

Universidad Carlos III de Madrid

Escuela Politécnica Superior
 Ingeniería Informática

Proyecto Fin de Carrera

Modeling and Indexing
Musical Files to allow

Music Reuse

Report
Versión: 1.0
Creación: Diciembre de 2006
Autor: Julián Urbano Merino
Tutor: Juan Llorens Morillo

This page is intentionally left blank.

 page iii

Abstract

The goal of this degree thesis is to provide the necessary mechanisms
to allow the music reuse.

The main musical information retrieval methods nowadays are based
on text retrieval techniques applied to the music metadata, such as the author,
title or musical kind. However, this degree thesis establishes the theoretic and
practical bases to allow the music retrieval based on the own musical content,
extending the possible scenarios where this kind of information retrieval can be
applied in.

On the other hand, the retrieval process is based on the RSHP
information representation model and on the CAKE retrieval framework. Thus,
this degree thesis also intends to demonstrate the versatility and extension
capacity of the RHSP model, applicable to whatever the information domain.

Resumen

El objetivo de este proyecto fin de carrera es proporcionar los
mecanismos necesarios para hacer posible la reutilización de música.

Los principales métodos de recuperación de información musical de
hoy en día se basan en técnicas de recuperación de texto aplicadas a
metadatos de la música, como por ejemplo el autor, título o género musical.
Sin embargo, este proyecto fin de carrera sienta las bases teóricas y prácticas
para permitir la recuperación de música basada en el propio contenido musical,
ampliando los posibles escenarios de este tipo de recuperación de información.

Por otro lado, el proceso de recuperación se basa en el modelo de
representación de información RSHP y en el framework de recuperación CAKE.
Así, este proyecto fin de carrera pretende también demostrar la versatilidad y
capacidad de ampliación del modelo RSHP, aplicable a cualquier dominio de
información.

Un resumen completo y en español del proyecto se encuentra en la
Parte XII de este documento.

 page iv

Juan Llorens Morillo, como profesor del Departamento de Informática
de la Universidad Carlos III de Madrid, adscrito a la Escuela Politécnica
Superior,

CERTIFICA: que el presente Proyecto Fin de Carrera, titulado Modeling and
Indexing Musical Files to allow Music Reuse, ha sido desarrollado bajo su
dirección en la Escuela Politécnica de la Universidad Carlos III de Madrid por
Julián Urbano Merino para obtener el título de Ingeniero en Informática.

Considerando este Proyecto Fin de Carrera finalizado, autorizan su
presentación y defensa.

Y para que así conste, firma en Leganés a 2 de Enero de 2007.

Fdo.: Juan Llorens Morillo

Agradecimientos

En primer lugar quisiera agradecer a mis padres Julián y Ángela, así
como a mis hermanos David, Nuria y Miguel, el apoyo y la dedicación que me
han ofrecido siempre durante estos veintitrés años. Gracias por todo. Este
proyecto, y el paso que representa, es tanto mío como vuestro.

En segundo lugar quisiera mencionar también a todos mis amigos y
colegas, especialmente a Cabezas, Rakel, Vicen y Abraham. Por todos esos
buenos momentos vividos y por vivir, y por demostrarme que no hace falta
mucha gente si la compañía es buena. No me olvido de la gente de la
Universidad, todos esos ratos pasados peleando codo con codo no se olvidan tan
fácilmente. Sois muchos, pero gracias especialmente a Luis y Julio.

Gracias también a todas aquellas personas que, directa o
indirectamente, han tenido que ver en mi formación educativa. En especial
quiero dar las gracias a Félix García y a Alejandro Calderón, del Departamento
de Informática de la Universidad Carlos III de Madrid, por darme la oportunidad
de trabajar con ellos y por enseñarme la otra cara de la Universidad que tanto
me ha gustado.

Muchas gracias a Juan Llorens, mi tutor de proyecto, por las
oportunidades brindadas. Por dejarme unir en este trabajo la música y la
informática, las dos pasiones de mi vida. Gracias por Finlandia y por lo que
viene ahora en Estados Unidos.

Gracias también a toda la gente con la que he pasado los cinco
mejores meses de mi vida, como estudiante Erasmus. Víctor, Parti, Pedro, Meji,
Julio, Daniel, Seweryn y otros tantos que me dejo en el tintero.

En general, gracias a todos los que me habéis apoyado todo este
tiempo porque gracias a vosotros he conseguido lo que me proponía. Y
sobretodo gracias a los que no me habéis apoyado, porque habéis conseguido
que descubra y logre cosas que ni siquiera pude un día imaginar.

“Without music, life would be a mistake”
Friedrich Nietzsche

This page is intentionally left blank.

Modeling and Indexing Musical Files to allow Music Reuse Document Status Sheet

 page viii

Document Status Sheet

This Document Status Sheet (DSS) provides a history of issues and
revisions of the document with a comment indicating the reason for the
revision.

Modeling and Indexing Musical Files to allow Music Reuse
Report
Issue Revision Date Reason for change

1 0 2 Jan 2007 First version of the document

Table 1.1 Document Status Sheet

Modeling and Indexing Musical Files to allow Music Reuse Table of Contents

 page ix

Table of Contents

Abstract ... iii
Agradecimientos ... v
Document Status Sheet .. viii
Table of Contents ... ix
List of Tables.. xv
List of Figures...xvi
Code Listings .. xx

Part I: Prologue

1 Purpose of the Document ...2
2 Acronyms and Abbreviations ...3

2.1 Acronyms...3
2.2 Abbreviations..3

3 References..5
3.1 Main References ..5
3.2 Additional References ...7

4 Overview of the Document ...9

Part II: Musical Theory

1 Musical Notation... 12
1.1 Origins.. 12
1.2 Enhancement Process.. 13

2 Terminology .. 14
2.1 Vertical... 14

2.1.1 The Pentagram ... 14
2.1.2 Clefs.. 14
2.1.3 Notes... 14
2.1.4 The Great Pentagram ... 15

2.2 Horizontal.. 15
2.2.1 Figures ... 15
2.2.2 Rests or Pauses ... 16
2.2.3 Note and Figure Writing .. 16

3 The Bar .. 18
3.1 Barlines... 18

3.1.1 Single Barline ... 18
3.1.2 Double Barline.. 18

3.2 Bar Beats... 18
3.2.1 The Time Signature.. 19

3.3 Simple and Compound Bars ... 19
3.3.1 Simple Bar... 19
3.3.2 Compound Bars ... 20
3.3.3 Bar Relationship.. 21

3.4 Bar Parts ... 22
3.5 The Fermata Symbol ... 22
3.6 Bars in Silence .. 23
3.7 Incomplete Bars... 23
3.8 The Tempo... 23

4 Ties and Rhythm Dots .. 24
4.1 The Tie ... 24

Modeling and Indexing Musical Files to allow Music Reuse Table of Contents

 page x

4.2 The Rhythm Dot... 24
4.2.1 Single Rhythm Dot ... 24
4.2.2 Double Rhythm Dot .. 25

4.3 Writing Rules .. 25
5 Alterations.. 27

5.1 The Tuplet ... 27
5.2 Accidentals .. 27

5.2.2 Enharmonic Notes.. 28
6 Replay Symbols .. 30

6.1 Replay Barlines.. 30
6.1.2 Iteration Labels .. 30

6.2 Navigation Marks.. 31
6.2.1 Dal Segno and Coda.. 31
6.2.2 Da Capo.. 32

7 Tonality ... 33
7.1 The Base Model ... 33

7.1.1 Major Scale.. 33
7.2 The Key Signature .. 34

7.2.1 Cycle of Fifths .. 34
7.2.2 Cycle of Fourths.. 35

8 Intervals... 36
8.2 Interval Classification.. 36

9 The Major Mode ... 38
9.1 Triad Chords... 38
9.2 Seventh Chords ... 39
9.3 Other Chords .. 39

Part III: The MIDI Specification

1 Introduction to MIDI .. 41
2 Messages .. 42
3 Voice Messages .. 44

3.1 Note Off.. 44
3.2 Note On .. 44
3.3 Aftertouch ... 45
3.4 Controller .. 45
3.5 Program Change .. 46
3.6 Channel Pressure ... 46
3.7 Pitch Wheel.. 46

4 Other Messages .. 48

Part IV: Standard MIDI Files 1.0

1 Introduction .. 50
2 File Block Structure .. 51
3 Header Chunk.. 52

3.2 Format.. 52
3.3 Number of Tracks... 53
3.4 Division... 53

4 Track Chunk.. 54
4.2 Metaevents .. 54

Part V: The RSHP Model and the CAKE Engine

1 Artifacts Classification and Retrieval ... 56

Modeling and Indexing Musical Files to allow Music Reuse Table of Contents

 page xi

1.1 Artifact Information Representation Model rα 56
1.2 Artifact Indexing Process I(α)... 56
1.3 Classification Process C(iα).. 57
1.4 Artifact Retrieval Process R(iq) ... 57

2 The RSHP Information Representation Model 58
2.1 Motivations Behind RSHP .. 58
2.2 Inside RSHP .. 58

3 The RSHP Metamodel... 60
3.2 Artifact... 60
3.3 Term.. 61
3.4 Relationship ... 62

3.4.1 RSHPSemantics ... 62
3.5 Information Element ... 63
3.6 Property.. 63

4 The CAKE Engine .. 64
5 XMI Indexing.. 65

5.1 XMI Parser.. 65
5.2 Information Storage in Memory .. 65
5.3 Information Storage in a Database... 65

6 XMI Retrieval ... 66
6.1 UML Query Creation.. 66
6.2 UML Query Formulation and Resolution... 66

6.2.1 Query Inclusion ... 67
6.2.2 Query Similarity .. 67

6.3 Topology Measurements ... 67
6.4 Semantics Measurement... 69

Part VI: Definition of the User Requirements

1 Introduction .. 74
1.1 Purpose... 74
1.2 Scope ... 74

2 General Description .. 75
2.1 System Perspective... 75
2.2 User Characteristics.. 75

3 General Requirements ... 76
3.1 CAKE Studio 3.0.0 .. 76
3.2 File Format .. 76
3.3 Vertical Constraints .. 76

3.3.1 Octave Equivalence.. 76
3.3.2 Grade Equality.. 77
3.3.3 Note Equality ... 77
3.3.4 Chord Recognition ... 78

3.4 Horizontal Constraints ... 78
3.4.1 Time Signature Equivalence.. 78
3.4.2 Tempo Equality... 79
3.4.3 Figure Equality ... 79
3.4.4 Partial Similarity ... 79
3.4.5 Time Quantization ... 80

3.5 Voice Constraints ... 80

Part VII: General Requirements Analysis and First Solutions

1 Introduction .. 83
2 File Format ... 84

2.1 The MIDI lib 2.0.4... 85

Modeling and Indexing Musical Files to allow Music Reuse Table of Contents

 page xii

2.2 SMF Format .. 87
3 Vertical Constraints... 88

3.1 Octave Equivalence .. 88
3.2 Grade Equality .. 88
3.3 Note Equality.. 89
3.4 Chord Recognition .. 89

4 Horizontal Constraints ... 90
4.1 Time Signature Equivalence .. 90
4.2 Tempo Equality ... 90
4.3 Figure Equality .. 91
4.4 Partial Similarity.. 91

5 Voice Constraints.. 93
5.1 Approaches to the Voice Separation... 93

5.1.1 Split Point Approach... 93
5.1.2 Rule-based Approach .. 93
5.1.3 Local Optimization Approach .. 93
5.1.4 Contig Mapping Approach... 94
5.1.5 Predicate Approach.. 94

5.2 The Kilian-Hoos Algorithm .. 94
5.2.1 Preliminaries.. 94
5.2.2 Input Splitting .. 95
5.2.3 The Cost Function.. 97

Pitch Distance Penalty Cpitch ..97
Gap Distance Penalty Cgap ...99
Chord Distance Penalty Cchord ... 100
Overlap Distance Penalty Coverlap ... 101

5.2.4 Cost-Optimized Slice Separation ...102

Part VIII: The Mathematical Approach

1 Introduction ...105
2 Preliminaries ..106

2.1 Domain Normalization .. 106
2.2 Music As a Mathematical Function .. 107

3 Comparing Musical Pieces Described as Mathematical Functions108
3.2 Vertical Comparison... 109
3.3 Horizontal Comparison.. 110
3.4 Piecewise Comparison .. 111
3.5 How to Perform the Actual Comparison ... 112

4 Basic Polynomial Interpolation ..113
4.1 The Runge’s Phenomenon.. 113

5 Spline Interpolation..115
5.1 Cubic Splines ... 115
5.2 Choosing a Cubic Spline .. 116

6 Coping with Chords ..118
7 Parametric Curves ...119
8 Bézier Curves ...120

8.1 Definition ... 120
8.2 Properties... 121

9 B-Splines ...123
9.1 Definition ... 123
9.2 Properties... 125

10 Uniform B-Splines ..128
10.1 The Blending Function .. 128

11 Why Degree 3 Uniform B-Splines ...132
11.2 The Knot Spans... 133

12 Coping with Voices...136

Modeling and Indexing Musical Files to allow Music Reuse Table of Contents

 page xiii

Part IX: Translation to the RSHP Metamodel and the CAKE Engine

1 Artifacts’ Topology...139
2 Single Voices without Chords ..140

2.1 Final Method to Compare Intervals ... 140
2.2 How to Represent Information Units ... 141

3 Single Voices with Chords ..142
4 Several Voices without Chords ..143
5 Several Voices with Chords ..145
6 Representing Numbers with Terms...147

6.1 Score Durations .. 147
6.2 Derivative Values .. 148

6.2.1 Derivative Values with Voices...149
7 Extending the CAKE Engine ..151

Part X: Implementation Details

1 The Music Information Retrieval Process153
2 Implementation in MIKE ..155

2.1 Preprocessing .. 155
2.2 VoiceSeparation ... 155
2.3 Quantization.. 156
2.4 Minimization.. 157
2.5 Interpolation ... 158
2.6 RSHP Modeling ... 158
2.7 The CAKE Studio Manager .. 159

Part XI: Epilogue

1 Conclusions..161
2 Future Work...162
3 Project Budget..164

Part XII: Source Code

1 MIKE...168
1.1 MikeManagerFactory .. 168
1.2 MIKEIndexerCreator ... 168
1.3 MIKEManager ... 168
1.4 MIKEManagerMainForm ... 173

2 MIKE.Preprocessing ..174
2.1 IPreprocessor... 174
2.2 PreprocessedMidiSequence .. 174
2.3 PreprocessedMidiTrack ... 174
2.4 PreprocessedMidiNote .. 175
2.5 MIKE.Preprocessing.Silly.. 176

2.5.1 SillyPreprocessor ..176
3 MIKE.VoiceSeparation ...178

3.1 IVoiceSeparator .. 178
3.2 SeparatedSequence ... 178
3.3 SeparatedTrack .. 178
3.4 SeparatedVoice .. 179
3.5 SeparatedNote ... 179
3.6 SeparatedSingleNote.. 180

Modeling and Indexing Musical Files to allow Music Reuse Table of Contents

 page xiv

3.7 SeparatedChord.. 180
3.8 MIKE.VoiceSeparation.KilianHoos ... 181

3.8.1 KilianHoosVoiceSeparator ...181
3.8.2 KilianHoosNote ..187
3.8.3 KilianHoosSingleNote ...188
3.8.4 KilianHoosChord...188

3.9 MIKE.VoiceSeparation.Silly... 189
3.9.1 SillyVoiceSeparator ...189

4 MIKE.Quantization ...190
4.1 IQuantizator .. 190
4.2 QuantizedSequence ... 190
4.3 QuantizedStaff ... 190
4.4 QuantizedVoice .. 191
4.5 QuantizedDurations ... 191
4.6 QuantizedNote ... 192
4.7 QuantizedSingleNote.. 192
4.8 QuantizedChord.. 192
4.9 MIKE.Quantization.Silly... 193

4.9.1 SillyQuantizator ...193
5 MIKE.Interpolation ...194

5.1 IInterpolator.. 194
5.2 InterpolatedSequence .. 194
5.3 InterpolatedStaff .. 194
5.4 InterpolatedVoice ... 195
5.5 InterpolatedSpan .. 196
5.6 Polynomial .. 197
5.7 BSplineInterpolator.. 199
5.8 UniformBSpline .. 201

6 MIKE.RSHPzation ...202
6.1 IRSHPzator .. 202
6.2 RSHPzator... 202

Part XIII: Resumen en Español

1 Notación Musical, MIDI y SMF ..207
1.1 Notación Musical... 207
1.2 El Estándar MIDI.. 208
1.3 Standard MIDI Files .. 208

