a system that explicitly exploits the knowledge that users have from the136
activity that inspires the interface (in our case, music conducting). The approach we propose can be137
defined as mapping by observation. Françoise (2015) has proposed a framework for building motion-sound138
mappings called Mapping by Demonstration that follows the design principle of Mapping through Listening139
(Caramiaux et al., 2014a). This framework considers listening as the starting point for the design of the140
mapping, which is learned from a set of demonstrations where the user explicitly shows the relationship141
between motion and sound as an acted interaction. In our case, taking advantage of the fact that the142
instrument is based on a metaphor, we propose to learn the mapping by observing each user making143
spontaneous conducting movements such as those in the aforementioned study. We argue that in the context144
of public installations, it is preferable to perform learning in this transparent way, observing spontaneous145
movements from the user, rather than allowing each user to explicitly define her own mapping in a learning146
stage.147

More concretely, we present a DMI based on the conductor metaphor that allows to control tempo and148
dynamics and learns personalized parameters from user-specific observation of spontaneous conducting149
movements. We evaluate the usability and intuitiveness of the system in a setup where the user does not150
receive instructions on how the system works and instead just learns by experimenting. For comparison,151
we also build another system based on the most commonly found strategies for controlling tempo and152
dynamics in the reviewed works as a baseline. The experiment includes a series of tasks to compare both153
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systems using both subjective feedback and objective measures about the participants’ ability to control154
loudness and the exact time of beats in the resulting music. In addition, we recruited both musicians and155
non musicians to study possible differences caused by musical expertise.156

2 PROPOSED SYSTEM

In this Section we explain in detail the functioning of the proposed system. As it has been indicated, it has157
a predefined mapping which is tuned specifically for each user. Accordingly, we first explain the system158
without adaptation, to which we refer as BASELINE. Then, we continue with the proposed system, to159
which we refer as TRAINED, highlighting the aspects in which they differ.160

In both cases, the user can control loudness and tempo on a musical piece using body movements captured161
by a Motion Capture (MoCap) device, in this case a Kinect v23. The Kinect is a motion sensing device162
developed by Microsoft for video games, which can track the position of several body joints.163

2.1 BASELINE164

Inspired by previous approaches (Haflich and Burnds, 1983; Keane and Gross, 1989; Morita et al., 1989;165
Borchers et al., 2002; Lee et al., 2004; Bergen, 2012; Toh et al., 2013; Rosa-Pujazon and Barbancho,166
2013), the system allows to control the tempo of the performance by triggering beats in changes from167
downward to upward hand movement. For this, we use the vertical velocity (vy) of both hands, computed168
with low-pass differentiators of degree one proposed by Skogstad et al. (2013), as implemented in MoDe4,169
a library for real-time feature extraction from MoCap data developed by the authors within the scope of170
this research. The ictus is detected whenever a change from negative to positive sign in vy occurs (change171
from downward to upward movement), as illustrated by the red circles in Figure 1. Notes falling between172
beats are played according to the tempo estimated from the time interval between the last two beats. Two173
extra rules are applied to avoid false positives in beat detection:174

• If the last local minimum before the current change of sign of vy is not below a threshold vth, the beat175
is not triggered. This avoids detecting beats from almost-still movement.176

• Two consecutive beats must be detected separated by at least a certain number of frames nth from each177
other. This is done to avoid detecting beats closer in time than musically meaningful, and is particularly178
necessary to avoid triggering two beats from simultaneous movements from both hands.179

Loudness in the performance is controlled by means of the gesture size, similarly to Morita et al. (1989);180
Usa and Mochida (1998); Lee et al. (2004); Toh et al. (2013). When a beat is detected at time tB using the181
method above, the gesture size is computed as the cumulative squared distance traveled by the hand where182
the beat has been detected since the detection of the previous beat, tPB

5:183

size(tPB, tB) =
i=B−1∑
i=PB

(xk(ti+1)− xk(ti))
2 + (yk(ti+1)− yk(ti))

2 + (zk(ti+1)− zk(ti))
2, (1)

3 https://developer.microsoft.com/en-us/windows/kinect
4 https://github.com/asarasua/MoDe
5 We use the squared distance instead of the distance as it requires less computation.
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where i denotes the frames from times tPB to tB . The mapping from size to MIDI velocity values is184
set in preliminary user tests, in order to cover the whole MIDI velocity range. We used MIDI velocity185
values provided that, as we explain below, we are considering a MIDI sound engine. MIDI velocity values186
can range from 0 to 127. In the following, we refer to MIDI velocity units (mvu) for loudness values187
represented in this scale.188

2.2 TRAINED189

The proposed system adapts its mapping individually to each user by performing a previous analysis of190
spontaneous conducting movements. By “spontaneous” we refer to conducting movements that the user191
performs on top of a musical excerpt without having received any specific instructions. In this sense, the192
system needs the user to “conduct” on top of a musical piece for which there is available information on the193
loudness and location of beats, just as in the case of previous observation studies (Lee et al., 2005; Sarasúa194
and Guaus, 2014; Sarasúa and Guaus, 2014) (in this case, since the music is rendered from a symbolic195
musical score, the location of the beats and the loudness are known). More concretely, this system takes196
into consideration how the user tends to anticipate or fall behind the beat, and which body movement197
descriptors are best correlated with loudness. We focus on this descriptor since it is the one to be controlled198
afterwards. For this, we need to store the time position of beats in the music and beats detected from hand199
movement (using the same method we detailed for the BASELINE system), as well as the value of different200
body movement descriptors together with the corresponding loudness values at different instants.201

The mean difference in seconds between beats in the music and beats detected in hand movement, lag,202
provides an estimation of the tendency of the user to anticipate or fall behind the beat. Negative values203
indicate that beats detected in hand movement tend to appear before the beat in the music, while positive204
values indicate that beats detected in hand movement tend to appear after the music beat. From lag, we205
compute nant as the number of frames at the device sampling rate, fs, (in the case of the Kinect V2, 30206
fps) that corresponds to the time closest to lag:207

nant = round(lag · fs) (2)

Tempo in the TRAINED system is controlled exactly the same way as in the BASELINE system, but208
including this additional parameter nant. If nant = 0, there is no difference with respect to the BASELINE.209
If nant < 0, the beat is triggered −nant frames after the change of sign in vy. Figure 1 illustrates the210
method for for nant = −2 (green circles). If nant > 0, beats are no longer detected looking at changes of211
sign in vy. Instead, beats are triggered when two consecutive values of vy are, respectively, smaller and212
greater than a new threshold vtrigger 6= 0. The value for vtrigger is computed after every change of vy from213
positive to negative sign (upward to downward movement). It takes the value of vy, nant frames after this214
change of sign. This is summarized in Algorithm 1 and depicted in Figure 1. In this figure, blue circles215
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Figure 1. Beat triggering from vy with BASELINE (red circles) and TRAINED systems (green circles,
nant = −2; blue circles, nant = 2). Samples highlighted as blue crosses set the vtrigger values for nant = 2
in the TRAINED system.

