
© ACM, 2010. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.

The definitive version was published in the Proceedings of the 19th ACM CIKM Conference, 2010. ISBN 978-1-4503-0099-5.

http://doi.acm.org/10.1145/1871437.1871773

Crawling the Web for Structured Documents

Julián Urbano, Juan Lloréns, Yorgos Andreadakis and Mónica Marrero
University Carlos III of Madrid

Department of Computer Science

jurbano@inf.uc3m.es llorens@inf.uc3m.es gand@ie.inf.uc3m.es mmarrero@inf.uc3m.es

ABSTRACT
Structured Information Retrieval is gaining a lot of interest in

recent years, as this kind of information is becoming an invaluable

asset for professional communities such as Software Engineering.

Most of the research has focused on XML documents, with

initiatives like INEX to bring together and evaluate new

techniques focused on structured information. Despite the use of

XML documents is the immediate choice, the Web is filled with

several other types of structured information, which account for

millions of other documents. These documents may be collected

directly using standard Web search engines like Google and

Yahoo, or following specific search patterns in online repositories

like SourceForge. This demo describes a distributed and focused

web crawler for any kind of structured documents, and we show

with it how to exploit general-purpose resources to gather large

amounts of real-world structured documents off the Web. This

kind of tool could help building large test collections of other

types of documents, such as Java source code for software-

oriented search engines or RDF for semantic searching.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis

and Indexing.

General Terms
Design, Management, Standardization.

Keywords

Crawling, structured retrieval, XML.

1. INTRODUCTION
The widespread acceptance of XML as a means to represent

library catalogues, financial records or any other kind of

information with structure, led to the necessity of building XML

test collections to evaluate new techniques developed specifically

for XML-like documents, and INEX appeared as the forum for

researchers to join and carry out these evaluations [1]. However,

many XML documents have their own well grounded and well

established format, such as XSD, RDF or RSS. Also, there are

many other types of structured information that do not follow a

XML-like syntax, such as Java source code files or SQL database

creation scripts. All these kinds of structured information can be

easily found in the Web, and they account for millions of

documents that are not being considered by the Structured

Information Retrieval community.

Back in the days, a common keyword-based search proved to be

sufficient when looking for software artifacts such as source code

files or database creation scripts. Indeed, this line of work has

been followed by general purpose search engines, like Google

Code Search1, Codase2 or Koders3. However, these communities

are evolving towards more semantic-aware information needs.

Much of the software development process is nowadays based on

models, where UML has become the de-facto standard. Now that

everything revolves around models, structured information

techniques trying to exploit the structure of the elements

contained in a document, and most importantly their relations, is

the key to success [2]. One of the most troublesome issues in

these cases is finding artifacts to reuse [3], which are not limited

to source code or libraries, but also extend to domain models,

requirements specifications and various types of schema, such as

DTD, XSD or SQL scripts defining a database.

In this demonstration we show a crawler to harvest structured

document from the Web, according to the specific needs of

particular users. Although our original focus was to download

software-related documents, this crawler can be used for any kind

of structured or unstructured documents, such as images.

2. WHERE TO CRAWL FROM
The Web is filled with all kinds of documents, from the simplest

plain text files to the more advanced multimedia formats.

Structured documents are no exception, and thousands of XML or

XSD documents, for example, can be easily found. Two general

sources can be used for this purpose: general keyword-based

search engines like Google or Yahoo, and online repositories such

as SourceForge.

2.1 General Keyword-based Search Engines
The usual keyword-based techniques used in general purpose web

search engines do not have enough power to represent these

relationship-based information needs, let alone to retrieve relevant

documents. Nonetheless, they seem to be a very good starting

point to crawl the Web when looking for certain types of

structured documents.

Using Google Web Search, for instance, one could issue a query

making use of the filetype operator to indicate what type of

documents to look for. Adding some more information particular

to each document type of relevance, we can find ourselves before

an enormous amount of relevant documents. For example, when

looking for SQL database creation scripts about bank accounts,

one could issue a query like “+create +table account filetype:sql”

and get about 2000 results. Table 1 shows the approximate total

number of results supposedly offered by Google and Yahoo for

queries regarding different common file types.

1 http://www.google.com/codesearch
2 http://www.codase.com
3 http://www.koders.com

Copyright is held by the author/owner(s).

CIKM’10, October 25–29, 2010, Toronto, Ontario, Canada.

ACM 978-1-4503-0099-5/10/10.

1940

An immediate problem using this method is that many of the

results returned do not correspond to structured documents, but to

web pages pointing to them or pointing to no relevant document at

all. Some may even contain the information embedded in the

HTML page itself, or with the keywords used appearing in a non-

relevant part of the document, such as comment lines. Besides,

web servers do not really agree every time when telling the mime-

type of a document, which is a problem known to the TREC

community for the GOV2 corpus, or the fact that some document

types are hierarchical (e.g. XSD is a particular type of XML).