2 El Modelo RSHP y el CAKE Engine...209
2.2 El CAKE Engine ... 210

3 Requisitos Generales ..211
3.1 Restricciones Verticales .. 211
3.2 Restricciones Horizontales ... 212
3.3 Separación de Voces .. 212

4 El Modelo Matemático ...214
4.1 Normalización de Dominios .. 214

Modeling and Indexing Musical Files to allow Music Reuse List of Tables

 page xv

List of Tables
Table 1.1 Document Status Sheet...viii

Part II: Musical Theory
Table 2.1 Note names... 15
Table 2.2 Note figures and durations... 16
Table 2.3 Rest figures and durations ... 16
Table 3.1 Bar relationship.. 22
Table 5.1 The accidentals.. 27
Table 8.1 Intervals in the major scale ... 36
Table 8.2 Relationships among intervals... 37
Table 9.1 Relationships among intervals... 38
Table 9.2 Seventh chords .. 39

Part III: The MIDI Specification
Table 2.1 MIDI message types ... 42

Part VIII: The Mathematical Approach
Table 9.1 Degree 0 B-Spline basis functions.. 123
Table 9.2 Degree 1 B-Spline basis functions.. 124
Table 9.3 Degree 2 B-Spline basis functions.. 124

Part IX: Translation to the RSHP Metamodel and the CAKE Engine
Table 6.1 Score durations for notes ... 147

Part XI: Epilogue
Table 3.1 Human effort cost estimation .. 165
Table 3.2 Stuff and documentation cost.. 165
Table 3.3 Erasmus grant estimated cost .. 166
Table 3.4 Final cost calculation .. 166

Part XIII: Resumen en Español
Table 1.1 Notas musicales .. 207

Modeling and Indexing Musical Files to allow Music Reuse List of Figures

 page xvi

List of Figures

Part II: Musical Theory
Figure 1.1 Fragment of the Seikilos Epitaph .. 12
Figure 1.2 Fragment of the Musica Disciplina... 12
Figure 2.1 The pentagram ... 14
Figure 2.2 The Sol clef ... 14
Figure 2.3 The Fa clef .. 14
Figure 2.4 Note writing... 14
Figure 2.5 Notes with additional lines ... 15
Figure 2.6 The seven notes in the great pentagram ... 15
Figure 2.7 Stem and flag writing.. 17
Figure 2.8 Beamed notes... 17
Figure 3.1 Barlines .. 18
Figure 3.2 The ending double barline.. 18
Figure 3.3 The dividing double bar ... 18
Figure 3.4 The most common time signatures.. 19
Figure 3.5 2/4 bar composition ... 20
Figure 3.6 3/4 bar composition ... 20
Figure 3.7 4/4 bar composition ... 20
Figure 3.8 2/2 bar composition ... 20
Figure 3.9 6/8 bar composition ... 21
Figure 3.10 9/8 bar composition.. 21
Figure 3.11 12/8 bar composition .. 21
Figure 3.12 6/4 bar composition.. 21
Figure 3.13 The fermata symbol.. 22
Figure 3.14 Bars in silence... 23
Figure 3.15 Incomplete starting bars .. 23
Figure 3.16 The tempo ... 23
Figure 4.1 Tied notes (part I).. 24
Figure 4.2 Tied notes (part II) ... 24
Figure 4.3 The rhythm dot ... 24
Figure 4.4 The double rhythm dot.. 25
Figure 4.5 First writing rule ... 25
Figure 4.6 First exception to the first writing rule .. 25
Figure 4.7 Second exception to the first writing rule ... 25
Figure 4.8 Third exception to the first writing rule ... 26
Figure 4.9 Fourth exception to the first writing rule .. 26
Figure 4.10 Second writing rule... 26
Figure 5.1 Tuplet equivalences ... 27
Figure 5.2 Tupled notes .. 27
Figure 5.3 The accidentals... 28
Figure 5.4 Accidental effect within a bar (part I).. 28
Figure 5.5 Accidental effect within a bar (part II) ... 28
Figure 5.6 Accidental effect within a bar (part III) .. 28
Figure 5.7 Enharmonic notes .. 29
Figure 6.1 Replay barlines (part I).. 30
Figure 6.2 Replay barlines (part II) ... 30
Figure 6.3 Iteration labels ... 30
Figure 6.4 The Dal Segno figure... 31
Figure 6.5 The Coda figure .. 31
Figure 6.6 Navigation markers .. 31
Figure 7.1 Major scale in DO... 33
Figure 7.2 Major scale in MI ... 34
Figure 7.3 Key signature for MI ... 34
Figure 7.4 Cycle of fifths... 34
Figure 7.5 Key signatures (part I)... 35
Figure 7.6 Key signatures (part II) .. 35
Figure 8.1 Intervals among the natural notes... 36

Modeling and Indexing Musical Files to allow Music Reuse List of Figures

 page xvii

Figure 8.2 Melodic and harmonic intervals.. 36
Figure 8.3 Relationships among intervals.. 37
Figure 9.1 Diatonic and chromatic notes .. 38
Figure 9.2 Triad chords... 38
Figure 9.3 Triad cords in different tonalities ... 39

Part III: The MIDI Specification
Figure 3.1 Pitch Wheel value obtaining.. 47

Part IV: Standard MIDI Files 1.0
Figure 2.1 SMF chunk format .. 51
Figure 2.2 SMF block structure.. 51
Figure 3.1 Header chunk syntax .. 52
Figure 4.1 Track chunk syntax .. 54

Part V: The RSHP Model and the CAKE Engine
Figure 1.1 Graphical representation of artifacts ... 56
Figure 1.2 Artifact indexing ... 57
Figure 1.3 Artifact classification.. 57
Figure 1.4 Artifact retrieval process ... 57
Figure 3.1 RSHP metamodel ... 60
Figure 3.2 Artifact contents (part I).. 61
Figure 3.3 Artifact contents (part II) ... 61
Figure 3.4 Relationships structure and semantics.. 62
Figure 3.5 Information Elements.. 63
Figure 3.6 Properties structure ... 63
Figure 6.1 A target document to retrieve ... 66
Figure 6.2 Vector space model for topology measurement... 68
Figure 6.3 RSHP difference map .. 70
Figure 6.4 Propagation in the ISO2788 net .. 72

Part VI: Definition of the User Requirements
Figure 3.1 Octave equivalence .. 76
Figure 3.2 Grade equality (part I) .. 77
Figure 3.3 Grade equality (part II).. 77
Figure 3.4 Note equality ... 77
Figure 3.5 Time signature equivalence (part I)... 78
Figure 3.6 Time signature equivalence (part II) .. 78
Figure 3.7 Tempo equality (part I) ... 79
Figure 3.8 Tempo equality (part II)... 79
Figure 3.9 Figure equality.. 79
Figure 3.10 Partial similarity (part I) .. 80
Figure 3.11 Partial similarity (part II).. 80
Figure 3.12 Simple voice distinction ... 80
Figure 3.13 Complex voice distinction... 81

Part VII: General Requirements Analysis and First Solutions
Figure 2.1 Music XML example .. 85
Figure 2.2 MIDI lib static information model (part I) .. 86
Figure 2.3 MIDI lib static information model (part II) ... 86
Figure 2.4 MIDI lib static information model (part III)... 87
Figure 2.5 MIDI lib static information model (part IV)... 87
Figure 3.1 Grade equality.. 88

Modeling and Indexing Musical Files to allow Music Reuse List of Figures

 page xviii

Figure 3.2 Interval measurement ... 89
Figure 4.1 Tempo Equality... 90
Figure 4.2 Timeless model (part I) ... 91
Figure 4.3 Timeless model (part II)... 91
Figure 5.1 Partitioning a piece into slices... 95

Part VIII: The Mathematical Approach
Figure 2.1 Note distribution (part I)... 106
Figure 2.2 Note distribution (part II) .. 106
Figure 2.3 Note distribution (part III) ... 107
Figure 3.1 Comparison among musical functions.. 108
Figure 3.2 Comparison among first derivatives.. 109
Figure 3.3 Differences in the time-dimension (part I).. 110
Figure 3.4 Piecewise comparison .. 111
Figure 3.5 Comparing areas... 112
Figure 4.1 The Runge’s Phenomenon (part I) .. 114
Figure 4.2 The Runge’s Phenomenon (part II) ... 114
Figure 5.1 Cubic splines ... 115
Figure 6.1 Paths through chords ... 118
Figure 7.1 Parametric curves... 119
Figure 8.1 Bézier curves... 120
Figure 8.2 Bézier basis functions .. 121
Figure 8.3 The convex hull property .. 121
Figure 8.4 The variation diminishing property... 122
Figure 9.1 Degree 0 B-Spline basis functions .. 124
Figure 9.2 Degree 1 B-Spline basis functions .. 124
Figure 9.3 Degree 2 B-Spline basis functions .. 125
Figure 9.4 B-Spline curves .. 125
Figure 9.5 Strong convex hull property ... 126
Figure 9.6 Local modification scheme .. 126
Figure 10.1 Degree 1 blending function integration intervals .. 128
Figure 10.2 Degree 1 blending function .. 129
Figure 10.3 Degree 2 blending function integration intervals .. 129
Figure 10.4 Degree 2 blending function .. 130
Figure 10.5 Degree 3 uniform B-Spline basis functions .. 131
Figure 11.1 Moving control points ... 133
Figure 11.2 Non-uniform B-Spline spans.. 134
Figure 12.1 3-dimensional interpolating curve .. 137

Part IX: Translation to the RSHP Metamodel and the CAKE Engine
Figure 1.1 Main artifacts’ topology (part I) .. 139
Figure 1.2 Main artifacts’ topology (part II) ... 139
Figure 2.1 Comparing intervals .. 140
Figure 2.2 Degree 2 polynomial shapes ... 141
Figure 2.3 A Concave RSHP ... 141
Figure 2.4 Sequence with a single voice.. 141
Figure 3.1 Voice with chords (part I).. 142
Figure 3.2 Voice with chords (part II) ... 142
Figure 3.3 The Span artifact.. 142
Figure 4.1 Several voices without chords (part I) ... 143
Figure 4.2 Several voice without chords (part II) ... 143
Figure 4.3 Derivatives with several voices ... 144
Figure 5.1 Several voices with chords (part I) ... 145
Figure 5.2 Several voices with chords (part II) .. 145
Figure 5.3 Several voices with chords (part III).. 146
Figure 5.4 Several voices with chords (part IV).. 146
Figure 6.1 First derivative intervals ... 149

Modeling and Indexing Musical Files to allow Music Reuse List of Figures

 page xix

Part X: Implementation Details
Figure 1.1 The music information retrieval process .. 153
Figure 2.1 Preprocessed model .. 155
Figure 2.2 Separated model .. 156
Figure 2.3 Quantized model .. 157
Figure 2.4 Interpolated model ... 158

Part XI: Epilogue
Figure 2.1 Surjective mapping to RHSP ... 163

Part XIII: Resumen en Español
Figure 1.1 El gran pentagrama ... 207
Figure 1.2 Escala mayor de Do ... 208
Figure 2.1 El metamodelo RSHP.. 209
Figure 3.1 Equivalencia de octava... 211
Figure 3.2 Igualdad de grados .. 211
Figure 3.3 Igualdad de notas ... 211
Figure 3.4 Equivalencia de clave de tiempo ... 212
Figure 3.5 Igualdad de tempo .. 212
Figure 3.6 Igualdad de figuras.. 212
Figure 3.7 Separación de voces .. 213
Figure 4.1 Normalización de dominios (parte I) ... 214
Figure 4.2 Normalización de dominios (parte II) .. 214
Figure 4.3 Interpolación de canciones .. 215

Modeling and Indexing Musical Files to allow Music Reuse Code Listings

 page xx

Code Listings

Part VII: General Requirements Analysis and First Solutions
Listing 2.1 MusicXML example ... 85
Listing 5.1 Outline of the Kilian-Hoos algorithm for unquantized input data........................ 97
Listing 5.2 Pitch calculation for voice v with pitchlookback > 0....................................... 98
Listing 5.3 Calculation of Cpitch for a single voice v in Si .. 99
Listing 5.4 Calculation of pitch distance penalty Cpitch for slice Si given previous separation

S .. 99
Listing 5.5 Calculation of gap distance penalty Cgap for slice Si given previous separations S 99
Listing 5.6 Calculation of chord distance penalty Cchord for slice Si 100
Listing 5.7 Calculation of overlap distance penalty Coverlap for slice Si given previous

separations S .. 101
Listing 5.8 Calculation of overlap distance penalty for a single voice 102
Listing 5.9 Randomized iterative algorithm for finding a cost-optimized separation of slice

yi .. 103

Part I:
Prologue

Modeling and Indexing Musical Files to allow Music Reuse
Prologue Purpose of the Document

 page 2

1 Purpose of the Document

The aim of this document is the Final Degree Project whose
development is established in the Study Plan for Computing Engineering
according to the B.O.E. 07.11.00 as a mandatory requirement, once its defense
is accomplished, to have the right to the Computing Engineer Title.

Modeling and Indexing Musical Files to allow Music Reuse
Prologue Acronyms and Abbreviations

 page 3

2 Acronyms and Abbreviations

This section provides the definitions of all terms, acronyms and
abbreviations, or refers to other documents where the definitions can be
found.

2.1 Acronyms

AAAI American Association for Artificial Intelligence
ASCII American Standard Code for Information Interchange

BLAST Basic Local Search Alignment Tool
B.O.E. From the Spanish “Boletín Oficial del Estado”, Official State

Bulletin
BSSC Board for Software Standardization and Control
CAKE Computer-Aided Knowledge Engineering

DIN From the German “Deutsches Institut für Normung”, German
Institute for Standardization

DLL Dynamic Link Library
DNA Deoxyribonucleic Acid
DOM Document Object Model
DSS Document Status Sheet
ESA European Space Agency

IE Information Element
IEC International Electrotechnical Commission

ISMIR International Symposium on Music Information Retrieval
ISO International Organization for Standardization
LFO Low Frequency Oscillation
MIDI Musical Instrument Digital Interface
MIKE Music Indexer based on the CAKE Engine
MMA MIDI Manufacturers Association

MPEG Moving Picture Experts Group
SMDL Standard Music Description Language
SMF Standard MIDI File

SMPTE Society of Motion Picture and Television Engineers
SQL Structured Query Language
UML Unified Modeling Language

UR User Requirement
VCA Voltage-Controlled Amplifier
VCF Voltage-Controlled Filter

WMA Windows Media Audio
XMI XML Metadata Interchange
XML Extensible Markup Language

2.2 Abbreviations

Contig Contiguous
Hex Hexadecimal
LXor Logical XOR

Modeling and Indexing Musical Files to allow Music Reuse
Prologue Acronyms and Abbreviations

 page 4

MP3 MPEG-1 Audio Layer 3
Pty Property

QbyE Query by Example
RHSP Relationship
VAT Value Added Tax
WAV Waveform audio format
XOR Exclusive Or

Modeling and Indexing Musical Files to allow Music Reuse
Prologue References

 page 5

3 References

This section provides a complete list of all the applicable and
reference documents, identified by title, author and date if applicable.

3.1 Main References

The list bellow contains all the main references used as main
information sources for the current project:

• [Herrera, 1995a] Herrera E., Teoría Musical y Armonía Moderna vols. I
and II, Antoni Bosch Editor, 1995.

• [Stone] Stone, J. E., Music, MIDI and Synthesizers, University of Illinois
at Urbana-Champaign, http://jedi.ks.uiuc.edu/~johns/links/music/.

• [Borj] The MIDI Specification
http://www.borg.com/~jglatt/tech/midispec.htm.

• [Knott, 2000] Knott G. D., Interpolating Cubic Splines, Birkhäuser,
2000.

• [de Boor, 1978] de Boor C., A Practical Guide to Splines, Springer-
Verlag, 1978.

• [Llorens, 2003] Llorens J., Morato J. and Génova G., RSHP: an
Information Representation Model based on Relationships, Special
Book on Soft Computing, Berlin, 2003.

• [Llorens, 2002] Llorens J., Fuentes J. M. and Morato J., A Retrieval
Framework for XMI Information.

• [Kilian, 2004] Kilian J., Inferring Score Level Musical Information from
Low Level Musical Data, PhD thesis, 2004.

• [ISO, 1986] International Organization for Standardization, Guidelines
for the Establishment and Development of Monolingual Thesauri, 2nd
edition, 11-15 UDC 025.48.ISO2788, Geneva, 1986.

• [Byrd, 2001] Byrd D. and Crawford T., Problems of Music Information
Retrieval in the Real World, Information Processing and Management.

• [Sharka, 2004] Sharka I., Frederico G. and El Saddik A., Music Indexing
and Retrieval, Proceedings of the IEEE International Conference on
Virtual Environments, Human-Computer Interfaces and Measurement
Systems, Boston, MD, USA, 2004.