illustrate the samples where the beat would be triggered in the case of nant = 2, while blue crosses show216
the samples that determine the different values of vtrigger.217

if nant == 0 then
no correction ;

else if nant < 0 then
trigger beat nant frames after vy change from negative to positive sign ;

else if nant > 0 then
define new threshold vtrigger every time vy changes from positive to negative sign, taking the value
of vy nant frames after this change ;

trigger beat when two consecutive vy values are, respectively, smaller and greater than vtrigger ;
Algorithm 1: Correction of beat triggering for the TRAINED system.

218

Loudness is controlled through a linear combination of three different MoCap descriptors:219

loudness = ωs · size+ ωQ ·QoM + ωY · Ymax + β (3)

• Gesture size, using the same method as for BASELINE and defined in Equation 1.220

• Quantity of Motion QoM , computed by averaging the mean speed values of all tracked joints J during221
N frames as222

QoM(tn) =
1

N

N−1∑
i=0

1

J

∑
j∈J

√
vjx(ti)2 + vjy(ti)2 + vjz(ti)2, (4)

vjx(ti), vjy(ti), vjz(ti) are the x, y and z components of the velocity of joint j, i frames before n, and J223
is the number of tracked joints. We use N = 30 (1 second at 30 fps).224

• Highest hand position Ymax, a simple descriptor that in every frame looks at the vertical position y of225
both hands and takes the maximum value.226

The descriptors and loudness values recorded during the execution of spontaneous movements are later227
used to compute the weights assigned to each descriptor (ωS for size, ωQ for QoM , ωY for Ymax and β228
for the intercept) using least squares linear regression.229
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Figure 2. Excerpt from Beethoven’s 9th symphony used in the experiment.

3 MATERIALS AND METHODS

3.1 Materials230

We built a dedicated Windows application with OpenFrameworks6 to be used with a Kinect v2. It uses231
ofxKinectForWindows27 (an OpenFrameworks wrapper for Kinect for Windows SDK) to track skeleton232
data and MoDe for real-time feature extraction and event triggering.233

The application allows to control the experiment procedure using a set of keyboard commands and234
records all necessary data (training results, tasks results and MoCap data) into text files. It implements235
the conducting systems introduced in Section 2, BASELINE and TRAINED, to conduct a musical piece236
using movements captured by the Kinect v2. For synthesis, it reads a music score in MusicXML or MIDI237
format and outputs MIDI events which can be rendered by any external software. For the experiment, we238
used Native Instrument’s Kontakt with Session Strings library and a simplified 8-bar long score for strings239
from the Ode to Joy theme from the fourth movement in Beethoven’s 9th Symphony, shown in Figure 2.240
We chose this excerpt for two reasons: first, it is a very popular melody that all participants in the study241
knew in advance (as they later confirmed); second, the selected melody mostly contains quarter notes.242
This makes the beat and rhythm of the melody equivalent and avoids possible confusions with participants243
tending to conduct to the onsets of the predominant melody instead of the beat (this effect was observed by244
Lee et al. (2005)). We used symbolic score material for the synthesis since it simplifies the control of the245
performance in terms of event triggering and loudness manipulation, as compared to the case of using a246
real pre-recorded performance to manipulate. The application also provides visual feedback consisting247
on the mirrored image captured by the Kinect v2 and specific visualizations for each of the phases in the248
experiment. The content and design of these visualizations is explained with more detail below.249

The experiment took place at an audiovisuals room in Universitat Pompeu Fabra, Barcelona. During250
the experiment, participants used over-ear headphones to avoid distraction from other sound sources and251
stood approximately two meters away from a 46-inch TV screen showing the visual feedback from the252

6 http://openframeworks.cc/
7 https://github.com/elliotwoods/ofxKinectForWindows2

This is a provisional file, not the final typeset article 8

http://openframeworks.cc/
https://github.com/elliotwoods/ofxKinectForWindows2
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application. The Kinect v2 sensor was placed below the screen, using a flat speaker stand, approximately253
1.4 m from the floor. The experimenter read instructions to the participants and controlled the application254
from a laptop to which the screen, Kinect v2 sensor and headphones were connected. Another laptop was255
placed close to the participants for them to provide some demographic information and feedback after each256
task on a Google Form.257

3.2 Hypothesis and Experiment Design258

As previously indicated, we hypothesize that observed user-specific tendencies in spontaneous conducting259
movements can be used to build user-specific mappings in a DMI based on the conductor metaphor,260
improving its usability. Provided that we deal with the concrete case of loudness and beat control, this main261
hypothesis can be separated in two:262

• H1: Computational analysis of spontaneous conducting movements can be used to design user-specific263
mappings between motion and loudness in a DMI based on the conductor metaphor, the resulting264
system having better usability and being more intuitive than one where the mapping is fixed.265

• H2: Computational analysis of spontaneous conducting movements can be used to build a DMI based266
on the conductor metaphor where tempo control considers user-specific tendencies to anticipate or267
fall behind the beat, the resulting system providing more precise control over beat than a system not268
considering these tendencies.269

To test these hypotheses, we designed an experiment to compare the TRAINED and BASELINE conducting270
systems. The concrete procedure of the experiment is explained with detail below, but we first enumerate271
the factors we controlled.272

In the experiment, participants use both systems to perform a series of tasks in which we retrieve objective273
measures of the performance, as well as subjective feedback provided by participants. The most relevant274
factor we investigate in the experiment is thus the SYSTEM (TRAINED / BASELINE) being used for each275
of the tasks. All participants use both systems, so the order in which they use them is counterbalanced to276
compensate the possible effect of learning. Because of this, we also consider the SYSTEM INDEX (first /277
second) factor.278

We retrieve objective measures and subjective feedback related to the control over loudness and beat279
separately. In addition, we minimize confounding by creating tasks that challenge participants to only280
control loudness, beat, and both at the same time. More specifically, participants are presented with the281
following tasks:282

• Loudness tasks. The participant is asked to make the orchestra play following a pattern of loudness283
variation (e.g. “first play loud, then soft, then loud...”).284