Table 1 reflects how many of the first 20 documents retrieved

were actually relevant in terms of their file type. This makes it

imperative to develop appropriate filters in each case not to end

up modeling garbage results.

Table 1. Number of results for different types of document.

Type Google (P@20) Yahoo (P@20)

XML 25M (0.85) 238K (0.8)

DTD 48K (0.95) 48K (1)

XSD 134K (1) 181K (1)

SQL 104K (1) 152K (0.95)

JAVA 3M (1) 1.6M (1)

One more issue when crawling documents off general purpose

search engines is that they usually return just about 1000

documents at most, even if there were millions. One way around

this is to use resources like word listings, to issue queries with a

couple of different terms each time to try covering different

domains. This way, the whole set of documents of a particular

type should eventually be returned, as the union of all the result

sets generated with these terms.

2.2 Online Repositories
Another valuable source for such documents is websites dedicated

to open-source projects, like SourceForge4 or Google Code

Hosting5. These sites present a clear structure, which makes them

easy to navigate and crawl when looking just for particular

documents. They comprise thousands of projects, each of which

has a dedicated page usually linking to source code packages and

other artifacts in a very particular way. These linking patterns can

be exploited by a focused crawler to go directly for the important

files and ignore the non-relevant ones [4].

3. IMPLEMENTATION
We developed a multi-threaded prototype crawler to gather

structured documents off the Web. It has been implemented with

the Microsoft .net framework 3.5 SP1 and the free version of SQL

Server Express 2005. It contains a core module, in charge of

distributing tasks to several threads, according to a very extensive

and adaptable configuration file that allows the crawler to focus

one way or the other. This configuration file also has information

as to what types of documents the crawler should treat, and how

to do so. Each of these document types has several information

associated, such as possible MIME-types, file extensions, file

sizes and what we called processors.

These processors are focused on a particular type of document,

and they are in charge of the screening process that discards non-

appropriate files. For example, files for which the server returned

an XSD MIME-type but turned out to be plain text, or just XML

files not well-formed. These processors could also turn into

indexers for a search engine focused on these particular document

4 http://sourceforge.net
5 http://code.google.com/hosting

types. For instance, a SQL processor could parse a database

creation script, extract the table names, fields and relationships,

and index them for a SQL retrieval engine.

A very special processor is the one in charge of processing HTML

pages (i.e. the traditional crawler). It offers several configuration

parameters dependent on the domain, which make the crawler as

focused as possible. For example, we can have it collect only

certain URL patterns and navigate through others, depending on

the host being visited. Therefore, when using Google Web Search

we could indicate to collect the URLs corresponding to the results

and navigate through the pagination links. In the case of

SourceForge, we could indicate the crawler to navigate the pages

corresponding to categories, and collect the URLs corresponding

to the projects’ homepages. Then, the crawler navigates towards

the download pages and collects only the files of our interest, such

as Java source code, while linking it to the project it belongs to.

The core module and most of the functionality is detached from

the GUI, so it can be ran and managed programmatically without

the need for user interaction. In addition, the crawler can scale up

with more machines, which can be hot-plugged in and collaborate

with no additional configuration. New document types can be

added with virtually no effort, and the crawler can be easily

extended to specialize certain processes or add new ones. To

allow this, the crawler is designed to work on-the-fly with

different forms of meta-information associated to the documents

downloaded, with no need to change the database schema or re-

compile the source code.

The crawler is freely available for research and educational

purposes from the UML Models website at

http://www.umlmodels.org.

4. DEMONSTRATION PLAN
In this demonstration, we show how to use our crawler and the

techniques explained above to gather structured documents using

general purpose search engines like Google. We also show how to

use online repositories, such as SourceForge, to download

software-related files of interest. We also describe and

demonstrate the great number of configuration parameters that can

be set up to satisfy particular user needs.

ACKNOWLEDGEMENTS
We acknowledge the Spanish National Plan of Scientific

Research, Development and Technological Innovation, which has

funded this work through the research project TIN2007-67153.

REFERENCES
[1] N. Gövert and G. Kazai. Overview of the INitiative for the

Evaluation of XML retrieval (INEX) 2002. INEX Workshop,

pages 1-17, 2002.

[2] S. Betsi, M. Lalmas, et al. User Expectations from XML

Element Retrieval. International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages

611-612, 2006.

[3] W.B. Frakes and T. Pole. An Empirical Study of

Representation Methods for Reusable Software Components.

IEEE Transactions on Software Engineering. 20(8): 617-630,

1994.

[4] Y. Xiong, P. Luo, et al. OfCourse: Web Content Discovery,

Classification and Information Extraction for Online Course

Materials. ACM International Conference on Information and

Knowledge Management, pages 2077-2078, 2009.