Modeling and Indexing Musical Files to allow Music Reuse
Prologue References

 page 6

• [Doraisamy, 2001] Doraisamy S. and Rüger S. M., An Approach Towards
a Polyphonic Music Retrieval System, Proceedings of the 2nd
International Symposium on Music Information Retrieval (ISMIR 2001),
pp. 187-193, Indiana University, Bloomington, USA, 2001.

• [Doraisamy, 2004] Doraisamy S. and Rüger S. M., A Polyphonic Music
Retrieval System Using N-Grams, Proceedings of the 5th International
Symposium on Music Information Retrieval (ISMIR 2004), Audiovisual
Institute-Universitat Pompeu Fabra, Barcelona, Spain, 2004.

• [Hoos, 2001] Hoos H. H., Renz K. and Görg M., GUIDO/MIR – An
Experimental Musical Information Retrieval System based on GUIDO
Music Notation, Proceedings of the 2nd International Symposium on
Music Information Retrieval (ISMIR 2001), pp. 41-50, Indiana University,
Bloomington, USA, 2001.

• [Dovey, 2001] Dovey M. J., A technique for “regular expression” style
searching in polyphonic music, Proceedings of the 2nd International
Symposium on Music Information Retrieval (ISMIR 2001), pp. 179-185,
Indiana University, Bloomington, USA, 2001.

• [Lebel, 2006] Lebel D., Voice Separation Summary, Computer Music
Seminar 2 (MUMT-611), Schulich School of Music, 2006.

• [Hoos, 2002] Hoos H. H. and Kilian J., Voice Separation – A Local
Optimization Approach, Proceedings of the 3rd International
Conference on Music Information Retrieval (ISMIR 2002), pp. 39-46,
Institut de Recherche et Coordination Acoustique/Musique (IRCAM),
Paris, France, 2002.

• [Kirlin, 2005] Kirlin P. B. and Utgoff P. E., VoiSe: Learning to segregate
voices in explicit and implicit polyphony, Proceedings of the Sixth
International Conference on Music Information Retrieval, pp. 552-557,
Queen Mary, University of London, 2005.

• [Chew, 2005] Chew E. and Wu X., Separating Voices in Polyphonic
Music: A Contig Mapping Approach, Proceedings of the International
Symposium on Computer Music Modeling and Retrieval, pp. 1-20,
Berlin, Germany, 2005.

• [Cambouropoulos, 2000] Cambouropoulos E., From MIDI to Traditional
Musical Notation, Proceedings of the AAAI Workshop on Artificial
Intelligence and Music, Austin, Texas, USA, 2000.

• [Camboutopoulos] Cambouropoulos E., Crochemore M., Iliopoulos C.,
Mohamed M. and Sagot MF., A Pattern Extraction Algorithm for
Abstract Melodic Representations that Allow Partial Overlapping of
Intervalic Categories,

• [Paiement] Paiement JF., Eck D. and Bengio S., A Probabilistic Model
for Chord Progressions, Proceedings of the International Symposium on
Computer Music Modeling and Retrieval

Modeling and Indexing Musical Files to allow Music Reuse
Prologue References

 page 7

• [Orio] Orio N. and Neve G., Experiments on Segmentation Techniques
for Music Documents Indexing, Proceedings of the International
Symposium on Computer Music Modeling and Retrieval

• [Yu] Yu Y., Watanabe C. and Joe K., Towards a Fast and Efficient
Match Algorithm for Content-based Music Retrieval on Acoustic Data,
Proceedings of the International Symposium on Computer Music
Modeling and Retrieval

• [Nagel, 2005] Nagel C., Evjen B. et al., Professional C# 2005, Wrox
Press, 2005.

• [Barwell, 2002] Barwell F., Case R. et al., Professional VB .net 2nd
edition, Wrox Press, 2002.

• ESA software engineering standards.

3.2 Additional References

The list below contains all the additional references where some
relevant information can be found about several topics treated in the
document:

• [Wikipedia, EN] The Free Encyclopedia, http://en.wikipedia.org.

• [DIN] German Institute for Standardization http://www.din.de.

• [SMPTE] Society of Motion Picture and Television Engineers
http://www.smpte.org.

• [MMA] MIDI Manufacturers Association http://www.midi.org.

• [Rona, 1987] Rona J., The MIDI Companion: The Ins, Outs and
Throughs, Hal Leonard Publishing Corporation, 1987.

• [Baeza, 1999] Baeza R. and Ribeiro B., Modern Information Retrieval,
Addison Wesley, 1999.

• [OMG, a] Object Management Group, Unified Modeling Language
(UML), http://www.uml.org/.

• [OMG, b] Object Management Group, XML and XMI Resource Page,
http://www.omg.org/technology/xml/.

• [W3C] World Wide Web Consortium, Extensible Markup Language (XML)
http://www.w3.org/XML/.

• [Nano] NanoSounds, http://nanosounds.tripod.com.

• [ICOS] La Web de los Juegos Locos, http://www.losicos.com.

Modeling and Indexing Musical Files to allow Music Reuse
Prologue References

 page 8

• [Microsoft] Microsoft, Microsoft .net Technology,
http://www.microsoft.com/net/.

• [dTinf] The Reuse Company, http://www.reusecompany.com.

• [ISO/IEC] International Organization for Standardization and
International Electrotechnical Commission, Standard Music Description
Language, ISO/IEC DIS 10743, 1995

• [Recordare] Recordare LLC, MusicXML Definition,
http://www.musicxml.org/xml.html.

• [Toub] Stephen Toub, .NET, MSDN Magazine and other Adventures in
Life, http://blogs.msdn.com/toub/.

• [GotDotNet] GotDotNet, MIDI for .NET v2.0.4,
http://www.gotdotnet.com/Community/UserSamples/Details.aspx?Sa
mpleGuid=89CDE290-5580-40BF-90D2-5754B2E8137C.

Modeling and Indexing Musical Files to allow Music Reuse
Prologue Overview of the Document

 page 9

4 Overview of the Document

The document is divided into 12 main sections that are organized in
parts:

I. Prologue. This part includes a list of acronyms and abbreviations
used along the document, as well as the applicable bibliography.

II. Musical Theory. This section explains in detail the main music
theory aspects that are going to be considered for the system.

III. The MIDI Specification. This time, the MIDI standard is documented
so that its main capabilities and features are explained.

IV. Standard MIDI Files 1.0. This part of the document explains how
MIDI files are, their structure and their relationship with the MIDI
standard.

V. The RSHP Model and the CAKE Engine. In this part the RSHP
information representation metamodel and the CAKE Engine are
explained in detail since they are the pillars of the system.

VI. Definition of the User Requirements. This section contains the user
requirements explained in detail.

VII. General Requirements Analysis and First Solutions. After section VI
ends, this one directly faces all the constraints stated and offers a
detailed analysis of them so that a first approximation to their
solution is offered.

VIII. The Mathematical Approach. The basis of MIKE is a strong
mathematical model build upon the interpolation bases. This model
is explained and detailed in this part of the document with all the
details about its improvement.

IX. Translation to the RSHP Metamodel and the CAKE Engine. Since the
project must comply with this metamodel and the engine explained
in the Part V, this one is in charge of explaining how to translate to
RSHP the mathematical model presented in Part VIII.

X. Implementation Details. This part contains a detailed explanation
about how the model is actually implemented and outlines some
suitable future work.

XI. Epilogue. This almost last part is in charge of presenting the
conclusions of the project as well as defining some future work
that might be applied to MIKE in order to improve it or simply make
it more suitable. Indeed, we will see that some extra work is
mandatory. Moreover, this part contains the budget of the project.

Modeling and Indexing Musical Files to allow Music Reuse
Prologue Overview of the Document

 page 10

XII. Source Code. This part contains the source code of the system,
which is implemented under the Microsoft .net technology in the
C# language.

XIII. Resumen en Español. This is a mandatory part for the report since
it is all in the English language. This part contains a brief about the
whole project in the Spanish language.

Part II:
Musical Theory

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Musical Notation

 page 12

1 Musical Notation

The musical notation is a system to write music [Wikipedia, EN].
Nowadays, this notation is based on a five-line staff with symbols for each
note, duration, pitch, clef and whatever related to the music piece
represented. However, this has not been the unique notation used along the
time.

1.1 Origins

There are some evidences showing that there was any kind of music
representation practiced by the Egyptians and others in the Orient in the third
millennium BC.

From the sixth century BC to the fourth AC there was another notation
used in the Ancient Greece and there still exist some pieces of compositions
with this notation surviving nowadays. An important example of this notation is
the Seikilos Epitaph which uses some symbols placed above letters. An example
of these symbols is depicted below in Figure 1.1.

Figure 1.1 Fragment of the Seikilos Epitaph

Knowledge related to this Ancient Greek notation was lost with the fall
of the Roman Empire. Then, in the seventh century music theorist Isidore of
Seville pointed that it is not possible to notate music. However, in some
Gregorian Monasteries, a new notation became to born in the ninth century and
was characterized by its symbols, also called neumes. The earliest notation of
this kind is the Musica Disciplina of Aurelian of Réôme about year 850. Figure
1.2 shows an example of this notation.

Figure 1.2 Fragment of the Musica Disciplina

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Musical Notation

 page 13

There were another notations coming from the Iberian Peninsula
known as Visigothic neumes, but unfortunately its few surviving fragments have
not been deciphered yet.

Other notations date from China and Japan at the tenth century. In
other places, such as India, music was notated by using characters for sounds.
On the other hand, in Europe it was tried to create a purely symbolic notation
which does not seem to exist anywhere else.

1.2 Enhancement Process

The earliest music notation was encoded using cuneiform scripts in
Mesopotamia, dating at the middle of the second millennium BC. There were
used several notations from then until the modern one, originated in the
Catholic Church. Some of these notations used the neume system but, although
this system was capable to express considerable music complexity, it did
express neither the time nor the pitch. Therefore, it was impossible to
interpret the piece for someone who have never listened the song.

To treat the issue of the pitch, it was introduced a staff consisting only
in one single horizontal line, and it was evolving to a four-line system where
each pitch had a different height in the staff. This lined system is still used
with many variations for different instruments. For instance, there is a notation
with six lines used to represent notes in a guitar. Nowadays, it is used a five-
line staff which was first adopted in France and became widely used in the
sixteenth century.

As mentioned above, the neume system was unable to express the
duration of each note. Therefore, by the tenth century arose a new system for
representing up to four note lengths. These lengths were relative to the
neighboring notes and not absolute. However, it was not until the fourteenth
century when a system like the present one became to use fixed note lengths
and to split pieces into parts. That way, it was clear, for several staffs, which
parts must be played at the same time. Finally, nowadays regular measures
took place by the seventeenth century.

Nowadays there are several musical notation systems widely used
around the globe. There are some ones that use letters, numbers or both them
and express the note length with a single number. Others use a wide variety of
symbols and even express notes in a staff similar to the instrument with which
the piece should be played.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Terminology

 page 14

2 Terminology

The representation of musical sounds is made with many different
symbols. Some of them define the vertical concept (i.e. the height) and some
others the horizontal concept (i.e. the duration).

2.1 Vertical

2.1.1 The Pentagram

The staff used nowadays consists on five horizontal and parallel lines
as show in Figure 2.1. This staff is called pentagram and depending on the
pitch, each note will be placed in a different height between these lines.

Figure 2.1 The pentagram

2.1.2 Clefs

There are some symbols used to define every note written into the
pentagram. These symbols are called clefs and there are mainly two: the ‘sol’
and the ‘fa’ one in fourth, which are depicted in Figure 2.2 and Figure 2.3
respectively.

Figure 2.2 The Sol clef

Figure 2.3 The Fa clef

2.1.3 Notes

Notes are represented by symbols written over the spaces or between
the pentagram lines as they appear in Figure 2.4. Thus, each musical sound is
determined by a note.

Figure 2.4 Note writing

Some musical sounds can not be represented because of their height,
so some additional lines are used. These notes are written with some short and
parallel lines equidistant to those of the pentagram, either above or below, as
it is depicted in Figure 2.5.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Terminology

 page 15

Figure 2.5 Notes with additional lines

2.1.4 The Great Pentagram

Notes placed in the pentagram are seven and are called in the
International and the Cipher notation as indicated in Table 2.1:

International
notation Cipher notation

DO C
RE D
MI E
FA F
SOL G
LA A
SI B

Table 2.1 Note names

The great pentagram is the union of two pentagrams: the highest in Sol
clef and the lowest in Fa clef. Notes are written in both pentagrams as shown
in Figure 2.6:

Figure 2.6 The seven notes in the great pentagram

2.2 Horizontal

2.2.1 Figures

Whatever a sound, its duration is determined by the figure of the note
it is represented with. There are mainly six figures for representing sound
durations: the semibreve, the minim, the crotchet, the quaver, the semiquaver
and the demisemiquaver. They are shown in Table 2.2.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Terminology

 page 16

Name Figure Duration

Semibreve Taken as unit

Minim

Half a semibreve

Crotchet Half a minim

Quaver Half a crotchet

Semiquaver Half a quaver

Demisemiquaver

Half a semiquaver

Table 2.2 Note figures and durations

There are some other figures, such as the breve, the
hemidemisemiquaver or the quasihemidemisemiquaver, that are not actually
used either in modern or popular music.

2.2.2 Rests or Pauses

Some times, there arises the need of representing interruptions in
staffs. Actually, these interruptions are sound lacks, and there are also several
figures to represent several rest durations, which are show in Table 2.3:

Note equivalence Figure

Semibreve rest

Minim rest

Crotchet rest

Quaver rest

Semiquaver rest

Demisemiquaver rest

Table 2.3 Rest figures and durations

2.2.3 Note and Figure Writing

Notes placed over the lines must be crossed by them, and those that
are paced between two lines must be touching them.

Every note but semibreves are written with a stem that must be placed
on the right hand side when the stem is upwards and on the left hand side
when the stem is downwards. Usually, stems are written upwards when the
note is placed below the third line of the pentagram and downwards when it is
placed over the third line or above.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Terminology

 page 17

Flags used for quavers or figures with lower duration are always at the
right of the stem, at its extreme and with opposite direction. It is shown in
Figure 2.7.

Figure 2.7 Stem and flag writing

When two or more notes which would normally have flags (quaver
notes or shorter) appear successively, the flags may be replaced by beams, as
shown below in Figure 2.8.

Figure 2.8 Beamed notes

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory The Bar

 page 18

3 The Bar

The bar is the time unit on which a musical piece is split. There are
several symbols and notations related to bars that are explained from now on.

3.1 Barlines

Barlines are represented with a perpendicular line that joins the first
and the fifth pentagram lines. These lines are used to represent several bar
characteristics, such as the end of a piece, a repetition and so on.

3.1.1 Single Barline

Single barlines are used to show the end of a bar and the beginning of
the following one, as is depicted in Figure 3.1.

Figure 3.1 Barlines

3.1.2 Double Barline

The double barline consists on two perpendicular lines, being the
second one thicker than the first one. This kind of barline indicates the end of
the song, as shown in Figure 3.2.

Figure 3.2 The ending double barline

There is also another kind of double barline in which both barlines
have the same thickness. This barline is used to indicate the end of one part of
the song and the beginning of another. It is depicted in Figure 3.3.

Figure 3.3 The dividing double bar

3.2 Bar Beats

Every bar is divided into periods of time of the same duration known as
beats. Thus, the beat is the basic time unit of a music piece.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory The Bar

 page 19

3.2.1 The Time Signature

A time signature consists in two numbers, one placed above the other
immediately after the clef. Its goal is to define the bar. The upper number
indicates how many beats a bar has, and the lower number indicates the value
of each of those bars related to the unit: the semibreve. The most common
time signatures are depicted in Figure 3.4.

Figure 3.4 The most common time signatures

As show in the third staff, there are some issues about beat and bar
composition. It is not as easy as two simple numbers, so next section will clarify
it in detail.

3.3 Simple and Compound Bars

There are two kinds of bar: simple and compound. They distinguish one
of each other mainly by the number of simple figures their beats are composed
by. Simple bar beats are composed by one simple figure, and compound bar
beats are composed by three simple figures.

3.3.1 Simple Bar

A simple bar has beats formed by one simple figure. Sometimes, it is
said that the beat is actually formed by two figures, but here we will consider
only one for simplicity.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory The Bar

 page 20

The one in Figure 3.5 is a 2/4 bar. Therefore, each bar is formed by
two beats, and each beat is formed by a crotchet, since it is the fourth part of
a semibreve. Note that these beats can be considered as formed by two
quavers.

Figure 3.5 2/4 bar composition

Figure 3.6 depicts a 3/4 bar, so that there are 3 beats per bar, each
one formed by one crotchet.