• Objective measure: Loudness error, εL. At each beat, we define εL as the difference between the285
target and achieved loudness levels, both represented in MIDI velocity units (mvu).286

• Subjective feedback: Loudness control rating, rL. At the end of the task, the participant rates her287
ability to control loudness in a 5-point scale ranging from “Could not control loudness at all” to288
“Could perfectly control loudness”. For the analysis, values in the scale were coded from 1 (“could289
not control”) to 5 (“could perfectly control”).290

• Metronome tasks. The participant listens to a metronome at a fixed tempo and has to make the291
orchestra play in synchrony with it.292
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• Objective measure: Beat error, εB . Every time a beat is triggered, εB corresponds to the difference293
in seconds with respect to the closest metronome beat.294

• Subjective feedback: Beat control rating, rB . At the end of the task, the participant rates her295
ability to control the exact moment in which the instruments sound in a 5-point scale ranging from296
“Instruments played much sooner than I intended” to “Instruments played much later than I intended”,297
with the middle value corresponding with “Instruments played exactly when I intended”. For the298
analysis, values in the scale were coded from 1 (“much sooner”) to 5 (“much later”).299

• Combined tasks. A combination of the previous tasks (i.e. the participant listens to a metronome and300
has to make the orchestra play in synchrony with it while following a loudness variation pattern).301

In order to test our hypotheses, we investigate the following effects:302

• For H1, we expect significantly lower values of |εL| and significantly higher values of rL for the303
TRAINED system with respect to the BASELINE system.304

• For H2, we expect significantly lower values of |εB| and values of rB (beat control rating) significantly305
closer to 3 (which corresponds to “Instruments played exactly when I wanted”) for the TRAINED306
system with respect to the BASELINE system. In this case, however, we only expect to observe this307
effect when the number of frames for anticipation nant estimated for the user is different from 0.308
Recall that the BASELINE and TRAINED systems are equivalent for beat control when nant = 0.309
We explore this with an additional factor ANTICIPATION that codes, for each participant, whether310
nant = 0 or nant 6= 0.311

Tasks with a different TARGET are presented. In the case of loudness tasks, the TARGET corresponds to312
different loudness levels, coded by the corresponding MIDI velocity. In the case of metronome tasks, the313
TARGET corresponds to different tempi. We also investigate the influence of the TASK TYPE (simple or314
combined). Finally, we investigate whether the musical EXPERTISE of participants influences the results.315

3.3 Participants316

Participants were recruited via convenience sampling through department members and their students in317
Universitat Pompeu Fabra, Barcelona (Spain). Given the nature of the experiment, a prospective ethics318
approval was not necessary according to the Universitat Pompeu Fabra’s8 guidelines and Spanish national319
regulations. Participants signed an informed consent granting the authors to exploit the data recorded during320
the experiment (including MoCap and video) for analysis and publication, following the procedures for321
privacy and personal data protection established in the PHENICX FP7 framework project (grant agreement322
no. 601166) funded by the European Commission.323

3.4 Procedure324

After signing the consent form, participants were informed about the general setup for the experiment.325

Once the participant agrees to start, she fills a form with information about her age and musical expertise.326
Then, a procedure consisting on three phases is repeated twice, once for each SYSTEM (BASELINE and327
TRAINED), counterbalancing the order across participants. These phases are (1) Warm up: the parameters328
for the TRAINED system are adjusted and the participant familiarizes with the set up; (2) Adaptation: the329
participant is allowed to explore how the SYSTEM works; (3) Tasks: the experimenter asks the participant330
to perform the tasks introduced above. The concrete procedure was the following:331

8 https://www.upf.edu/web/cirep/
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Figure 3. Visualization shown during warm up phase. All participants gave written informed consent for
the publication of all the recorded material during the experiment, including images.

• Warm up phase. In this phase we learn the parameters for the TRAINED system. We only use the332
information from the first time this phase appears (regardless of the order in which the systems are333
presented to the participant). We do this because we are interested in learning from “spontaneous334
movements”, and these only occur at the beginning of the experiment. In this sense, the information335
from the second Warm up phase is not considered, but we still make it to provide the same set up for336
both systems. There are two steps:337

1. The experimenter informs the participant that she will listen to the musical excerpt used throughout338
the experiment, preceded by four metronome counts. In this phase, the excerpt (8 bars, 32 beats)339
is played once at a fixed tempo (90 Beats Per Minute or BPM) and with loudness changing on340
every bar, following the pattern MID-LOUD-MID-LOUD-MID-SOFT-MID-SOFT. This pattern341
was chosen to facilitate the ability to remember it, and it does not based on any actual loudness342
progression from the piece. The MIDI velocities corresponding to each of the loudness levels,343
based on preliminary tests, was set to 60 mvu for “MID”, 127 mvu for “LOUD” and 30 mvu344
for “SOFT”. The visualization of the pattern consists on a set of red parallel lines separated345
proportionally to the loudness. The space between the lines is filled with red color as the music346
advances. This visualization, for which a snapshot is shown in Figure 3, is designed to be self-347
explanatory and to allow participants to memorize and anticipate loudness changes. The excerpt is348
played as many times as necessary until the participant correctly understands the visualization.349

2. The experimenter asks the participant to imagine she has to conduct this excerpt exactly as it350
sounded, and to perform those conducting movements while listening again to the same excerpt.351
The fact that no actual conducting is occurring during this phase and the excerpt plays exactly the352
same way it did before is remarked to avoid confusion. After allowing the participant to rehearse353
her movements as many times as needed to feel comfortable, the experimenter asks her to perform354
it again. Here, the application computes the necessary information to compute the parameters for355
the TRAINED system. More specifically, it stores the exact time at which beats occur in the played356
excerpt and, for each beat detected in the participant’s movement, the exact time at which it is357
detected, the MIDI velocity at which the music plays, and the MoCap descriptors (size, QoM and358
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Ymax) values at that time. This information is used to determine the parameters of the TRAINED359
system as explained in Section 2.360

• Adaptation Phase. During this phase, the participant is allowed to experiment with the conducting361
system. The experimenter does not give any information about possible motion-sound mappings; he362
only indicates that the system should allow to control tempo and loudness using conducting gestures363
and that these are not necessarily related to what the participant did in the warm up phase (and, in the364
case of it being the second tested system, also not necessarily similar to the previous one). A maximum365
of three trials (each of them consisting of two repetitions of the excerpt) is given to the participant366
to optimize her control of the performance. Note that the participant is not given the possibility to367
re-train the model, since the intention is to test the training as a transparent step based on observing368
spontaneous movements, as opposed to allowing the user to consciously train the model.369

