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“If you can’t measure it, you can’t improve it.”

—Lord Kelvin



How I Would Like to Measure…

• Gather all my users

• Collect all music material

• Have them use my algorithm

• Observe, ask, explore

• Analyze and Learn

measurement = f(track, algorithm, user, context,…)

3



…and Why We Don’t Do It

• Slow, expensive

• Representativeness

• Ethics, privacy, hidden effects, inconsistency

• Hard to replicate experiments

• Just plain impossible to reproduce results
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What We Do

• Cranfield paradigm, aka dataset-based evaluation

– Use controlled corpus

– Remove users, but include a user-abstraction

• Static user component: Annotations

– Model utility of individual parts of the corpus

• Dynamic user component: Metrics

– Model the behavior of users, their interaction with the 
full algorithm output
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What We Achieve

• Remove all sources of variability, except algorithms

measurement = f(track, algorithm, user, context,…)
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What We Achieve

• Remove all sources of variability, except algorithms
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What We Achieve

• Remove all sources of variability, except algorithms

measurement = f(track, algorithm, user, context,…)

measurement = f(algorithm)

• Evaluation is deterministic

• Experiments are inexpensive and easy to run

• Research becomes systematic

• Reproducibility is not only possible but easy
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“If it disagrees with the experiment, it’s wrong.
In that simple statement is the key to science. It 
doesn’t make any difference how beautiful your 
guess is, it doesn’t matter how smart you are, or 
what your name is. If it disagrees with the 
experiment, it’s wrong. That’s all there is to it.”

—Richard Feynman



• The dataset and the metrics are assuming
a user model, even if it is not explicit

• Are these models correct appropriate?
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Examples from Search Engine Evaluation

• Utility of a document w.r.t. scale of annotation
– Binary or graded relevance?
– Linear utility w.r.t. relevance? Exponential?
– Independent of other documents?
– Diversity? Coverage? Novelty?

• Top heaviness to penalize late arrival
– No discount? Linear? Logarithmic?
– Independent of other documents?

• Interaction, browsing, document length?
• Cutoff
– Fixed: only top k documents?
– Dynamic: wherever some condition is met?
– All documents?

• Metrics are models of a stochastic process involving the user 11



User Models in MIR
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Evaluation is all About Prediction

• Whether the algorithm output satisfies a user or 
not, has nothing to do with how we measure its 
performance

• Many user studies across fields show that there is 
virtually no correlation between our metrics and 
the real world

• So what are we doing? Where are we headed?

• What problems do we think we’re solving?
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User Studies!

• So I “just” run a user study and check how users 
behave/react/interact/perceive (with) the output 
from my algorithm

• That might be useful for you, this one time, but 
it’s not useful for the community

• But think about what we give up
– Evaluation is deterministic

– Experiments are inexpensive and easy to run

– Research is systematic

– Reproducibility is easy 14



What User Studies Tell Us

• What happens in the real world

• To improve user models in datasets & metrics

• So we do better evaluation

• Make better predictions

• And only then, we’ll know

• What to optimize

• How to build better algorithms
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User studies should not be about 
getting confirmation that your 
algorithm works

They should be about learning how 
to do better evaluation,
so that we don’t need user studies
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“Happy families are all alike;
every unhappy family is unhappy in its own way”

—Tolstoy
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Are all mistakes the same?
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Are all mistakes the same?
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Use(r)less Evaluation

• How does error type and magnitude affect the 
perceived similarity with the original?

• It’s not as simple as correct/incorrect

• Of course, it depends on the use case

• How can we incorporate this new knowledge in 
the metrics?
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less confirmation

more exploration

(what do you think?)
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