Figure 3.6 3/4 bar composition

The one in Figure 3.7, a 4/4 bar, is the most commonly used
nowadays. It is composed by 4 beats, each one formed by a crotchet again.

Figure 3.7 4/4 bar composition

The last one, in Figure 2.2, is a 2/2 bar, which is composed by 2 beats,
each one formed by a minim. Note that bars can also be considered as formed
by two crotchets.

Figure 3.8 2/2 bar composition

Comparing the first bar in Figure 3.7 and the second one in Figure 3.8,
a 4/4 bar can be considered as 2/2 and vice versa. However, in Section 3.4 the
difference will be seen.

3.3.2 Compound Bars

A compound bar has beats formed by three simple figures. Sometimes,
it is said that the beat is actually formed by one prolonged figure; however, we
will consider three simple figures for simplicity. Section 4.2 gives an
explanation of what a prolonged note means.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory The Bar

 page 21

For instance, the one in Figure 3.9 is a 6/8 bar. Each bar is actually
formed by 2 beats, so let us consider the upper number as 2. Now, we can see
that beats can not be divided into one or two simple figures, but into 3
quavers. Therefore, there are 3 figures whose value is the eighth part of a
semibreve (a quaver).

So at the end we have 2 beats formed by 3 figures whose value is 1/8.
It is actually 6/8. The figure is said to be a prolonged crotchet (one crotchet
and a half).

Figure 3.9 6/8 bar composition

In a 9/8 bar, as the one in Figure 3.10, there are 3 beats, each of one
composed by 3 quavers or one prolonged crotchet.

Figure 3.10 9/8 bar composition

The next one in Figure 3.11 is a 12/8 bar, which is formed by 4 beats
of 3 quavers each.

Figure 3.11 12/8 bar composition

Finally, Figure 3.12 shows a 6/4 bar which composed by 3 beats, each
one formed by 3 crotchets. Here, beats can also be considered as composed by
a prolonged minim.

Figure 3.12 6/4 bar composition

3.3.3 Bar Relationship

Focusing on the number of beats per bar, there are mainly three
categories: binary bars, ternary bars and quaternary bars. Also, there can be
established a correspondence among simple and compound bars according to
the number of beats as follows in Table 3.1:

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory The Bar

 page 22

Simple Bar Compound Bar Number of Beats
2/4 6/8 2
3/4 9/8 3
4/4 12/8 4
2/2 6/4 2

Table 3.1 Bar relationship

Although there can be defined more time signatures, these ones above
are the most common.

3.4 Bar Parts

Depending on the number of beats per bar, each of them is considered
as strong, semi-strong or weak.

Thus, parts of a 4 beats bar are:

1st beat strong
2nd beat weak
3rd beat semi-strong
4th beat weak

In a 3 beats bar, each one is considered as:

1st beat strong
2nd beat weak
3rd beat weak

And finally, in a 2 beats bar, each part is as follows:

1st beat strong
2nd beat weak

3.5 The Fermata Symbol

The fermata symbol is a semicircle with a dot inside. It is usually
printed above, but occasionally below (upside down), a note or rest. Its
intention is to interrupt or prolongate, on purpose, the current bar in the
marked note. Since it is a voluntary anomaly, it is often used only in the last
note of a piece, as occurs in Figure 3.13.

Figure 3.13 The fermata symbol

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory The Bar

 page 23

3.6 Bars in Silence

Whatever the time signature, if a bar is completely in silence it is
indicated only with a semibreve rest. For instance, in a 3/4 time signature like
the one in Figure 3.14, a semibreve rest can not fit a bar because its length is
greater, but it is printed anyway for a whole silent bar.

Figure 3.14 Bars in silence

3.7 Incomplete Bars

When the first bar of a piece starts with rests, they are usually
omitted, so that only the first note figures appear in that first bar. A simple
example is depicted in Figure 3.15.

Figure 3.15 Incomplete starting bars

3.8 The Tempo

An important symbol in every musical piece is the tempo, which is in
charge of establishing how many crotchets are played in a minute. Thus, if a
tempo mark establishes a tempo of 120, the duration of a crotched would be
500 milliseconds and the duration of a quaver would be 250 milliseconds and so
on.

The tempo appears at the beginning of a piece, even though it might
change somewhere along the piece.

Figure 3.16 The tempo

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Ties and Rhythm Dots

 page 24

4 Ties and Rhythm Dots

These symbols are basically used to prolongate the duration of the
note that they are attached to. However, it is not that easy since there are
some writing rules that must be followed.

4.1 The Tie

Ties are printed as a curved line joining two or more notes with the
same sound (i.e. the same height). Its purpose is to add the value of the figures
it is joining. Thus, the following notes in Figure 4.1

Figure 4.1 Tied notes (part I)

are equivalent to those in Figure 4.2.

Figure 4.2 Tied notes (part II)

Note that ties are placed below the notes if their stems are written
downwards and above the notes if any of them has stems upwards. Also, ties
can join any figure; even though in the figures only appear tied crotchets.

4.2 The Rhythm Dot

When a dot is situated immediately after a note, its function is to
prolongate the note value. There are two kinds of rhythm dot: single and
double.

4.2.1 Single Rhythm Dot

A single rhythm dot prolongates the note value in a half of its original
value. For instance, a crotchet with a rhythm dot is equivalent to three
quavers.

Thus, both bars in Figure 4.3 are equivalent:

Figure 4.3 The rhythm dot

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Ties and Rhythm Dots

 page 25

4.2.2 Double Rhythm Dot

A double rhythm dot prolongates the note value in a half and a quarter
of its original value. For instance, a minim with a double rhythm dot is
equivalent to three crotchets and a quaver.

Thus, both bars in Figure 4.4 are equivalent:

Figure 4.4 The double rhythm dot

4.3 Writing Rules

In current music and jazz, the predominant bar is 4/4, and there are
some rules to follow for this kind of bar:

• No value can begin in the first half of the bar and prolongate until
the second half if it is not by using the tie. Thus, in Figure 4.5 the
first bar must be written as the second one:

Figure 4.5 First writing rule

However, there are four exceptions to the rule:

o A semibreve placed in the first beat, as in Figure 4.6:

Figure 4.6 First exception to the first writing rule

o A minim with a rhythm dot placed in the first beat, as occurs
in Figure 4.7:

Figure 4.7 Second exception to the first writing rule

o A minim placed in the second beat, as in Figure 4.8:

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Ties and Rhythm Dots

 page 26

Figure 4.8 Third exception to the first writing rule

o A minim with a rhythm dot placed in the second beat, as
occurs in Figure 4.9:

Figure 4.9 Fourth exception to the first writing rule

• Quavers that do not share the same beat can not be beamed.
However, it can be done with four quavers sharing the first and the
second beat or the third and the fourth ones, has happens in Figure
4.10.

Figure 4.10 Second writing rule

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Alterations

 page 27

5 Alterations

There are some symbols used to alter either the vertical or the
horizontal value of a figure or a set of them. This section explains these
alterations.

5.1 The Tuplet

This symbol is used above or below several notes to group them. The
value of the whole group without tuplet must be equal to three figures of the
same duration. After having put the tuplet, the value of the group becomes as
only two figures of the same class. This is depicted in Figure 5.1.

Figure 5.1 Tuplet equivalences

A tuplet is usually composed by a group of three notes, even though
two notes is the minimum. Of course, each part of a tuplet can be divided has
happens in Figure 5.2:

Figure 5.2 Tupled notes

5.2 Accidentals

The goal of these symbols, presented in Table 5.1, is to modify the
height of the note before of which they are situated.

Name Figure Meaning
Sharp Increase the height in a semitone

Flat Decrease the pitch in a semitone

Double Sharp Increase the height in a tone

Double Flat Decrease the height in a tone

Natural Keep the note to its natural sound

Table 5.1 The accidentals

Sections 7 and 8 will give further information about tones and
intervals.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Alterations

 page 28

Accidentals must be placed at the same line or space which the note is
placed at and immediately before them. Some examples are shown in Figure
5.3.

Figure 5.3 The accidentals

A really important point is that an accidental affects not only to the
following note, but also to any note else of the same height until the end of the
bar. That is why, in Figure 5.4, the second to last note is marked with a natural
accidental symbol: to avoid the sharp two notes before.

Figure 5.4 Accidental effect within a bar (part I)

Now, let us consider the bar in Figure 5.5 bar:

Figure 5.5 Accidental effect within a bar (part II)

The second note is a DO, but as it is marked with a sharp, it is actually
DO#. Therefore, the fourth note is also DO#, since it has the same height and is
within the same bar. However, the sixth note is a natural DO, since it has the
same name but not the same height (i.e. is lower).

Even though, as said above, the sixth note is a natural DO, a natural
accidental symbol is usually placed before to clarify this fact. Figure 5.6
depicts this deed.

Figure 5.6 Accidental effect within a bar (part III)

5.2.2 Enharmonic Notes

Two notes are called enharmonic when they have different names but
the same sound. In Figure 5.7 below: DO# and REb, DOb and SI and also MI# and
FA.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Alterations

 page 29

Figure 5.7 Enharmonic notes

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Replay Symbols

 page 30

6 Replay Symbols

In the current notation used nowadays there are some figures that can
be used to mark some parts of a musical piece to be replayed in many manners.
Basically, these figures are barlines and symbols placed above them.

6.1 Replay Barlines

The most common format used to indicate a repetition is to place
replay barlines between the initial and the final bar to replay. These barlines
are formed by two lines and a pair of dots. These two dots must be inside the
replayed bars, and the outer line must be thicker than the inner one. In Figure
6.1, bars 3 and 4 must be played twice, so the final arrangement is: 1, 2, 3, 4,
3, 4 and 5.

Figure 6.1 Replay barlines (part I)

When bars to be replayed are the first ones, the starting replay barline
is omitted, keeping the second one to mark the last bar to repeat. Therefore,
Figure 6.2 indicates that the beginning of the piece must be repeated.

Figure 6.2 Replay barlines (part II)

6.1.2 Iteration Labels

Close to the second barline, there can be some labels marking several
bars. These labels indicate that the marked bars must be played only in the
iteration they indicate with a number.

Figure 6.3 Iteration labels

In Figure 6.3 above, bars 3 and 4 must be played only in the first
iteration. Therefore, the final sequence is: 1, 2, 3, 4, 1, 2 and 5.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Replay Symbols

 page 31

6.2 Navigation Marks

Besides the replay barlines, there also several symbols used to indicate
what bars must be replayed along the piece. These symbols can, of course, be
combined to indicate complex repetitions

6.2.1 Dal Segno and Coda

The Dal Segno symbol in Figure 6.4 is used for representing the
beginning of a repetition. It is usually used with the Coda symbol in Figure 6.6
to go back to the beginning of the repetition from different bars.

Figure 6.4 The Dal Segno figure

Figure 6.5 The Coda figure

Although there can be used several textual combinations with Dal
Segno and Coda, the most common are the following:

• D. $ al Coda: indicates that the piece must be replayed from the bar
marked with the Dal Segno figure and then go to the one marked
with the Coda figure.

• D. $ al fine: indicates that the piece must be replayed from the bar
marked with the Dal Segno figure and then continue until the end of
the piece.

Figure 6.6 Navigation markers

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Replay Symbols

 page 32

In Figure 6.6 above there appear several of the previous replay figures.
First of all, bar 1 is played, followed by bars 2 and 3. Since there is a replay
barline, bar number 2 is played again, but not bar 3. Note that there is an
iteration label. Instead of from bar 3, the music continues from bar 4. Next
ones are bars 5, 6, 7 and 8. There appears a textual figure for coming back to
Dal Segno and to continue from Coda. Therefore, the piece continues with bars
2, 4, 5 and 6. Here appears a textual figure indicating that in this bar the piece
jumps to Coda in the third iteration of the repetition (which is actually the
current one). Thus, after bar 6 the piece continues with bar 9 and later on it
enters in a four iterations loop with bars 10 and 11 as is indicated with the
textual figure above the end replay barline. Finally, bar 12 is played, finishing
the whole piece in that point.

6.2.2 Da Capo

Sometimes, it is needed to come back to the beginning of the piece.
For that purpose, it is used the Da Capo figure, which is only a textual label
above the barline with letters D.C.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Tonality

 page 33

7 Tonality

The tonality of a musical piece defines a set of sounds whose behavior
is ruled by a main sound called dominant.

A tonality is based upon seven sounds called degrees and that
correspond to the seven note names. These degrees are named using roman
numbers, ranging from I to VII, being the first one the dominant note.

Whatever the tonality, it can have several modes; but mainly two:

• Major mode

• Minor mode

About the degrees, they are split into two sets:

• Tonal degrees (I, IV and V) that define the actual tonality.

• Modal degrees (II, III, VI and VII) that define the mode of the
tonality.

7.1 The Base Model

In the occidental music it has been taken as basis the tone in major
mode. Therefore, given a tonality it should be understood that it is in its major
mode if nothing opposite is specified.

The major mode is obtained by arranging degrees so that there is a
semitone between the III and the IV and between the VII and the VIII (note that
degree VIII is the I one an octave higher) and a tone between the rest of the
consecutive degrees.

The basis model takes DO as the first degree of the tonality, and hence
as the dominant note.

7.1.1 Major Scale

The major scale is divided into two halves called tetrachords that are
formed by four notes each, having a semitone between the III and the IV degree
of each tetrachord and being separated by a tone.

Figure 7.1 Major scale in DO

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Tonality

 page 34

Whatever the note, it can be build a major scale from it by writing a
tetrachord and from there add another tetrachord at a distance of a tone. For
example, figure 7.2 shows a major scale in MI.

Figure 7.2 Major scale in MI

Section 8 will give more information about intervals between notes so
that it will be clear why there is the need of writing accidentals in the figure
above.

7.2 The Key Signature

In order to obtain a major scale from a note different than DO, there
arises the need of adding accidentals to some degrees. This set of accidentals
needed to build a certain major scale is called the key signature.

The key signature is placed just after the clef and its effect is
continuous until the end of the piece or a new key signature is defined. For
instance, Figure 7.3 shows the key signature of the tonality MI.

Figure 7.3 Key signature for MI

The placement of the accidentals that compose a key signature is
determined by the cycle of fifths.

7.2.1 Cycle of Fifths

The cycle of fifths is obtained by placing notes at the same distance
one to the previous until there appear the eleven possible notes, such as is
done in Figure 7.4.

Figure 7.4 Cycle of fifths

Beginning in DO, its major scale needs no accidental, so the key
signature for DO does not have any accidental. The next note in the cycle is

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Tonality

 page 35

SOL and its major tonality needs the note FA#, so the key signature for SOL has
an accidental. The third note in the cycle is RE, which needs the FA# and DO#.
Thus, the key signature for RE has two accidentals. Basically, each note of the
cycle will need every accidental of the previous note plus one more.

The placement of each key signature in the pentagram is as follows in
Figure 7.5:

Figure 7.5 Key signatures (part I)

7.2.2 Cycle of Fourths

Taking the cycle of fifths and traversing it in reverse order it can be
obtained the cycle of Fourths, which key signatures are shown in Figure 7.6.
The key signature for DO remains with no accidentals. The second note, FA,
needs a SI flat; and the third one, SIb, will need SIb and MIb.

Figure 7.6 Key signatures (part II)

Non-natural notes have two possible key signatures, one with sharps
and another one with flats. The sum of every accidental of enharmonic tones
will always be twelve, and it will be taken the one with fewer accidentals. In
the case of FA# and SOLb both them has six accidentals, so either can be
chosen.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Intervals

 page 36

8 Intervals

An interval is the height distance between two musical sounds. In
occidental music, the smallest distance between two notes is the semitone.
Among the natural notes, distances of a semitone can be found between MI and
FA and also between SI and DO. The distance equivalent to two semitones is
called tone, and is found between the rest of natural notes. Figure 8.1 shows
these intervals.

Figure 8.1 Intervals among the natural notes

Intervals can be divided into melodic or harmonic, as Figure 8.2 shows:

• Melodic intervals if one sound is played after the other.

• Harmonic interval if both notes are played simultaneously.

Figure 8.2 Melodic and harmonic intervals

8.2 Interval Classification

Intervals are measured according to the number of degrees they
contain, counting from the lower degree to the higher, both included. Intervals
formed between the first degree and the rest ones in a major scale are
enumerated in Table 8.1.

Degree Interval Height Abbreviation
II major second 1 tone M2
III major third 2 tones M3
IV perfect fourth 2 tones and 1 semitone P4
V perfect fifth 3 tones and 1 semitone P5
VI major sixth 4 tones and 1 semitone M6
VII major seventh 5 tones and 1 semitone M7

Table 8.1 Intervals in the major scale

On the other hand, intervals can be measured between any two notes.
Taking the lower one as if it was the first grade of the tonality and the upper
note the other grade, the table below can be used to name the interval
according to Table 8.1 and the possible alteration in the upper note’s pitch.