• Tasks Phase. Here, the participant performs the tasks introduced above. For all tasks, the participant370
must conduct the excerpt twice in a row (16 bars, 64 beats). The order in which the loudness and371
metronome tasks are presented is counterbalanced across participants; the combined tasks always372
come last. After every task, the participant rates the perceived sense of control over loudness and/or373
beat. The specifics of the presented tasks are the following:374

• There is one single Loudness task where the participant must make the orchestra play with the same375
loudness variations from the Warm up phase (represented in Figure 3) at any tempo. The application376
shows an equivalent visualization during the task. The red parallel lines now illustrate the target377
loudness on every bar, and the color fill between the red parallel lines is green and corresponds to378
the loudness at which the participant is actually making the orchestra sound. Note that in a single379
loudness task there are three different TARGET levels (LOUD, MID and SOFT). For every loudness380
task, we have 64 values of εL and one rL rating.381

• There are two Metronome tasks at 80 and 100 BPM. In this case, the only visualization is a red382
progress bar. For each task, we have 64 values of εB and one rB rating.383

• There are also two Combined tasks, at 80 and 100 BPM, and with the same pattern of loudness384
variations and visualization from Loudness tasks. For each task, we have 64 values of εL, 64 values385
of εB , one rL rating and one rB rating.386

After completing these three phases with both systems, the participant is allowed to freely perform with387
each system. In this stage, no visualization is presented to the user, who can just focus on freely performing388
without any given task. Then, she provides feedback about her preferred one (“first” or “second”, as the389
participant does not know about the difference between both) by answering three questions: “Did you feel390
any difference between both systems?”, “Which one did you prefer in terms of loudness control?” and391
“Which one did you prefer in terms of your ability to make instruments sound exactly when intended?”.392

4 RESULTS

Twenty four people (18 male and 6 female) participated in the experiment. Their average age was 28393
years (σ = 5.84), with ages ranging from 19 to 41. Half of them were musicians (considering musicians394
participants with any musical training) and the other half were non-musicians. No conductors were recruited395
for the experiment. The difference between both groups is thus expected to be related to different abilities396
to perform musical tasks, not on the ability to conduct an actual orchestra. The experiment was carried out397
during four different days, taking approximately 35 minutes for each participant.398
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(4a) Correlation of MoCap descriptors with loudness
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(4b) Dynamic range of MoCap descriptors.
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Figure 4. Correlation with loudness, dynamic range of MoCap descriptors, and coefficient of determination
for each participant computed from first Warm up phase.

We first analyze the results from the first Warm up phase, where the parameters of the TRAINED system399
are learned. In this phase, participants performed spontaneous conducting movements on top of fixed400
music.401

First, we focus on the results that determine the loudness control. Figure 4a shows, for each participant,402
the correlations found between each of the three MoCap descriptors (size, QoM and Ymax) and loudness403
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(MIDI velocity). In most cases, as expected, MoCap descriptors show a positive correlation with loudness.404
There are a few exceptions where negative correlations appear, with only two cases where the absolute405
value of these correlations are greater than 0.5 (QoM for participants 4 and 15). In most cases (70%), QoM406
is the most correlated descriptor, with an average absolute correlation of 0.48, followed by Ymax (0.38) and407
size (0.29). Correlation is not the only factor influencing the computed linear models. Figure 4b shows, for408
each participant, the dynamic range of the three MoCap descriptors. For consistent visualization across409
descriptors, the dynamic range for a participant and descriptor is computed by dividing the difference410
between the maximum and minimum descriptor values for that participant by the difference between the411
maximum and minimum descriptor values across all participants. As an illustrative example, participants 11412
and 21 show a similar positive correlation between QoM and loudness, but the former has a larger dynamic413
range. This positive correlation indicates that the mapping for loudness control with the TRAINED system414
would assign louder output for more energetic movements for both participants. The different dynamic415
ranges indicate that the difference in QoM of movements resulting in soft and loud output would be larger416
for participant 11 than for participant 21. From the computed linear regression models, we compute the417
adjusted coefficient of determination R2

adj as indicative of how much loudness variability is explained418
by the MoCap descriptors. Computed values for each participant are depicted in Figure 4c. We use these419
values below to check whether results during the tasks are affected by the quality of the learned models.420

Regarding beat control, Figure 5 shows, for each participant, the distribution of the differences in seconds421
between beats in the music and beats detected from hand movement. In the figure, we also indicate the422
number of frames for anticipation nant estimated from the mean of this distribution for each participant.423
There were 6 participants (2, 6, 12, 14, 17 and 24) for whom nant = 0, i.e. BASELINE and TRAINED424
systems were equivalent in terms of beat control. nant values range from -4 to 4. For participants with425
nant = 4, beats are triggered 9 frames (300 ms) before than for participants with nant = −4. From these426
distributions, we also computed F-measure values for each participant as introduced in Sarasúa and Guaus427
(2014). This measure is an indication of how consistent is the anticipation effect that the TRAINED system428
uses for user-specific adaptation. We use these F-measure values below to check whether this affects the429
results.430

Both for loudness and beat control, the results indicate that the TRAINED system was quite different431
across participants. In the following, we analyze the results from the Tasks Phase.432

4.1 Loudness control433

Regarding the objective measures taken from the tasks, Figure 6 shows the distributions of absolute434
loudness error (|εL|) for each participant across all loudness and combined tasks, with 64 values of εL per435
task (one per beat). In most cases, we observe the expected tendency of lower εL values with the TRAINED436
system. Participant 8, however, shows clearly worse results with the TRAINED system than in any other437
case. Coming back to the results from training (Figure 4), we see that actually this participant showed a438
very strong correlation between QoM and loudness. Also, the R2

adj metric of the fitted regression model is439
0.98, which is very close to ideal in terms of the loudness variability explained by the MoCap descriptors.440
The low dynamic range suggests that what may have happened is that the observed correlation is spurious;441
the participant performed with very little variations in QoM that just happened to be very correlated with442
loudness, resulting in a model whose functioning the participant was not able to learn. Given that this is an443
outlier case, we removed this participant for the overall statistical analysis presented below.444

In addition, and in order to prevent pseudoreplication (Hurlbert, 1984), we first averaged values per run445
and TARGET (recall that all three targets, “SOFT”, “MID” and “LOUD” are present in every run), thus446
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Figure 5. Distribution of differences between beats in music and beats detected in hand movement during
the first Warm up phase for each participant. The resulting estimated number of frames for anticipation
(nant) for each participant is indicated between parenthesis.
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Figure 6. Absolute loudness error (|εL|) for both systems, averaged across tasks, for each participant.

having a single observation per participant, TASK TYPE, TARGET and SYSTEM. We do this because the 64447
observations (one value per beat) per run correspond to one single application of the treatment (TRAINED448
or BASELINE) and are therefore correlated. If they were analyzed separately, degrees of freedom would449
be artificially inflated and our results would overstate statistical significance.450

We fitted a linear model to SYSTEM, SYSTEM INDEX, EXPERTISE, TASK TYPE, TARGET and their451
two-factor interactions, and ran an ANOVA to study their effect on the absolute value of εL.452
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Figure 7. Ratings for loudness control (rL) provided by participants at the end of loudness and combined
tasks.

A strong effect was observed for SYSTEM, F(1,366) = 83.34, p < 0.001. As expected, the absolute value453
of the loudness error was significantly lower using the TRAINED system than using the BASELINE, the454
average error being of 5.70 mvu for the former and 10.43 mvu for the latter. SYSTEM INDEX does not455
cause any main effect, nor does its interaction with SYSTEM, indicating that the observed effect of SYSTEM456
does not depend on the order in which the systems were presented to the participants.457

Results reveal that the performance varies depending on the TARGET, F(2,366) = 84.75, p < 0.001.458
Absolute error is higher for parts where the target was to play “LOUD”. However, this effect is mostly459
caused by tasks performed using the BASELINE system. The interaction between SYSTEM and TARGET460
also has a significant effect on the absolute error, F(2,366) = 59.10, p < 0.001. The errors were similar in461
the case of the TRAINED system (4.98 mvu for “SOFT”, 5.74 mvu for “MID” and 6.37 mvu for “LOUD”),462
but participants had more difficulties to achieve louder levels using the BASELINE system, with 3.49 mvu463
for “SOFT”, 9.27 mvu for “MID” and 18.53 mvu for “LOUD”. This suggests that the better performance464
of the TRAINED system is due to its ability to provide accurate control over the whole range of loudness465
levels. The BASELINE system, where the gesture size is mapped to loudness, was problematic for loudest466
levels.467

The effect of EXPERTISE also shows that musicians achieve significantly better control over loudness468
than non-musicians, F(1,366) = 54.15, p < 0.001. This difference is however significantly reduced when469
using the TRAINED system. The difference between musicians and non musicians using the BASELINE470
was 4.30 mvu, while it was 2.64 mvu using the TRAINED system. This suggests that even though both471
groups achieved better performance with the TRAINED system, musicians were more able to learn the472
functioning of the BASELINE and adapt in order to complete the tasks.473

Finally, no effect is observed for the TASK TYPE, but its interaction with EXPERTISE indicates that474
musicians performed slightly better in combined tasks, while the opposite happened for non musicians,475
F(1,366) = 14.65, p < 0.001. Recall that combined tasks always come after simple ones. In this sense, the476
improvement in combined tasks for musicians can be due to learning. In the case of non musicians, the477
effect might be explained by the higher complexity of combined tasks.478

Regarding the subjective feedback provided by participants at the end of each task, Figure 7 shows the479
distribution of ratings in a 5-point scale ranging from 1 = “Could not control loudness at all” to 5 = “Could480
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Figure 8. Control over loudness rating (rL) and absolute loudness error (|εL|) of all loudness and combined
tasks.

control loudness perfectly”. With the TRAINED system, participants rated their ability to control loudness481
with 4 in most cases, followed by 5. With the BASELINE, ratings were in most cases evenly distributed482
between 2 and 4. This suggests that participants felt they had better control over loudness when using the483
TRAINED system.484

Again, we fitted a linear model to SYSTEM, SYSTEM INDEX, EXPERTISE, TASK TYPE and their two-485
factor interactions, this time running an ANOVA to study their effect on rL. Note that here we do not486
investigate TARGET, provided that the three targets appear in all tasks and we obtained one rating per task.487

Results confirm that the reported sense of control over loudness is better using the TRAINED system,488
with an average rating of 4.14, than using the BASELINE, with 2.74, F(1,128) = 91.39, p < 0.001. The489
analysis revealed no other significant effects.490

We also examine the correlation between the subjective feedback provided by participants and the491
objective measures reflected in the values of εL. We expect a negative correlation (lower error for higher492
ratings). In Figure 8, every point corresponds to the average absolute value of εL and the rating provided by493
the participant for a task, with the color indicating the SYSTEM being used. The correlation between rL and494
|εL| is -0.66. This indicates that, as expected, participants were able to achieve a better performance in the495
tasks when they had a better sense of control over loudness. One-way ANOVA shows that the difference of496
absolute values of εL for different ratings is significant, F(4,139) = 37.32, p < 0.001.497

We also investigate whether the quality of the linear models computed to adjust the mapping of the498
TRAINED system for each participant influences the results. For this, we take the R2

adj statistic of each499
participant’s model, which gives a measure of how much loudness variability is explained by the MoCap500
descriptors. We then compute ∆εL for each participant as the difference between average |εL| values for the501
BASELINE and TRAINED systems. Accordingly, ∆εL measures how much improvement the TRAINED502
system introduces in comparison with the BASELINE. We have thus one R2

adj and ∆εL value for each503
participant. The correlation between both variables across participants is 0.49. This positive correlation504
indicates that, as expected, better models result in higher improvement introduced by the proposed system.505

Another interesting aspect we investigated is the learning effect that occurs during the realization of506
each task. Figure 9 shows the evolution of the absolute loudness error along the 64 beats each task507
lasted, averaged across all participants. A different curve is shown for each combination of SYSTEM and508
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Figure 9. Average evolution of absolute loudness error (|εL|) for different combinations of SYSTEM and
EXPERTISE.
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Figure 10. Beat error for both systems, averaged across tasks, for each participant.