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory Intervals

 page 37

-1 tone -1 semitone Basis
interval +1 semitone +1 tone

diminished minor mayor augmented double
augmented

double
diminished diminished minor mayor augmented

double
diminished diminished perfect augmented double

augmented

Table 8.2 Relationships among intervals

Thus, if we consider the intervals in Figure 8.3, in the left hand side
we would consider a tonality of C where the upper note is F, so that the
interval is a perfect fourth. On the right hand side, the tonality would be B,
and the upper is F so that it would be the fifth grade (a perfect fifth interval)
with one semitone less. Therefore, this interval would be a diminished fifth.

Figure 8.3 Relationships among intervals

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory The Major Mode

 page 38

9 The Major Mode

According to the major tonality, a major mode is made up with the
seven notes of the tonality which are called diatonic notes (with the
corresponding alterations depending on the tonality). Moreover, there are
another five sounds that correspond to the ten chromatic notes due to the
enharmony. For instance, the following Figure depicts the notes that make up
the major mode for the tonality of D.

Figure 9.1 Diatonic and chromatic notes

9.1 Triad Chords

When three consecutive diatonic notes of a mode are played
simultaneously by means of two harmonic intervals, the whole is called a triad
chord. Thus, the seven triad chords in the major mode of D are:

Figure 9.2 Triad chords

Each of these chords is formed starting at a certain grade of the scale.
In the tonality of D, the second triad chord starts in E (which is called the root
note of the chord). Then the second note has an interval of a third with E
(which is a G) and then another third which is called the fifth of the chord
(which is a B in this case). Therefore, the second chord of the major mode in D
is made up by E, G and B.

The triad chords can be classified in three groups according to the
intervals that the third and the fifth notes of the chord make with the root.
These three groups are called major, minor and diminished:

Root Third Fifth Group
grades I, IV and V mayor third perfect fifth mayor chord
grades II, III and VI minor third perfect fifth minor chord

grade VII minor third diminished
fifth diminished chord

Table 9.1 Relationships among intervals

Modeling and Indexing Musical Files to allow Music Reuse
Musical Theory The Major Mode

 page 39

It is important to note that a certain chord is not exclusive of a single
mayor scale. Indeed, it will be in three different scales. For instance, Figure
9.3 depicts how the major chord of C is the first one in the tonality of C, the
forth one in the tonality of G and the fifth one in the tonality of F.

Figure 9.3 Triad cords in different tonalities

On the other hand, the chord made up from the seventh grade is
exclusive of a single mayor scale.

9.2 Seventh Chords

If triad chords are made up by three consecutive notes, seventh notes
are made up by four consecutive notes. This set of chords is made basically
from the triad chords by adding the seventh interval. Thus, we have six seventh
chords for each tonality:

Name Notes
mayor seventh 1, 3, 5, 7
minor seventh 1, ¨3, 5, ¨7

minor seventh diminished fifth 1, ¨3, ¨5, ¨7
dominant 1, 3, 5, ¨7

dominant augmented fifth 1, 3, ©5, ¨7
diminished seventh 1, ¨3, ¨5, ¨¨7

Table 9.2 Seventh chords

9.3 Other Chords

Besides the triad and seventh chords there are other possible chords
that are not usually utilized. They are mainly the sixth chords (by adding a
sixth interval to the triad chord), ninth, eleventh, thirteenth, quartal and
quintal. Moreover, we can also make chords with chromatic notes, and they are
called altered chords.

Therefore, a certain performance might have a lot of different chord
types. In addition, one can play a chord that is not located in these standard
forms, and it might be good for a certain place of the song, thought. Thus, one
might have whatever the chord made up by whatever the notes.

Part III:
The MIDI Specification

Modeling and Indexing Musical Files to allow Music Reuse
The MIDI Specification Introduction to MIDI

 page 41

1 Introduction to MIDI

There are some common things that all musical instruments do, being
the first one to make a sound under the control of some musician, so that the
instrument starts making a sound whenever the musician wants to. For
instance, he or she might push down a piano key, or fret and pick a guitar
string. This action of starting a sound can be called ‘Note On’.

On the other hand, most instruments also allow stopping the sound at
any time. For instance, the musician can release the piano key or release his or
her finger from the guitar fret. This action can be called ‘Note Off’.

Moreover, most instruments can play distinct octaves. For instance, a
piano has 88 keys so that there can be played more than 7 octaves. And even
more: many instruments can also play notes at different volumes.

The MIDI standard is born to standardize and normalize all these
possibilities for digital score music.

Modeling and Indexing Musical Files to allow Music Reuse
The MIDI Specification Messages

 page 42

2 Messages

The MIDI protocol is made up of messages consisting of 8-bit bytes.
Actually, many message types are defined in the MIDI specification. Even
though a message can have unlimited number of bytes, every MIDI message is
currently formed with up to 3 bytes. The first byte of the message is called the
Status byte, and is important because it is the only one with bit number 7 set,
being easy to detect when a message begins just by looking at this bit.
Therefore, a message has two kinds of byte:

• Data byte, ranging from 0x00 to 0x7F.

• Status byte, ranging from 0x80 to 0xFF.

Moreover, Status bytes can be broadcasted on any of the 16 MIDI
channels, and this is the reason why they are called Voice messages. For these
Status bytes, the 8-bit byte is split into 2 nibbles, so that a Status Byte of 0x92
is split into a 0x9 for the higher nibble and a 0x2 for the lower one. The higher
nibble tells what type of MIDI message is beginning, and can have one of those
values show in Table 2.1:

Value Meaning
0x8 Note Off
0x9 Note On
0xA Aftertouch
0xB Control Change
0xC Program Change
0xD Channel Pressure
0xE Pitch Wheel

Table 2.1 MIDI message types

In the previous example of 0x92, Table 2.1 says that it is a ‘Note On’
message. The lower nibble tells which channel the message is applicable to.
Since there are 16 possible channels in MIDI, 4 bits are needed to map them, so
the lower nibble is used for that. Thus, the message 0x92 is a ‘Note On’
message applicable to channel number 2.

It is important to note that the lower nibble counts from 0 to 15. This
means that for the MIDI protocol the first channel is number 0 rather than
number 1. However, in most musical software channels are numbered from 1 to
16 since most people begins to count from 1. Therefore, the channel number
for a musician would be the one in the Status byte plus 1, so the example 0x92
actually refers to channel 3.

Status bytes ranging from 0xF0 to 0xFF are for messages that do not
belong to any particular channel but to all of them. These Status bytes are used
to carry information of interest to every MIDI channel, such as synchronizing.
These Status bytes are also split into two categories:

• System Common messages, ranging from 0xF0 to 0xF7.

Modeling and Indexing Musical Files to allow Music Reuse
The MIDI Specification Messages

 page 43

• System Real-Time messages, ranging from 0xF8 to 0xFF.

Actually, some Status bytes are not used in the MIDI Specification
[MMA], so if a MIDI device receives them it must just ignore them. For example,
Status bytes 0xF4, 0xF5, 0xF9 and 0xFD are not used.

Modeling and Indexing Musical Files to allow Music Reuse
The MIDI Specification Voice Messages

 page 44

3 Voice Messages

Voice Messages are those that contain the actual performance in a MIDI
stream. They are used to play notes or stop them, as well as indicate some
variations in the sound such as volume, pitch and many other things. This kind
of messages can be broadcasted on any of the 16 MIDI channels containing this
type of information about the actual performance by using one among the
seven message types listed in Table 2.1 and explained from now on.

3.1 Note Off

This message indicates that a particular note must be released, so that
it must stop sounding. However, some patches might have a long VCA release
time, needing therefore to slowly fade it out. In addition, some devices might
have a Hold Pedal controller being on, and then the note release is postponed
until the Hold Pedal is released, although this is done by the actual device.

As seen in Section 2, Status bytes for Note Off messages range from
0x80 to 0x8F, where the lower nibble specifies the MIDI channel.

The Note Off message contains two additional data bytes. The first one
indicates the note number the message refers to. In the MIDI Specification
there are 128 possible notes, numbered from 0x00 to 0x7F having the Middle C
a value of 0x3C.

The second data byte is the velocity, also ranging from 0x00 to 0x7F.
This parameter tells how quickly the note must be released (being 0x7F the
fastest). It is up to the MIDI device how it uses the velocity parameter, besides
some of them always send a value of 0x40 since they are not able to implement
velocity features.

3.2 Note On

This message indicates that a particular sound must be played, so that
it must start sounding. Once again, some devices might have a long VCA attack
time that needs to slowly fade the sound in.

As seen in Section 2, Status bytes for Note Off messages range from
0x90 to 0x9F, where the lower nibble specifies the MIDI channel.

The Note Off message contains two additional data bytes. The first one
indicates the note number the message refers to, having the same possible
values as in the Note Off message.

The second data byte is the velocity, also ranging from 0x00 to 0x7F.
This parameter tells with how much force the note must be played (being 0x7F
the most force). It is up to the MIDI device how it uses the velocity parameter,
besides some of them always send a value of 0x40 since they are not able to

Modeling and Indexing Musical Files to allow Music Reuse
The MIDI Specification Voice Messages

 page 45

perform velocity features. Actually, this parameter is used to tailor the VCA
attack time or level, and therefore the overall volume of the note.

When a Note On message carries a value of 0 in the velocity parameter
it is actually understood as a Note Off message, since it specifies no volume for
the note. Thus, a MIDI device that recognizes Note On messages must be able
to recognize both Note Off and Note On messages with velocity parameter set
to 0.

In theory, every Note On message should be followed at any point by a
Note Off message, even if the note’s sound fades out due to some VCA
envelope decay and stops sounding before the Note Off message arrives. In case
another Note On message is given for a note and a channel that are already
sounding, it is up to the device to layer another voice for the same pitch or to
cut off the previous one in other to begin with the new one.

3.3 Aftertouch

Many electronic keyboards have some kind of pressure sensing circuitry
that can detect how stronger is the pressure the musician applies to the key.
Thus, the musician can vary this pressure even though the key is still held
down. To exploit this behavior, the device typically generates many such
Aftertouch messages while the pressure is varying. Therefore, upon receiving
an Aftertouch message, devices vary note’s VCA or VCF envelope sustain level
or control LFO amount applied to the note’s sound, which is the recommended
effect.

As seen in Section 2, Status bytes for Aftertouch messages range from
0xA0 to 0xAF, where the lower nibble specifies the MIDI channel.

The Aftertouch message contains two additional bytes. The first one is
used once again to indicate the note the effect must be applied to, being the
same 128 possibilities as above. The second byte is the pressure amount,
ranging from 0x00 to 0x7F, being this last the most pressure.

3.4 Controller

This kind of messages set a particular controller’s value. There are 128
possible controllers in a MIDI device, ranging from 0x00 to 0x7F as usual.
However, some of these controller numbers are predefined to be assigned to a
particular hardware control in a device, such as the Modulation Wheel, which
has controller number 1. Nevertheless, some others can be arbitrary assigned
to any kind of custom controller.

As well as Table 2.1 shows, Status bytes for Controller messages range
from 0xB0 to 0xBF, where the lower nibble specifies the MIDI channel.

After the Status byte in a Controller message, there can be found two
additional Data bytes. The first one is used to indicate which controller the
message refers to, whilst the second one specifies the value to be used to
update the controller, ranging again from 0x00 up to 0x7F.

Modeling and Indexing Musical Files to allow Music Reuse
The MIDI Specification Voice Messages

 page 46

3.5 Program Change

These messages are used to change to a particular Program (i. e.
instrument) within a certain MIDI channel. Most sound modules have several
instrumental sounds, such as piano, guitar, trumpet, etc. so that this message
can be used to select a program among that ones to obtain a different sound
whenever that module interprets a Note On message. Once again, there are up
to 128 possible program numbers within a sound module.

However, there are some MIDI devices that do not support several
program numbers, such as a Reverb unit. In this case, these messages can be
used to swap among different reverb presets. In any other case, messages can
be simply ignored.

As was stated in Section 2, Status bytes for Program Change messages
range from 0xC0 to 0xCF, being the lower nibble the MIDI channel.

Just one Data byte follows in a Program Change message: the number
of program to change to, ranging from 0x00 to 0x7F as usual.

3.6 Channel Pressure

Actually, this kind of message means the same as an Aftertouch
message does: specify pressure variations over notes that are sounding. An
Aftertouch message gives pressure value just for one note, so that if two notes
are being played and the first one receives more pressure than the second one,
there will be sent an high aftertouch value for the first one and another
message with a lower value for the second one.

However, a Channel Pressure message averages out pressure values for
the whole set of notes that are being played. That is to say that only one value
is given for the whole set, without an individual control over each key. This is a
less powerful feature than aftertouch, but much cheaper to implement.

Usually, Aftertouch and Channel Pressure messages are not sent
simultaneously. If a device implements Aftertouch messages there is no need
for Channel Pressure values, since the others give even more information.
Anyway, a certain device can implement both features if needed.

Values for Channel Pressure Status bytes range from 0xD0 to 0xDF as
Table 2.1 says. In this case, the lower nibble is once again the MIDI channel the
message refers to.

Just one Data byte follows in a Channel Pressure message, and it
indicates the amount of pressure applied to the whole set of notes sounding,
ranging again from 0x00 to 0x7F, being this last the most pressure.

3.7 Pitch Wheel

Pitch Wheel messages are used to slide a note’s pitch up or down a
certain amount. The resolution used for that slide is a fraction of a half-step

Modeling and Indexing Musical Files to allow Music Reuse
The MIDI Specification Voice Messages

 page 47

called cent. This feature is most common in string instruments such as a guitar,
where a string can be bended after having been picked, even thought this
particular message refers to a tremolo bar which bends the whole bridge and
hence the 6 strings. Moreover, some keyboard instruments can simulate this
behavior with a wheel, turning it up and down.

This kind of messages has Status bytes ranging from 0xE0 to 0xEF as
Table 2.1 shows, being the lower nibble the number of MIDI channel.

Two Data bytes appear in these messages, which have to be joined in
order to obtain a 14 bits value which is the one that indicates the amount to be
slid. Note that the first bit of each Data byte is useless since it is always set to
0. Thus, the first byte contains the lower 7 bits of the whole 14 bits value,
whilst the second one contains the higher 7 bytes of the final value. Figure 2.1
depicts the process.

Status1 Lower0 Higher0

Higher Lower

7 bits

14 bits

7 bits

Value

Chunk

Figure 3.1 Pitch Wheel value obtaining

With 14 bits, the range is established from 0x0000 to 0x3FFF, where
higher values transpose the pitch up and lower ones transpose the pitch down,
being value 0x2000 the one meaning that the Pitch Wheel is centered and
therefore not transposed.

The Pitch Wheel range can usually be adjusted in MIDI devices. For
instance, a value of 0x3000 might transpose the pitch up a whole step, whereas
in another device it might transpose it up just half a step. However, the
General MIDI Specification recommends using the entire range of possible
values for a transposition of -2 or +2 whole steps.

Modeling and Indexing Musical Files to allow Music Reuse
The MIDI Specification Other Messages

 page 48

4 Other Messages

According to the MIDI specification, there are several more types of
message that flow from and to a MIDI device. However, these messages are
worthless for our purposes since most of them are just system and control
messages used to make all the devices work together.

Thus, only voice messages are going to be considered for MIKE. In
particular, only NoteOn and NoteOff messages are taken into account since
they are the only ones that carry information just about when notes are played
and stopped. The others carry information about how these notes are actually
played.

In addition, most of the messages defined in the MIDI standard are not
allowed in the SMF specification, so it would just be useless to talk about them.

Part IV:
Standard MIDI Files 1.0

Modeling and Indexing Musical Files to allow Music Reuse
Standard MIDI Files 1.0 Introduction

 page 50

1 Introduction

MIDI is an industry standard that defines each musical note in an
electronic musical instrument, precisely and concisely, allowing these
instruments and computers to exchange musical data. Note that MIDI does not
actually transmit audio, but simply digital data about music. Besides some
others, the MIDI standard defines the specification for MIDI files, which is
formally known as SMF.

In its version 1.0, MIDI files can contain one or more MIDI streams, with
time information for each event. The specification supports several musical
entities among the ones shown in Part III of the document, such as sequence,
tracks, time and key signatures, etc. Also, some additional information such as
track names can be stored in MIDI files.

This version defines files in an 8-bit binary data stream, but data can
also be stored in binary files, taking nibbles as units, compressed to 7-bit units
for efficient MIDI transmission, converted to Hex ASCII or translated to a
printable text file.

From now on, it will be covered only the 8-bit stream version.