EXPERTISE. One of the visible effects in the graph is that the error is in general higher for every first beat509
with a new target. In the curves, this is reflected by the peaks appearing every 4 beats.510

It is also clearly visible that the aforementioned effect of the TARGET using the BASELINE system511
is particularly higher in the first two appearances of the “LOUD” target (beats 5-8 and 13-16). This is512
most likely caused by the fact that these are the first loudness changes that participants had to perform.513
Having observed this effect, we repeat the ANOVA by only using the information from the second half514
of every task (i.e. from beat 33), to check that the observed effects are consistent along the task. Indeed,515
the largest effect is the one caused by the SYSTEM used in the task, F(1,366) = 68.85, p < 0.001. The516
absolute loudness error is still significantly lower with the TRAINED system (3.43 mvu) than with the517
BASELINE (6.84 mvu). The effect of musicians performing better than non musicians is also preserved,518
F(1,366) = 26.75, p < 0.001. The effect of the TARGET and its interaction with the SYSTEM also appears519
when looking at the second half of the tasks, but much more mitigated than when considering the whole520
task duration.521
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4.2 Beat control522

We now focus on beat control, by analyzing metronome and combined tasks. Regarding the objective523
performance measures in these tasks, Figure 10 shows the distributions of beat errors (distance in time524
between metronome and performed beats) for each participant across all metronome and combined tasks,525
with 64 values of εB per task (one per beat). As for the case of loudness, we observe that the general526
tendency is to find these distributions closer to 0 when the TRAINED system is used.527

In the case of beat control, both systems work equivalently if the estimated number of frames for528
anticipation nant = 0. For this reason, the analysis has one more factor than in the case of loudness control:529
ANTICIPATION. This factor has just two levels (nant = 0 —no difference expected between systems— and530
nant 6= 0). As before, we aggregate all 64 measurements per run in a single mean absolute score to prevent531
overstating statistical significance due to pseudoreplication. We fitted a linear model to SYSTEM, SYSTEM532
INDEX, EXPERTISE, TASK TYPE, TARGET, ANTICIPATION and their two-factor interactions, and ran an533
ANOVA to study their effect on the absolute value of εB .534

A significant effect is in fact caused by ANTICIPATION, F(1,136) = 6.72, p < 0.01. The absolute beat535
error for participants with nant 6= 0 (n=18) is 0.009 seconds higher than for participants with nant = 0536
(n=6). The underlying effect is better explained by the interaction between ANTICIPATION and SYSTEM537
(F(1,136) = 3.41, p < 0.01). In the case of participants with nant 6= 0, the absolute beat error is 0.013538
seconds smaller using the TRAINED system. For the 6 participants for whom nant = 0, the error is539
slightly smaller (0.003 seconds) using the BASELINE system. These results indicate that the compensation540
introduced by the TRAINED system is indeed useful to improve the performance of participants who541
tended to anticipate or fall behind the beat during the Warm up phase (nant 6= 0), i.e. when they performed542
spontaneous conducting movements. These differences are in the range of a few milliseconds and it could543
be argued that it would be hardly perceivable from the perspective of the performer (Wessel and Wright,544
2002). Recall, however, that these differences are not the differences in how beats are triggered using545
each system (e.g. correcting by just one frame introduces a 33.3 milliseconds correction), but between the546
actual average achieved performances. In other words, a 33.3 milliseconds correction does not imply a 33.3547
milliseconds improvement in the absolute beat error; still, in average, there is an observable significant548
improvement.549

The results also indicate that the error differed depending on the musical EXPERTISE. Musicians show550
0.009 seconds less absolute error than non musicians, F(1,136) = 10.75, p < 0.001. Interestingly, the551
TARGET also affects the absolute beat error, F(1,136) = 6.50, p < 0.001. However, this only occurs552
for participants with nant 6= 0 using the BASELINE system. This indicates that the correction that the553
TRAINED system applies is particularly necessary for slower tempi. Indeed, focusing on the 18 participants554
with nant 6= 0, the TRAINED system outperforms the BASELINE by reducing the absolute beat error in555
0.007 seconds for 100 BPM tasks and 0.019 seconds in 80 BPM tasks.556

Figure 11 shows the results of subjective ratings of beat control, where participants rated in a 5-point557
scale ranging with 1 = “Instruments played much sooner than I intended”, 3 = “Instruments played exactly558
when I intended”, 5 = “Instruments played much later than I intended”. In this case, the best rating is thus559
3 (“exactly when intended”). The Figure shows the tendency of participants to give a better rating when560
using the TRAINED system.561

In order to statistically analyze the effect of the different factors on the ratings, we perform the following562
analysis. We define r∗B = 3− |rB − 3|, which ranges from 1 to 3, being 1 = “Instruments played much563
sooner/later than I intended”, 2 = “Instrument played a bit sooner/later than I intended” and 3 = “Instruments564

Frontiers 19
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Figure 11. Ratings for beat control provided by participants at the end of metronome and combined tasks.

played exactly when I intended”. r∗B , then, gives a measure of how good or bad the participant felt the565
system was in providing accurate control of beats, independently of whether a possible bad behavior was566
caused by instruments playing sooner or later than intended.567

Again, we fitted a linear model on the factors of the analysis and performed an ANOVA to study their568
effect on r∗B . Participants rated their ability to make instruments play when intended with an average569
2.71 for the TRAINED system and 1.97 for the BASELINE, being this difference significant, F(1,136) =570
743.5, p < 0.001. As expected, the perceived difference was bigger for participants with nant 6= 0. They571
rated the BASELINE with an average 1.72 and the TRAINED system with 2.72. The 6 participants572
for whom both systems were equivalent gave slightly better rating to the BASELINE (2.75 vs 2.67 for573
TRAINED). The interaction between TARGET and SYSTEM (F(1,136) = 11.84, p < 0.001) shows that574
the reported sense of control was significantly worse for 80 BPM tasks using the BASELINE. As we575
saw before, this is the case where the highest values for absolute beat error appeared. This suggests that576
the ability to correctly perform the task (to make the orchestra play in synchrony with the metronome)577
influenced the perceived ability to make instruments play when intended.578

As in the case of loudness, we examined the correlation between the subjective and objective measures. In579
this case, we expect a positive correlation, with negative values of εB for low ratings, positive values of εB580
for high ratings, and εB values close to 0 for rB = 3. Every point in Figure 12 corresponds to the average581
value of εB and the rating provided by the participant for a task, with the color indicating the SYSTEM582
being used. The correlation in this case is weaker (0.48), but still in the expected direction. This indicates583
that those participants who felt that instruments came too early with respect to their gesture tended to make584
the orchestra play in anticipation to the metronome, while those who felt that instruments came too late585
tended to make the orchestra beats fall behind the metronome. One-way ANOVA shows that the difference586
of values of εB for different ratings is significant, F(4,187) = 9.912, p < 0.001.587

As we indicated earlier, we computed F-measure values from the training data as indicative of the588
consistency of participants to anticipate or fall behind the beat during the Warm up phase. In order to589
test whether this had an effect on the results, we compute ∆εB for each participant as the difference590
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Figure 12. Control over beat rating (rB) and beat error (εB) of all metronome and combined tasks.
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Figure 13. Average evolution of absolute beat error (|εB|) for different combinations of SYSTEM and
EXPERTISE.

between average |εB| values for the BASELINE and TRAINED systems, i.e. ∆εB measures how much591
improvement there is using the TRAINED system in comparison with the BASELINE. Then, we compute592
the correlation between ∆εB and F-measure values across participants, obtaining a high value of 0.81.593
This indicates that after the Warm up phase, just by looking at the data used for adapting the TRAINED594
system, we can guess whether the adaptation will introduce an improvement or not. To put it another way:595
if time differences between beats in the music and beats detected from hand movement are not consistent596
in the warm up phase, then the adaptation introduced by the TRAINED system does not guarantee an597
improvement.598

Finally, we explore the possible learning and adaptation effects during tasks. Figure 13 shows the599
evolution of the absolute beat error along the 64 beats each task lasted, averaged across all participants.600
A different curve is shown for each combination of SYSTEM and EXPERTISE. We observe a more stable601
tendency than in the case of loudness control. The error is higher during the first bars, where participants602
seem to adapt to make the orchestra synchronize with the metronome. The error looks much more stable603
in the second half (from beat 33), so we also ran the ANOVA again to check if the observed effects also604
appear in the moment where participants seem to have adapted.605
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The results indicate that there is still a difference of 0.003 seconds between musicians and non musicians,606
F(1,136) = 1.83, p < 0.01. This difference is however smaller than when considering the full task (0.009607
seconds), which indicates that part of the better performance of musicians is due to their ability to adapt608
faster. A greater difference is still observed for the SYSTEM: the performance is still notably better (0.008609
seconds improvement) with the TRAINED system than with the BASELINE, F(1,136) = 10.33, p < 0.001.610

4.3 Overall evaluation611

As we indicated, participants were able to freely perform with both systems again at the end of the612
experiment, after which they were asked whether they have found differences between both systems and613
whether they preferred any of them in terms of loudness and beat control.614

All participants indicated that they had indeed noticed differences between both systems. Regarding615
loudness control, all participants preferred the TRAINED system, except for participants 22 and 8 (the616
outlier), who preferred the BASELINE. Regarding beat control, three participants (2, 6 and 14) indicated617
that they did not have any preference between both systems, and one (12) showed preference for the618
BASELINE system. All these four participants were amongst those with nant = 0 (i.e. both systems were619
equivalent in terms of beat control). The rest of the participants showed preference for the TRAINED620
system.621

5 DISCUSSION

Results of the experiment suggest that both hypothesis are confirmed: the usability of the proposed system,622
with the mapping built from the analysis of spontaneous conducting movements, is better both in terms of623
providing a more intuitive control over loudness (H1) and a more precise control over beat timing (H2). In624
both cases, results of objective evaluation and subjective feedback provided by participants are coherent.625
Note that, as indicated above, we use intuitive in the sense that users were not given instructions on how626
each system worked, and they were just learning by performing.627

We believe that the proof of these hypotheses is particularly relevant considering that parameters were628
learned in spontaneous movements, i.e.: participants where not making a conscious training of their629
personalized systems when the parameters for control were learned. This is important for public installations630
where, if the interaction designers want to take advantage of user customization, it is preferable to make631
it in a way that is transparent to the user. Our experiment was however carried out in a lab setting, so632
social factors may arise in such public settings that could condition the direct applicability of the observed633
results. We have undertaken some informal validation during public outreach events that seem to validate634
the presented results, but formal validation remains as a necessary task for future work. Beyond the635
concrete scope of systems for music conducting, our conclusions can be relevant for other interaction636
design scenarios using metaphors: the knowledge of the user from the original activity can be explicitly637
exploited in the system.638

Similar applications can be defined in a context were learning does not take place by automatically639
analyzing spontaneous movements but allowing users to consciously create their own personal mappings.640
This would be closer to Mapping by Demonstration as introduced by Françoise (2015), and can benefit641
from Interactive Machine Learning techniques for DMI building (Fiebrink and Caramiaux, 2016). We have642
in fact already considered this approach in the context of conducting to allow users to define their own643
space for controlling articulation (Sarasúa et al., 2016).644
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Precisely because the focus of this work was to test whether the information observed in spontaneous645
movements is useful to be applied during interaction, the parameters under control and the systems under646
comparison were kept simple. The learned parameters are applied, in the end, to modify the rules of647
the system used as baseline (by using appropriate descriptors and weights to control loudness and by648
compensating for the observed anticipation for beat). However, as we pointed out in the introduction,649
previous conducting systems have used more sophisticated techniques to deal with temporal information650
from the gesture (Usa and Mochida, 1998; Kolesnik, 2004; Brecht and Garnett, 1995; Ilmonen and Takala,651
1999). We believe that the conclusions from this experiment are not restricted to the case of simple rule-652
based systems, nor to just the control of beat and loudness. Particularly suitable for more sophisticated653
and complex gesture-sound mappings to be learned from few observations would be dynamical models654
that adapt dynamically to variations (Caramiaux et al., 2014b) or statistical models like HMMs that learn655
spatio-temporal variations from gesture (Françoise et al., 2014).656

In the field of NIME, it is often hard to establish a criterion for evaluating the quality or usability of657
musical interfaces. In the concrete case of systems using the conductor metaphor, evaluations, when658
provided, are most of the times based on subjective feedback provided by participants (Lee et al., 2004;659
Bergen, 2012; Rosa-Pujazon and Barbancho, 2013) or are focused on evaluating technical aspects specific660
to the method being used (Brecht and Garnett, 1995; Toh et al., 2013). The warm up and learning phases661
of the procedure we followed in our experiment are specific to the scenario where the user receives no662
instructions and observation from her spontaneous movements is required. However, we believe that the663
kind of tasks we used are suitable to other cases where it is necessary to objectively assess the suitability of664
a musical interface to control some specific parameters.665

In our experiment we also were interested in the effect of musical expertise in the interaction. We observed666
that, in general, musicians achieved better performance than non musicians. However, focusing on loudness667
control, this difference was reduced with the proposed system. This suggests that musicians were better at668
learning how to conduct with the BASELINE system, while non musicians probably tried to stick to their669
intuitions and were less able to learn by playing. Provided that this effect (greater improvement for non670
musicians) was not observed for beat control, this might also indicate that non musicians, when using the671
BASELINE system, tended to focus more on beat control and “forget” about loudness. In accordance with672
this idea, non musicians got worse results in combined tasks than in simple ones for loudness control, while673
the opposite happened for beat control. Results also seem to reveal that this difficulty of non musicians674
to control loudness with the BASELINE system was particularly noticeable in louder parts. This might675
indicate that they were unable to discover that loudness was controlled with the size of the gesture or that676
they were probably unable to perform big enough gestures at a given tempo. In any case, all results back the677
idea that non musicians were the most benefited by using the proposed system, which learns its mapping678
from their spontaneous movements.679