Modeling and Indexing Musical Files to allow Music Reuse
Standard MIDI Files 1.0 File Block Structure

 page 51

2 File Block Structure

MIDI files are made up of chunks. As depicts Figure 2.1, each of these
chunks has a 4 character field and a 32-bit number, which is actually the
number of data bytes in the chunk, expressed in Motorola Big Endian format.
This simple structure allows future new chunks to be introduced in the stream,
so that they must be just ignored by a program written before the chunk was
introduced. Therefore, a SMF reader program should expect rare chunks to
appear in a stream.

Type Length Data

Length bytes4 bytes4 bytes

Figure 2.1 SMF chunk format

SMF 1.0 defines two kinds of chunk: header chunk and track chunk. A
header chunk provides some information about the whole MIDI file whereas a
track chunk contains a sequential stream of MIDI data that can contain
information for up to 16 MIDI channels.

Therefore, a MIDI file always starts with a header chunk, followed by
one or more track chunks, following the structure in Figure 2.2.

MThd Length Header Data

MTrk Length 1 Track 1 Data

MTrk Length 2 Track 2 Data

Figure 2.2 SMF block structure

Modeling and Indexing Musical Files to allow Music Reuse
Standard MIDI Files 1.0 Header Chunk

 page 52

3 Header Chunk

This part specifies some basic information about the data in the file.
The data section of the chunk contains three 16-bit words, so that the whole
chunk follows the syntax in Figure 3.1.

MThd 6 Format

2 bytes4 bytes4 bytes

Tracks Division

2 bytes 2 bytes

Figure 3.1 Header chunk syntax

As described in Section 2, the chunk starts with the type ‘MThd’ and
the number 6 in 32-bit format (occupying for bytes). Afterwards, there are
three additional values: format, number of tracks and division, which are going
to be described in the following sections.

3.2 Format

This 16-bit word describes the whole organization of the file. A value
of 0 specifies that the file contains only one single track with up to 16 MIDI
channels. A value of 1 specifies that the file contains one or more simultaneous
tracks assuming that all them starts at time 0, perhaps each one on a single
channel. All these tracks, together, are considered a sequence or pattern. A
value of 2 means that there are one or more sequentially independent single-
track patterns.

Format 0 is the most common one to interchange data. Some programs
use MIDI files as input just to apply some effect to a single track, such as
mixers, sound effect boxes. Therefore it is desirable to be able to produce such
a format, even thought Format 1 can be easily converted to some files in
Format 1. Moreover, Format 1 can be considered in a vertical one-dimensional
form, as a collection of tracks.

MIDI files can express tempo and time signatures, to easily transfer
tempo maps from one device to another. For a Format 0 file the tempo is
scattered through the track so that the map reader must ignore events. In
Format 1 the tempo map must be stored as the first track, starting at 0.04.

Every MIDI file should specify tempo and time signature. If a certain
file does not do so, time signature is assumed to be 4/4 and tempo to be 120
beats per minute. In Format 0 these meta-events must appear at the beginning
of the track, and in Format 1 they must appear at the beginning of the first
track. For Format 2 each track must contain at least initial time signature and
tempo information.

Modeling and Indexing Musical Files to allow Music Reuse
Standard MIDI Files 1.0 Header Chunk

 page 53

3.3 Number of Tracks

This value tells how many tracks are contained within the file.
Therefore, it says how many Track chunks are expected afterwards. Of course,
a Format value of 0 requires a Number of Tracks value of 1.

3.4 Division

The last value in the Header chunk contains the division of a crotchet
note represented by delta-times in the file. However, if the value is negative,
it stores the division of a second represented by delta-times in the file, so that
events occur in actual time rather than in metrical time.

The upper byte is one among -24, -25, -29 and -30 according to the
four standard SMPTE and MIDI time code formats [SMPTE], representing the
number of frames per second. The second byte is the resolution within a frame,
being typical values 4 (MIDI time code resolution), 8, 10, 80 (bit resolution) or
100. Thus, if it is specified 25 frames per second and a resolution of 40, the
overall resolution of the performance is 1 millisecond.

Modeling and Indexing Musical Files to allow Music Reuse
Standard MIDI Files 1.0 Track Chunk

 page 54

4 Track Chunk

After the Header Chunk there appear as many Track Chunks as defined
in the header’s number of tracks, so that there is a chunk per track. The chunk
is identified by ‘Mtrk’ and it contains an amount of data that vary depending on
the track.

Mtrk Length Data

Length bytes4 bytes4 bytes

Figure 4.1 Track chunk syntax

As well as in a MIDI flow, a track contains events ordered by time.
Once again, this delta time contains the amount of time that should pass
between the previous event and the current one. Thus, the first event is
assumed to have a delta time 0.

A track chunk contains the same messages as a MIDI flow besides some
others that contain specific information about the performance such as the
time or key signatures.

There are System Exclusive messages that come also from the MIDI
standard messages that can be applied in a SMF file with the event status F0.
Another kind of messages are the so called Metaevents, which have a status
byte of FF. Note that this status indicates in the MIDI standard a reset message
that, on the other hand, would not make any sense in a SMF file. Therefore,
the status byte FF is used to indicate a metaevent.

4.2 Metaevents

Besides the voice messages, a SMF file might have other events as seen
before. These events can carry information about the sequence number for a
certain track, some textual information placed at some point in time, copyright
information, the track name, instrument name for each track (that can be
changed with a Program Change message), the lyrics of the piece, marks that
act as replay symbols (rarely used), devices and port names and so on.

In addition, there are some other metaevents that are totally useful
for the system since they indicate the tempo, time and key signature. The first
one indicates the number of microseconds per crotchet note. The time
signature message contains both the numerator and denominator of the actual
signature, whilst the key signature consists on the number of sharps or flats
that the signature contains.

However, these last 3 messages are not mandatory in a SMF file. Thus,
a default value is assigned in case any of them does not appear. These default
values are 120 beats per minute, a 4/4 time signature and a major C key.

Part V:
The RSHP Model and the CAKE

Engine

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine Artifacts Classification and Retrieval

 page 56

1 Artifacts Classification and Retrieval

The RSHP model implies a general framework for classifying and
retrieving any kind of artifacts, so that it can be applied to whatever
information management process.

This framework is divided into four components that are described in
the following sections:

• The artifact information representation model rα

• An artifact indexing process I(α)

• A classification process C(iα)

• The artifact retrieval process R(iq)

1.1 Artifact Information Representation Model rα

A representation model rα is the actual definition of how every artifact
must be stored in a computer system. These describing elements are called
descriptors and are usually keywords or natural language words. In a graphicall
representation like the one in Figure 1.1, every artifact α has a representation
in the information-representation map.

i1 i2

i3

i4i7 i5

i6

Figure 1.1 Graphical representation of artifacts

1.2 Artifact Indexing Process I(α)

The indexing process describes the way a new artifact α is placed into
the representation map by generating an artifact index iα

 r I() iα α∀α ∃ α = [1.1]

where iα is the computer-based description of α within the representation map.
This process is called indexing and is represented in Figure 1.2.

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine Artifacts Classification and Retrieval

 page 57

i1 i2

i3

i4i7 i5

i6

iI()

Figure 1.2 Artifact indexing

1.3 Classification Process C(iα)

This process assigns a class or classes to iα. A class basically groups all
the artifact representations ii considered similar. Even though this functionality
is usually not implemented, it makes easier the retrieval process if it is based
on the previously made classification.

i1 i2

i3

i4i7 i5

i6

i

Figure 1.3 Artifact classification

1.4 Artifact Retrieval Process R(iq)

With this process it can be determined which artifact representations
are relevant to a query. Therefore, given a query q the retrieval process
returns artifacts which present some similarity with the query q, which is also
treated as an artifact iq.

i1 i2

i3

i4i7 i5

i6 iq

I(q)q R(iq)
i3
i4

Figure 1.4 Artifact retrieval process

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine The RSHP Information Representation Model

 page 58

2 The RSHP Information Representation
Model

This section introduces the RSHP information representation model
that is used by the CAKE engine and therefore will be used to carry on with the
project objective.

2.1 Motivations Behind RSHP

In order to allow information reuse it is necessary to find an
information representation model capable to cope with any kind of artifact
types. The RSHP model can be used as such representation model since it faces
the main problems that the rest of representation models can not solve totally:

• Term-based models are good for textual artifacts but do not work
properly with structured artifacts such as software object model.
Moreover, two main problems arise from the usage of these models:
selection and classification can not be automated.

• Element-data models work fine for data retrieval such as source
code, but not so well for the rest of artifact types.

• Database and Software-design models are becoming standard
representation paradigms for software artifacts and maybe for some
other modeling kinds. However, the use of these models is almost
impossible for textual artifacts.

• Behavioral models are good for dynamic artifacts but not for static
artifacts out of that scope.

• Formal methods are designed for the kind of information they are
intended to model and there is no generalized formal representation
model yet.

• Knowledge-based models have not been defined to represent
artifacts content and thus there is no general model for artifact
classification.

2.2 Inside RSHP

The main idea behind RSHP is the fact that information is, in essence,
related facts. Therefore, it is considered mandatory to focus on relationships as
the most important asset. Relational data modeling, object oriented models,
processes and even UML itself can be modeled as elements linked by
relationships. Text information can also be represented as relationships
between terms since it actually uses the sentence structure as base.

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine The RSHP Information Representation Model

 page 59

Thus, the RSHP information representation model is based on this
principle [Llorens, 2003]: “In order to represent information, the main
description element to be found within an artifact should be the relationship.
This relationship is in charge of linking information elements”. Thus, the
atomic information components are information elements that will be linked by
relationships. These elements are defined by concepts that are represented by
a normalized term and can also be treated as artifacts.

Therefore, the representation of whatever artifact is as simple as

 { }1 2 ni f(RSHP), f(RSHP), ..., f(RSHP)α = [2.1]

where

{

}RSHP type
1 2 n

RSHP IE describing the dynamics of the relationship,

IE , IE , ..., IE

=
 [2.2]

Properties are introduced into the model to allow metadata modeling,
and also Information Elements to allow an artifact to contain other artifacts by
using them as descriptors. Thus, the general model is:

{

}

1 2 n

1 2 m

1 2 p

, I() i f(RSHP), f(RSHP), ..., f(RSHP),
f(Pty), f(Pty), ..., f(Pty),

f(IE), f(IE), ..., f(IE)

α∀α α = =

 [2.3]

having

 { }1 2 nPty IE describing the tag of the property, IE , IE , ..., IE= [2.4]

 { }Artifact typeIE Term term describing artifact= < > [2.5]

Also, f(RSHP) is whatever function that receives the Information
Elements that form the relationship, applying the same to f(Pty) and f(IE).
Therefore, the textual artifact “Computers are machines and they have
processor” and considering f(RSHP)=RSHP, the artifact might be represented as:

 { }1 2i RSHP , RSHPα = [2.6]

where

{ }
{ }

Hierarchy
1

Aggregation
2

RSHP to be, computer, machine

RSHP to have, computer, processor

=

=
 [2.7]

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine The RSHP Metamodel

 page 60

3 The RSHP Metamodel

Figure 3.1 depicts the RSHP information representation metamodel by
means of a UML class diagram.

RSHPSemantics
Name
DefaultPonderation
Reflexive
Loops
Transitive
Symetric

NormalizedGrammatical
RotateConcept

«Enumeration»
ArtifactKind

«Enumeration»
TermKind

Term
Language
NormalizedTerm
ScopeNote
Kind
Domain

DynamicTerm

InformationElement
Position

Artifact
Name
Kind
Description
PhysicalLocation
PhysicalName
Indexed
Language

Property
Relationship
Negative
Conditional
PerfectTense
Domain
Power
Perfect
Pasive
Question

RSHPEnd
Order

normalized

*

0..1

grammatical

1

*

concept* 0..1

owned element

0..1

*

kind* 1

relationship

1

*

metadata

1

*

metaproperty

1

*

tag

*

1

value

*

1..*

dynamic action

*

0..1

static concepts

*

2...*

{LXor} {LXor}

{LXor}

Figure 3.1 RSHP metamodel

The following subsections will give a brief about the main elements in
the RSHP metamodel.

3.2 Artifact

In the RSHP metamodel artifacts are defined as Information
Containers. According to the metamodel, artifacts might contain relationships
as well as metaproperties and metadata; even though only relationships are
considered as the descriptors of the artifact’s representation. Figure 3.2
depicts relationships, metadata and metaproperties as artifact components.

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine The RSHP Metamodel

 page 61

Artifact
Name
Kind
Description
PhysicalLocation
PhysicalName
Indexed
Language

Property
Relationship
Negative
Conditional
PerfectTense
Domain
Power
Perfect
Pasive
Question

relationship

1

*

metadata

1

*

metaproperty

1

*

{LXor}

Figure 3.2 Artifact contents (part I)

Despite an artifact is defined for relationships, it can also be
represented by means of single terms through Information Elements. Moreover,
an artifact might aggregate other sub-artifacts thanks to a simple
generalization.

Term
Language
NormalizedTerm
ScopeNote
Kind
Domain

InformationElement
Position

Artifact
Name
Kind
Description
PhysicalLocation
PhysicalName
Indexed
Language

concept* 0..1

owned element

0..1

*

Figure 3.3 Artifact contents (part II)

3.3 Term

In Section 2 was introduced a controlled vocabulary that Information
Elements must use, and this vocabulary is actually composed by Terms.
According to the restrictions of the RSHP model, an implicit 1 to 1 relationship
among a concept and its representation term must be considered. Thus, every
single noun, keyword, artifact, etc., must be modelled with terms, so that a
given term is the normalized representation of a unique concept.

In addition, two different kinds of terms are considered:

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine The RSHP Metamodel

 page 62

• Dynamic actions as the actual meaning of relationships.

• Static concepts as the elements linked by relationships and dynamic
actions.

3.4 Relationship

As seen in Section 2, relationships are intended to be the descriptors
of all types of artifacts’ information. Whatever the relationship, it is defined by
some occurrences of concepts called Information Elements.

Relationships can be or not symmetric, so that these concepts may
have a determined order. In addition, a relationship can have an information
element naming its dynamic action.

Finally, a RSHP links Information Elements by means of fuzzy
measurements, assigning a quantifiable worth to the relationship. Moreover,
indexing and retrieval algorithms for RSHP are very dependant on the
relationship kinds they work with in the artifacts, so every found relationship
must be typed. This is accomplished with RSHPSemantics, even though some
properties in the Relationship class are used when modeling textual
information.

RSHPSemantics
Name
DefaultPonderation
Reflexive
Loops
Transitive
Symetric

InformationElement
Position

Relationship
Negative
Conditional
PerfectTense
Domain
Power
Perfect
Pasive
Question

RSHPEnd
Order

Impact
Value

kind* 1

dynamic action

*

0..1
static concepts

*

2...*

{LXor}

Figure 3.4 Relationships structure and semantics

3.4.1 RSHPSemantics

This class is used to model relationships information. The three
properties of a mathematical equivalence relationship can be used: reflexivity,
symmetry and transitivity, as well as loops and default weighting for query
propagation and domain generation. Thus, RSHPSemantics handles two aspects:

• It qualifies existing relationships in the model.

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine The RSHP Metamodel

 page 63

• It qualifies the dynamic terms to allow indexers identify relationship
types.

3.5 Information Element

An Information Element is the minimal information unit when it does
not aggregate other IEs. According to the RSHP metamodel in Figure 3.1 an
Information Element can be either a term within an artifact (at an optional
position) or an artifact itself. In addition, an IE can be part of a relationship or
a property. As Figure 3.5 depicts, an Information Element is simply the
occurrence of a concept labelled with a certain Term.

Term
Language
NormalizedTerm
ScopeNote
Kind
Domain

InformationElement
Position

concept* 0..1

Figure 3.5 Information Elements

3.6 Property

In previous versions of the RSHP metamodel, only relationships were
used for modelling, and artifact’s metadata were represented by a particular
metadata relationship. However, in the version used for this final project these
relationships are separated because they have obvious different semantics.

Every property has one IE naming the tag and one or more IE’s as
actual values.

InformationElement
Position

Property

tag

*

1

value

*

1..*

{LXor}

Figure 3.6 Properties structure

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine The CAKE Engine

 page 64

4 The CAKE Engine

The CAKE Engine is basically a retrieval framework that uses the RSHP
Information Representation Model as main tool [Llorens, 2002]. Even though it
was born to cope with Software Reuse based on XMI documents [OMG, b], it
might be used for whatever domain thanks to the use of the RSHP model.

It has been demonstrated as a good choice for Software reuse, as well
as for textual information and even spreadsheets. Now, the main goal of the
current final project is to check whether it can be used or not for music reuse.

The following sections will give a brief about the CAKE Engine by
means of Software Reuse and XMI artifacts, so that their indexing and retrieval
processes can be clearly understood since they are the most important tools for
the RSHP artifacts reuse.

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine XMI Indexing

 page 65

5 XMI Indexing

In order to index XMI files three processes are required:

• Parse the XMI file and gather its information.

• Transform that information into UML information [OMG, a].

• Translate the UML representation to the database model.

5.1 XMI Parser

Since XMI is a well defined standard, a XMI parser can check whether
the file is well formed or not. In such a case, two steps must be performed
later:

• Identify every UML model elements in the document, first looking for
those ones that are not derived from the UML Relationship meta-
class.

• Identify every relationship among the model elements.

5.2 Information Storage in Memory

The information gathered with the XMI parser is introduced into an
information structure that represents the UML metamodel, so that two main
goals are achieved:

• Offer the possibility to graphically visualize the information by
means of graphs.

• Prepare it to be stored in persistent systems in the third phase.

5.3 Information Storage in a Database

Once the XMI documents have been parsed and their information
extracted and represented with the UML metamodel, it must be stored into a
database to provide persistence and a common access for the retrieval process.

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine XMI Retrieval

 page 66

6 XMI Retrieval

Thanks to the XMI indexing process, UML documents are stored and
classified into the repository. Now the framework must provide an accurate
retrieval that allows the reutilization of UML software artifacts.

6.1 UML Query Creation

One of the most important differences that RSHP introduces is that the
user interface must be radically different than the existing ones, say,
graphical. Moreover, using the QbyE paradigm as the ground technique for
creating UML techniques allows the framework to provide a concrete solution
to the concept-term mapping problem. Therefore, when formulating a UML
query the user must select the names of the artifacts from a controlled
vocabulary so that:

• People involved in different projects share the same vocabulary.

• Better results will be obtained as the queries better represent the
semantics wanted to define.

6.2 UML Query Formulation and Resolution

Considering the information depicted in the class diagram in Figure 6.1

Computer
SerialNumber
Start()

Processor
Name: String

1 1..*

Figure 6.1 A target document to retrieve

to be retrieved, it can be represented by means of RSHP in the following way:

 { }Association
1 class classRSHP "no name", Computer , Pr ocessor= < > < > [6.1]

where RSHP1 is an association relationship, and <Computer>class and
<Processor>class are sub-artifacts typed as UML classes. Thus, the representation
of the <Computer>class sub-artifact is as follows:

{ }
{ }

1 attribute

2 method

IE SerialNumber
IE Start

= < >

= < >
 [6.2]

and the representation of the <Processor>class sub-artifact is:

 { }1 attributeIE Name= < > [6.3]

Finally, the <Name>attribute has additional information, so it is also
represented as a sub-artifact:

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine XMI Retrieval

 page 67

 { }Pr operty Qualification
1RSHP "no name", Data Type, Integer= [6.4]

According to the representation model above, the retrieval framework
must provide two different retrieval capabilities:

• Query inclusion.

• Query similarity.

6.2.1 Query Inclusion

With this query type they can be searched models that fully include
the query, element by element and relationship by relationship. Since all the
artifacts indexed are stored in a database according to the indexing process in
Section 5, a single (and very complex) SQL SELECT statement might be used,
with many WHERE clauses including joins and sub-SELECT clauses for every
artifact.

6.2.2 Query Similarity

This kind of query is based on a similarity function between an artifact
a and a query q that must be calculated for every artifact in the repository,
considering then the performance as an important topic. Considering that UML
models are being compared, this measure implies to compare two diagrams and
gives a value for how similar they are.

For this purpose, two main aspects are considered:

• Model Topology.

• Model Semantics.

Thus, the similarity function between an artifact a and a query q is:

 Similarity T T S SF (a,q) K ·F (a,q) K ·F (a,q)= + [6.5]

where FT(a, q) measures the similarity among two models based on the
relationships they have, while FS(a, q) compares the type of the relationships
they have in common. On the other hand, KT and KS are constants for fine
tuning the whole function.

6.3 Topology Measurements

The FT(a, q) function from [6.5] gives values according to the
relationship types found in the artifact and in the query. For this purpose is
used a vector space model with one dimension per relationship type, so that
the vector space has as many dimensions as relationship types.

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine XMI Retrieval

 page 68

Two vectors representing the artifact and the query are created in
such a vector space, each of them including for every dimension the number of
relationships found of the corresponding type as Figure 6.2 depicts:

RSHP2

RSHP1

RSHPn

qt

at

d

Figure 6.2 Vector space model for topology measurement

where n is the total number of different relationship types and:

(

) ()
(

) ()

t 1

2

n t1 t2 tn

t 1

2

n t1 t2 tn

a Number of RSHPs in Artifact,
Number of RSHPs in Artifact,
...,
Number of RSHPs in Artifact a , a , ..., a

q Number of RSHPs in Query,
Number of RSHPs in Query,
...,
Number of RSHPs in Query q , q , ..., q

=

=

=

=

 [6.6]

The similarity among these two vectors is measured bye means of the
Euclidean distance. In addition, in order to ponder the case where one model
fully includes the other, the FT(a, q) function is moderated by a sign-based
variable, say s , that takes its value from the following:

 i ti tisign : sign(a q)= − [6.7]

and

n

i
1

(positive sign)
s

n
=
∑

 [6.8]

Therefore, the topology function is formulated as:

 2 2 2
T t1 t1 t2 t2 tn tn inclusionF (a,q) (a q) (a q) ... (a q) ·C= − + − + + − [6.9]

where

 ()()()2
inclusion inclusion i i iC 1 K · 3k 1 s 4k s k⎡ ⎤= − + − +⎣ ⎦ [6.10]

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine XMI Retrieval

 page 69

having:

• inclusion0 K 1≤ ≤ where a value of 0 means that no inclusion effect is
taken into account.

• i0 k 1≤ ≤ with the following meaning:

o i Tk 0 F (a,q) 0 only if a q= → = ⊂

o = → = ⊂ ∨ ⊂i Tk 1 F (a,q) 0 if a q q a

6.4 Semantics Measurement

The semantics distance FS(a, q) among an artifact and a query is
measured considering two aspects:

• The common concepts.

• The common RSHPs.

Therefore, the semantics function is as follows:

 S IEs IEs RSHPs RSHPsF (a,q) K ·F (a,q) K ·F (a,q)= + [6.11]

where KIEs and KRSHPs are constants for fine tuning and FIEs(a, q) is:

 IEs
Number of IEs from Query in ArtifactF (a,q)

Number of IEs from Query
= [6.12]

in case the query has less IEs that the artifact, otherwise the function is
calculated as

 IEs
Number of IEs from Artifact in QueryF (a,q)

Number of IEs from Artifact
= [6.13]

FRSHPs(a, q) measures the distance between all the artifact’s RSHPs and
all the query’s RSHPs by comparing the distance of every single RSHP from one
document (the one with less RSHPs) with all the RSHPs from the other one, one
by one using a function ΔRSHP(RSHP1, RSHP2) and selecting the combination with
the minimum distance. Therefore, and assuming ≤a q :

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine XMI Retrieval

 page 70

{{
{ }

{ } }}

RSHPs o

o

i i 1 i1 n in

1 n

ij ik ij ik

n n

k RSHP i ki RSHP i oi
i 1 i 1

F (a,q) c
c C

C : c c (r ,s),...,(r ,s)

a r ,...,r

j,k 1,...,n : s ,s q s s

c C : (r ,s) (r ,s)
= =

=

∈ ∧

= =

= ∧

∀ ∈ ∈ ∧ ≠ ∧

∀ ∈ Δ ≥ Δ∑ ∑

 [6.14]

Once every possible distance is calculated, it is selected the minimum
possible value for all the combinations. For instance, in Figure 6.3 function
FRSHPs(a, q) might be formed by pairs RSHPa1-RSHPq2 and RSHPa2-RSHPq1 with a
distance value of 0.2 or by pairs RSHPa1-RSHPq1 and RSHPa2-RSHPq2 with a
distance value of 0.15.

RSHPa1

RSHPa2

RSHPq1

RSHPq2

RSHPq3

0.05

0.2

0.10

0.20.4

Figure 6.3 RSHP difference map

Therefore, the semantic distance between two RSHPs is calculated
with the function ΔRSHP(RSHP1, RSHP2), which takes two aspects into account:

• The total distance between all the IEs in both RSHPs.

• The difference of both RSHPs according to their dynamic concept
(action) by means of an IE.

Thus, the function is defined as follows:

()

{ }
RSHP 1 2 RSHPIEs RSHPIEs 1 2 Action Action 1 2

i k k i i i

(RSHP ,RSHP) K ·F IEs ,IEs K · (A ,A)
IEs : IE | IE RSHP A Action(RSHP)

Δ = + Δ

= ∈ ∧ =
 [6.15]

Function FRSHPIEs(IEs1, IEs2) gives the difference between two sets of
Information Elements by comparing every single IE from one set (the one with
less elements) with every IE from the other set by means of a function
ΔIE(IE1, IE2), selecting later the combination with the minimum distance.
Therefore, and assuming ≤1 2IEs IEs :

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine XMI Retrieval

 page 71

{{
{ }
{ } }}

n

RSHPIEs 1 2 IE i oi
i 1

o

i i 1 i1 n in

1 1 n

ij ik 2 ij ik

n n

k IE i ki IE i oi
i 1 i 1

F (IEs ,IEs) (r ,s)

c C

C : c c (r ,s),...,(r ,s)

IEs r ,...,r

j,k 1,...,n : s ,s IEs s s

c C : (r ,s) (r ,s)

=

= =

= Δ

∈ ∧

= =

= ∧

∀ ∈ ∈ ∧ ≠ ∧

∀ ∈ Δ ≥ Δ

∑

∑ ∑

 [6.16]

In order to compare both sets, two aspects are considered to control
the roles that IEs play in both RSHPs:

• The order of every IE in the relationship.

• The symmetry of every RSHP.

In order to moderate the possibility when two RSHPs are different even
when they have the same Action and the same IEs but in different order, a
Kpunish constant punishes the distance between two IEs when they are not in the
same side of their asymmetric relationships:

 IE 1 2 punish(IE ,IE)·(1 K)Δ + [6.17]

The value of this function in charge of comparing two IEs works as
follows:

1 2

syn i j

n
i jIE 1 2

n
syn i j

n
punish i j

0 IE IE
K IE Equi(IE) i j

n IE Pr op (IE) i j n is minimal(IE ,IE)
K n Equi(IE) Pr op (IE) i j

K Equi(IE) Pr op (IE) i j

=⎧
⎪ ∈ ≠⎪
⎪ ∩ ≠ ∅ ≠ ∧Δ = ⎨
⎪ + ∩ ≠ ∅ ≠⎪
⎪ ∩ = ∅ ≠⎩

 [6.18]

where:

• n is an integer representing the propagation level in a ISO2788 net.

• N is the maximum propagation level so thatn N≤ .

• Equi(Ei) is the set of synonyms of IEi.

• Propn(IEi) is the set of related IEs for propagation level n. For
instance, upon the net depicted in Figure 6.4 might be applied
Prop1(Workstation)={Computer, IBM-PC} as well as
Prop3(Laptop)={IBM-PC}.

Modeling and Indexing Musical Files to allow Music Reuse
The RSHP Model and the CAKE Engine XMI Retrieval

 page 72

Computer

Laptop Workstation

IBM-PC

Figure 6.4 Propagation in the ISO2788 net

• syn0 K 1≤ ≤ where a value of 0 means that synonyms are treated as

IEs, while a value of 1 means that synonyms are slightly punished:
Kpunish=3N.

On the other hand, the function Action 1 2(A ,A)Δ from [6.15] measures
the difference among two RSHPs according to their action:

 IE 1 2 1 2
Action 1 2

punish 1 2

(IE ,IE) RSHP RSHP
(A ,A) K RSHP RSHP

Δ =⎧
Δ = ⎨ ≠⎩

 [6.19]

Part VI:
Definition of the User

Requirements

Modeling and Indexing Musical Files to allow Music Reuse
Definition of the User Requirements Introduction

 page 74

1 Introduction

This Section provides an overview of the User Requirements Definition
phase and the scope of the system to develop.

1.1 Purpose

The main purpose for this phase of the project is to establish and
detail all the features the final user expects from the system. Previous parts of
this document have given a background about the musical domain and the CAKE
environment. Thus, the User Requirements Definition phase will group all them
to show the actual needs and the problems and risks that might arise from
them.

This part of the report is addressed to those readers that want to know
what the system is about and the requirements it must comply to, avoiding
much technical stuff and focusing only on the actual needs.

1.2 Scope

The main goal of the current project is to develop a system that allows
music reuse and, hence, some other capabilities derived from it such as musical
comparisons in a quantitative way.

The system functionality can be divided into three man parts:

• Index musical MIDI files according to their contents, discarding if
needed some useless information.

• Retrieve MIDI files similar to another one given as a query by means
of similarity or inclusion.

• Present the results of the retrieval according to the specific needs of
the actual user.

The first two parts shape the core of the project, while the third one
can change depending on the actual user needs.

Modeling and Indexing Musical Files to allow Music Reuse
Definition of the User Requirements General Description

 page 75

2 General Description

This section describes the general factors that affect the system and
its requirements, making them easies to understand.

2.1 System Perspective

First of all, it is important to note that the CAKE Engine introduced in
Part V of the document must be used along with the RSHP Information
Representation Model. This requirement establishes an operational
environment that the system must comply with.

Since it is mandatory to use the CAKE Engine, a model for musical
information must be developed according to the RSHP specification. Moreover,
the system must be included in the CAKE Studio software by implementing
some required extensions.

2.2 User Characteristics

The main users of the system will be musicians or, at least, people who
has some musical background.

However, lastly it seems to be necessary some training on the MIKE
internal process since some feedback from the user would be necessary in the
process. As we will see in the Part X of the document, the voice separation
process needs some information from the user about how good are the
intermediate separations so that the system can adjust some penalization
constants.

Therefore, this background might be necessary. On the other hand,
this interaction with the user is not needed in the current state of the system,
but will be necessary later on in final versions though.

Modeling and Indexing Musical Files to allow Music Reuse
Definition of the User Requirements General Requirements

 page 76

3 General Requirements

This section enumerates the general constraints that affect the
development of the system, from the technical constraints to those derived
from the actual musical domain.

3.1 CAKE Studio 3.0.0

The main constraint for the system is that it must run under the CAKE
Studio 3.0.0 [dTinf] and, therefore, under Microsoft .net technology
[Microsoft]. In particular, a Manager for the CAKE Studio must be created in
order to cope with musical files indexing and retrieval and it must run under
the .net Framework 1.1 4322 sp 1.

Moreover, the CAKE Engine and therefore the RSHP Information
Representation Model must be used as a result of the CAKE Studio usage as
stated before.

3.2 File Format

The basic way to retrieve musical information is to provide to the CAKE
Studio an artifact to use as query. However, this artifact must be actually a file
of the same type that those that were already indexed previously. The CAKE
Studio allows more than one file format per indexer, so a decision must be
taken about the supported file formats.

3.3 Vertical Constraints

By vertical constraints are considered those that affect to the height of
the notes, tonalities, grades, key signatures and so on.

3.3.1 Octave Equivalence

Figure 3.1 depicts a melody written in the fourth octave first and then
in the fifth one. They represent the same performance but played in different
octaves.

Figure 3.1 Octave equivalence

Anyway they are the same, so the system must ignore the octave issue
since it lacks of importance. Actually, each instrument has a different number
of possible octaves, so it makes no sense to compare them as a whole.

Modeling and Indexing Musical Files to allow Music Reuse
Definition of the User Requirements General Requirements

 page 77

3.3.2 Grade Equality

Figure 3.2 shows part of the main riff of the song Layla, from Derek
and the Dominoes, in its original key signature of major F. As it depicts, the riff
starts with the third grade of the tonality, followed by the fifth one, the sixth
and so on.

Figure 3.2 Grade equality (part I)

If it is considered now the riff in Figure 3.3, it can be seen that the
same performance is represented. Third grade of the tonality starts, followed
by the fifth one, the sixth and so on.

Figure 3.3 Grade equality (part II)

However, in this case the song is in the key signature of major Bb (7
semitones down). Therefore, even thought the grade progression is maintained,
the resulting notes are totally different. It is pretty clear that the riffs are the
same, so the system must find out similarity among them.

3.3.3 Note Equality

Figure 3.4 shows exactly the same performance that Figure 3.2 does.
This means that exactly the same notes make it up: A followed by C, D and so
on.

Figure 3.4 Note equality

However, in this case the riff is in the tonality of major C, so the
grades will be different. In Figure 3.2 grades are III followed by V, VI and so on.
Nevertheless, in Figure 3.4 they are VI followed by I, II and so on. Since both
riffs are exactly the same, the system must find out again the similarity among
them.