In the analysis of loudness control, we removed participant 8, whose results were causing spurious effects680
for a number of factors and interactions. However, the case of this participant must be carefully considered,681
as it shows the problems that can be encountered when applying knowledge extracted from analyzing682
spontaneous movements on top of fixed music. Even though the results from the warm up phase, where683
the parameters for the TRAINED system are learned, indicate a high correlation (0.920) between QoM684
and midi velocity, the resulting model was clearly not intuitive for this participant to control loudness. In685
most cases, modifications introduced by the TRAINED system created more intuitive interfaces, but the686
possibility of learning wrong clues is present and should be considered. In the context of public installations,687
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this can be addressed by giving the user the possibility to perform an explicit, conscious training; or by688
providing explicit usage instructions (i.e. explaining the mapping) when bad performance is detected.689

We would also like to point out some considerations regarding the limitations of the input device used690
in this work: the Kinect v2. Concretely, the implications of its motion capture frame rate and latency.691
The Kinect v2 works at 30 fps (30 Hz). This control granularity is far from optimal for many real-time692
musical applications. For example Jordà (2005) situates 100Hz as a reasonable lower limit, while Mulder693
(1998) considers a maximum time delay of 20 ms (50 Hz) acceptable. This, of course, depends on the694
context of and the application. In our case, we were using a synthesis engine with bowed strings sounds695
and legato articulation. This makes the 33 ms precision of the device more acceptable than it would be696
for percussive sounds. Subjective feedback from the experiment suggests that indeed, with this device697
under these conditions, participants felt they were able to make instruments play when intended despite the698
frame rate of the device. Another aspect to take into account regarding the time granularity of the device699
is that the average values of εB (time difference between metronome and played beats), given in ms, are700
meaningful because in all cases we are considering a high number of beats. The program was designed701
to guarantee no jitter for consecutive metronome beats at the millisecond level, and the time between702
metronome beats always was the one corresponding to the tempo (750 ms for 80 bpm, 666.6 ms for 90703
bpm and 600 ms for 100 bpm). The Kinect v2 frames are not guaranteed to appear every 33.3 ms as there704
is some jitter (Sell and O’Connor, 2014). In this sense, for a single detected beat in the movement, part of705
its difference with respect to the closet metronome will always be caused by this jitter. However, when we706
observe differences in two large distributions of εB , we can assume that these differences are caused by the707
rest of the implicated factors.708

Latencies around 20-30 ms are commonly considered acceptable for most musical applications (Lago709
and Kon, 2004). The Kinect v2 has a ∼20 ms latency (Sell and O’Connor, 2014), and the computation of710
velocity from raw positional data using low-pass differentiators introduces two samples of delay (Skogstad711
et al., 2013). This means that this latency is implicit in observed differences in anticipation to the beat. In712
this sense, the observed improvement introduced by compensating for different tendencies to anticipate or713
fall behind the beat is also compensating for the device and computation latencies.714

Having these considerations in mind, we can further explore the results for beat control. BASELINE and715
TRAINED systems were equivalent for beat control for participants for whom the estimated anticipation716
was nant = 0. Results show how a strong difference in the performance for beat control between both717
systems was just observed in participants with nant 6= 0. Strictly speaking, however, there is a difference718
between both systems when nant = 0: the mapping for loudness control is different. This could have719
caused a better performance for beat control of the TRAINED system, specially in combined tasks, but this720
effect was not observed. Interestingly, the results also show how participants with nant 6= 0 had special721
difficulties with the slowest tempo (80 BPM) task that were mitigated when the estimated anticipation722
was compensated (i.e. when they used the TRAINED system). This is unlikely to be caused by the time723
granularity limitations of the input device, which in fact would penalize the faster task. At 80 bpm (750 ms)724
there are 22.5 Kinect frames between two consecutive beats, while there are 18 at 100 bpm (600 ms)9. In725
this sense, the results suggest that observed differences in terms of anticipation of the beat are particularly726
relevant for slower tempos.727

9 We can assume that the input device limitations would start to harm the performance for faster tempo, even though it was not observed for the selected tempos
in our tasks.
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In loudness tasks, we added a visual feedback to maximize the ability of users to remember when they728
were supposed to perform the changes in loudness during the task execution. This means that we cannot729
separate the effect of the resulting audio and visualization in the results from the tasks (i.e. users could be730
adapting their performance based on the resulting visuals, audio or both). However, we also have subjective731
ratings from the final stage (overall evaluation), where participants could just freely perform without any732
required task or visuals. Results indicate that they indeed preferred the TRAINED system in terms of733
loudness control, which indicates that the preference observed during the tasks (and confirmed by objective734
measures) is in agreement with subjective sense of control during free performance.735

An additional consideration to point out from the analyzed data is that the group of participants was736
unbalanced in terms of gender (six female participants out of twenty four) or background education (the737
experiment was carried out in the University facilities with students and University staff). While we do not738
expect any effect of gender on the performance, it would be desirable to perform experiments with more739
balanced groups in order to be able to investigate this.740

We have not dealt with the underlying mechanisms that may cause differences between participants.741
Whether the different tendencies to anticipate or fall behind the beat are intentional, caused by different742
sensorimotor synchronization to the beat (Aschersleben, 2002) or by different hand gestures is something743
we cannot analyze from the acquired data. We could even expect different results if the music material744
or chosen sound engine had been different. Observation studies of sound-accompanying movements by745
Jensenius (2007) show that these movements are influenced, among other things, by action-sound types746
(impulsed, sustain, iterative) that depend on the instrument and articulation with which it is played. In747
any case, for the goal of this work, our focus was to compensate an observed effect, regardless of the748
mechanisms that cause it. Also, we selected a musical excerpt where the main melody mostly contains749
quarter notes, avoiding possible problems with participants conducting to the rhythm instead of the beat, as750
observed by Lee et al. (2005). This is something to take into consideration, particularly when the goal is to751
create a system that users can learn to use by themselves. In addition, we did not analyze beat misdetections.752
Again, our focus was the comparison between both systems; possible errors in the detection of the ictus are753
common to both and are outside the scope of interest in this work.754
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Sarasúa, A., Caramiaux, B., and Tanaka, A. (2016). Machine Learning of Personal Gesture Variation in847
Music Conducting. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems848
- CHI ’16 (New York, New York, USA: ACM Press), 3428–3432. doi:10.1145/2858036.2858328849
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