Modeling and Indexing Musical Files to allow Music Reuse
Definition of the User Requirements General Requirements

 page 78

3.3.4 Chord Recognition

Another desired feature for the system is the ability to recognize
chords or part of a performance. Moreover, the best solution to the chord
recognition would be the ability to recognize not only a certain chord as a
whole, but also part of it. For instance, in a triad chord (made up by the root,
the third and the fifth) one might only recognize two notes (typically the root
and the fifth). However, one might recognize another two or simply just the
root note of the chord.

Actually, a typical technique to recognize chords is to start playing
them just with the root note and then, progressively, figure out the other ones
and add them to the chords.

Therefore, the system should be able to recognize chords wholly and
partially. Of course, two identical chords should have a semantic distance of
cero whilst a chord and another one that is part of the first one should give a
distance between 0 and 1, but close to 0 at some extent depending on how
many notes are included.

3.4 Horizontal Constraints

By horizontal constraints are considered those that affect to the length
of the notes, time signatures, bars, etc.

3.4.1 Time Signature Equivalence

Figure 3.5 depicts a simplified version for the start of op. 81 no. 10
from S. Heller in major E with the original 2/4 time signature. This means that
the piece is split into 4 bars of 2 beats each, being each beat equivalent to a
crotchet.

Figure 3.5 Time signature equivalence (part I)

However, if a 4/4 time signature is considered, the piece would be
split into 2 bars of 4 beats each, being each beat equivalent to a crotchet as
well.

Figure 3.6 Time signature equivalence (part II)

Actually, as shows Part II, Section 3.4 the only difference among the
two previous staffs is how hard each note must be played. However, in
essence, both them are exactly the same, so the system must ignore somehow
the time signatures in cases like this.

Modeling and Indexing Musical Files to allow Music Reuse
Definition of the User Requirements General Requirements

 page 79

3.4.2 Tempo Equality

Let us consider the staff in Figure 3.7. It depicts a simple melody with
a tempo of 60 crotchets per minute and a key signature of 4/4.

Figure 3.7 Tempo equality (part I)

If the same melody is played at twice the speed (120 crotchets per
minute) or half the speed (30 crotchets per minute) but maintaining the actual
time, result in the two staffs depicted in Figure 3.8.

Figure 3.8 Tempo equality (part II)

In the first one, as the tempo is twice, every note has twice length as
well. Likewise, the second one has half the tempo, so every note has half its
length. It is clear that the three staffs are equal, but with different tempos,
note lengths, time signatures or number of bars. Anyway, the system must
consider them as exactly or almost equal.

3.4.3 Figure Equality

If the melody in Figure 3.6 is played slower or quicker by means of a
tempo variation, the result would be like the two staffs in Figure 3.9.

Figure 3.9 Figure equality

This case is quite similar to the tempo perfect equality, but with a
difference of actual time. Anyhow, the system must consider them as similar
melodies or even the same one.

3.4.4 Partial Similarity

Sometimes, a melody is altered by changing only the duration of a
note. For instance, if the melody in Figure 3.7 is changed by means of note
length, a melody like the one in Figure 3.10 could be formed.

Modeling and Indexing Musical Files to allow Music Reuse
Definition of the User Requirements General Requirements

 page 80

Figure 3.10 Partial similarity (part I)

Both melodies are quite similar but not identical. Therefore, the
system must consider them as similar but never equal. The same consideration
should be made if notes length is altered along with the whole tempo, like
Figure 3.11 depicts.

Figure 3.11 Partial similarity (part II)

3.4.5 Time Quantization

Sometimes, MIDI files are recorded in such a way that there is no
explicit information about the onset time and duration of each note, so that
the only data available is the amount of milliseconds.

The system should deal with these particular cases so that it would be
nice to compare performances by score and real time.

3.5 Voice Constraints

Figure 3.12 depicts he original start of op. 81 no. 10 from S. Heller. As
it can be seen, actually two voices make it up, colored in blue and green. The
instrument that plays this performance is a piano, and as it uses to happen with
many instruments (mainly keyboard instruments) there are two voices (one per
hand).

Figure 3.12 Simple voice distinction

These melodies work together as a whole, but can also be treated
individually. Indeed, if this performance is played with a melodic instrument
(flute for instance), the musician will only be able to play one of them at the
same time. Therefore, it would be necessary to compare the whole piece with
only the blue melody or maybe only the green one.

Modeling and Indexing Musical Files to allow Music Reuse
Definition of the User Requirements General Requirements

 page 81

Thus, the system must be able to treat voices separately but also
together. Moreover, the voice distinction might be done not only for one staff
with the Sol clef and another voice for the Fa clef. Indeed, as Figure 3.13
depicts, several voices might be found on a single staff.

Figure 3.13 Complex voice distinction

Actually, a single staff can have up to 4 voices, even though the usual
number is just one or two. Thus, usually the maximum number of voices is two
per staff, so that two staffs make it up to 4 possible voices. However,
whenever a single staff has two voices it is almost sure that the other one will
have only one, so it can be stated a maximum number of 3 simultaneous voices
at a time.

Anyway, the final idea and desire is to distinguish voices and have the
possibility of comparing only one, two, three or even four together at a time.

Part VII:
General Requirements

Analysis and First Solutions

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Introduction

 page 83

1 Introduction

The aim of this part of the document is to analyze the constraints
given in the User Requirements Definition and offer a first approximation to
their solution.

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions File Format

 page 84

2 File Format

Nowadays there are several file formats to store musical information,
from WAV, MP3 or WMA to SMF, MusicXML [Recordare] or SMDL [ISO/IEC].
However, the main difference among the first three formats and the second
three formats is that the first ones do not maintain the actual information
about the performance’s staves. This makes necessary to the user to convert
his or her query staffs to one of these binary file formats.

Therefore, only file formats maintaining information about the actual
staves must be considered. Moreover, it would be desirable to allow a widely
accepted file format, whilst to allow more than one file format would also be
great.

MusicXML format might be considered as the best choice, since a
parser development would be an easy to achieve task thanks to frameworks like
Microsoft’s DOM. However, it has a particular drawback that makes it
unfeasible: the huge amount of information that takes into account. In a
MusicXML file are contained both actual musical information and layout
information for displaying it. Since the main disadvantage of a XML format is
that it might be unfeasible because of the amount of useless information it
contains (markup data), and even if this format has useless data information
(layout information), MusicXML is clearly discarded.

In order to offer a more precise look at this problem, Listing 2.1 shows
an example of a MusicXML file.

<?xml version="1.1" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE score-partwise PUBLIC
 "-//Recordare//DTD MusicXML 1.1 Partwise//EN"
 "http://www.musicxml.org/dtds/partwise.dtd">
<score-partwise>
 <part-list>
 <score-part id="P1">
 <part-name>Music</part-name>
 </score-part>
 </part-list>
 <part id="P1">
 <measure number="1">
 <attributes>
 <divisions>1</divisions>
 <key>
 <fifths>0</fifths>
 </key>
 <time>
 <beats>4</beats>
 <beat-type>4</beat-type>
 </time>
 <clef>
 <sign>G</sign>
 <line>2</line>
 </clef>
 </attributes>
 <note>
 <pitch>
 <step>C</step>
 <octave>4</octave>
 </pitch>
 <duration>4</duration>
 <type>whole</type>

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions File Format

 page 85

 </note>
 </measure>
 </part>
</score-partwise>

Listing 2.1 MusicXML example

This example consists only in a staff like the one in Figure 2.1, where
appears just a C note in the 4th octave. As it can be seen on Listing 2.1, every
time a note needs to be placed on the staff, a whole <note> element must be
put into the MusicXML file along with its sub-elements, increasing the file size
up to an unfeasible threshold.

Figure 2.1 Music XML example

On the other hand, SMF is a widely deployed standard since many years
ago, and does not sin of having layout information. Every musical program will
for sure allow working with SMF format, so it will be the chosen one for the
system. The main drawback of SMF is that a parser construction will be harder
to perform since it is a binary format.

However, as the main advantage of being a standard since many years
ago, it has a lot of frameworks, utilities, tools and whatever could be wished to
handle SMF files. Indeed, Microsoft Windows itself has a DLL (winmm.dll) that
offers all the needed functionality to play SMF files and use MIDI devices.
Nevertheless, the system must be developed under the .net technology, so
Interop services will be needed in case of using one of these functionalities.

Nonetheless, Stephen Toub, from the Microsoft MSDN Magazine [Toub],
has a framework built under C# and supported over the winmm.dll library that
offers an easy way to handle SMF files, with a static information model to
access the data. This framework is called MIDI lib and is currently on its version
2.0.4 [GotDotNet].

Therefore, only SMF 1.0 files will be accepted with its two possible file
extensions: .midi and .mid.

2.1 The MIDI lib 2.0.4

Once it has been decided to use the MIDI lib 2.04, the first and most
important step is to understand the static information model it uses to handle
SMF files, and it will be done by means of UML class diagrams.

The first diagram in Figure 2.2 shows the main classes that define a
SMF file: a MidiSequence containing several MidiTracks, which use a
MidiEventCollection in order to store every MidiEvent whithin the track.

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions File Format

 page 86

MidiSequence
format
division

MidiTrack MidiEventCollection

MidiEvent
deltaTime

MetaMidiEvent
metaEventID

SystemExclusiveMidiEvent
data

VoiceMidiEvent
category
channel

contains
1

1..*

driven by1 1

collects
1

1..*

Figure 2.2 MIDI lib static information model (part I)

Figure 2.3 depicts classes used to handle MIDI meta-events, basically
by creating a particular class for every case and making it a child of
MetaMidiEvent.

MetaMidiEvent
metaEventID

EndOfTrack
KeySignature
key
tonality

«Enumeration»
Tonality

«Enumeration»
Key

MidiPort
port

SequenceNumber
number

Tempo
tempo

TextMetaMidiEvent
text

ChannelPrefix
prefix

Propietary
data

SMPTEOffset
hours
minutes
seconds
frames
fractionalFrames

TimeSignature
numerator
denominator
midiClocksPerClick
numberOfNotated32nds

UnknownMetaMidiEvent
data

Figure 2.3 MIDI lib static information model (part II)

The most important meta-events here are the KeySignature (together
with the Key and Tonality enumerations), Tempo and TimeSignature. However,
the rest of classes might be used to store information about authors and so on,
so that more precise information can be offered to the user in a retrieval
process.

Even deeper in meta-events, Figure 2.4 shows classes used to handle
text MIDI meta-events, such as Copyright, lyrics, Instruments and so on. As well
as with the previous elements in Figure 2.3, this information might be used to
offer more precise information to the user.

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions File Format

 page 87

TextMetaMidiEvent
text

Copyright CuePoint

DeviceName

Instrument

Lyric

Marker

ProgramNameSequenceTrackName

Text

Figure 2.4 MIDI lib static information model (part III)

And finally, Figure 2.5 depicts every class needed to handle voice
events. Moreover, several enumerations are added for having more accurate
and precise information about each event.

VoiceMidiEvent
category
channel

ChannelPressure
pressure

Controller
number
value

NoteVoiceMidiEvent
note

PitchWheel
upperBits
lowerBits

ProgramChange
number

AfterTouch
pressure

NoteOn
velocity

NoteOff
velocity «Enumeration»

Controllers

«Enumeration»
PitchWheelSteps

«Enumeration»
GeneralMidiPercussion

«Enumeration»
GeneralMidiInstruments

Figure 2.5 MIDI lib static information model (part IV)

Moreover, the MIDI lib offers some additional classes that might be
used to play and generate SMF files. Therefore, it would be possible to
generate SMF data from a retrieval result in RSHP and then play it so that the
user can compare results without the need of retrieving the whole MIDI file
linked to the retrieved result.

2.2 SMF Format

Only SMF formats 0 and 1 are going to be considered since format 2
allows asynchronous and sequentially independent tracks. Moreover, as Section
2.2 explains in the document’s Part X, only files with a single staff will be
allowed with its voices in different tracks. Therefore, to allow a file with
format 2 does not make any sense.

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Vertical Constraints

 page 88

3 Vertical Constraints

In the User Requirements Definition were introduced some problems
related to the height of each note. This section now analyzes these vertical
problems and their possible solution.

3.1 Octave Equivalence

As stated in the Requirements Definition, octave numbers must be
ignored as a whole, considering as equal two melodies with the same notes but
in different octaves. Therefore, the octave number will be ignored in a first
approach.

3.2 Grade Equality

It is really usual to make a different version of a given song or
performance and, also usual, to make it changing the key signature. For
instance, the original key signature of Knocking on Heavens Door from Bob
Dylan is major G, as well as the version from Eric Clapton. However, the
version from Gun’s n’ Roses is in minor G, and the one from Avril Lavigne is in
major C.

Therefore, actual notes can not be compared. Instead, the grades of
the tonality can be compared to decide whether two songs are the same or not.
Thus, actual notes are going to be discarded.

Grades might be compared directly with the number of grade.
However, it is not enough in cases like Figure 3.1 where the second note is the
same and hence also the grade. But they are in different octaves, breaking thus
the equality.

Figure 3.1 Grade equality

Therefore, the number of octave must be taken into account for the
comparison even though in Section 3.1 it was decided to ignore them as a
whole. Thus, some other technique must be used to avoid de Octave
Equivalence problem since the comparison must be in a way like {V4, II5, VII4}
against {V4, II4, VII4}, where XY means the Xth grade in the Yth octave.

However, the key signature is not mandatory in a MIDI file as it was
explained in Section 4.2 of document’s Part IV, so it must be figured out.
Nevertheless, it is difficult to figure out the key signature of a song just from
its notes, and in some cases it is even impossible due to ambiguity issues (see

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Vertical Constraints

 page 89

the Note Equality problem), so another solution must be applied to the Grade
Equality problem

3.3 Note Equality

At this point it is clear that octaves must be ignored as a whole but
taken into account within a particular melody. Moreover, actual notes can not
be compared, conceding place to the tonality grades.

However, the Note Equality problem presented in the Requirements
Definition does not allow the comparison only by means of scale grades. Thus,
the only way to compare two melodies is to compare the intervals between
notes. For instance, in the first bar on Figure 3.1 it would be said that there is
an interval of +4 notes (from G4 to D5) and then another interval of -2 notes
(from D5 to B4). On the right staff it would be said that there is an interval of -
3 notes (from G4 to D4) and then of +5 notes (from D4 to B4).

The problem is that in some cases melodies have non-natural notes, so
that the interval can not be evaluated as +3 or +4 notes, but maybe +3.5.
Therefore, intervals must be measured by means of number of tones or even
semitones like Figure 3.2 depicts. In addition, an interval of 1 note might be 2
notes in depending on the tonality of the whole song.

Figure 3.2 Interval measurement

With this method, the Octave Equivalence problem is solved since both
melodies will have the same intervals. The Grade Equality problem is also
solved since the same progression of grades will have the same intervals
between notes, independently of the tonality. Even more, the Note Equality
problem is also solved since two melodies with the same notes will have the
same intervals even though they have different key signatures.

Thus, this method of comparing melodies by means of interval
progression solves every vertical problem proposed in the User Requirements
Definition.

3.4 Chord Recognition

The issue about the chord recognition and comparison will be treated
in detail in the Part VIII of the document, where the mathematical model is
explained. Trying to give a solution right now, without the needed
mathematical background would be worthless.

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Horizontal Constraints

 page 90

4 Horizontal Constraints

Some other constraints affect to the horizontal meaning of a
composition. The Definition of the User Requirements stated some horizontal
problems and constraints that the system must comply with, and they are
analyzed and solved in the following sections.

4.1 Time Signature Equivalence

When Musical Theory was introduced, it was stated that the only
actual difference among two different time signatures is how strong certain
notes must be played. Therefore, time signatures will be simply ignored.

However, it might be good to know where a bar finishes in order to
split the performance in several parts or artifacts, or simply to analyze
melodies easily and figure out the riffs. Anyway, the use of the time signature
will only affect to the preliminary analysis of the song and not anymore.
Moreover, it is not mandatory to include a time signature in a MIDI file as
Section 4.2 says in the Part IV of the document. Therefore, the system must not
depend in a hundred percent on the time signature.

4.2 Tempo Equality

In a first approach to this problem, the only way to solve it is to
consider actual time instead of musical time. For instance, in Figure 4.1 the
first note can be considered to start at time 0 ms. Since a minute has 60

crotchets, a single crotchet will last
60s / min·1000ms / s 1000ms / crotchet

60crotchet / min
= .

Thus, a quaver will last 500 ms.

Figure 4.1 Tempo Equality

Therefore, the second quaver will start at 500ms, the third one will
start at 1000ms and the forth one at 1500ms. The fifth one will start at 2000ms
and will last until 3000ms because it is a crotchet.

Considering this measurement for the time, the Tempo Equality
problem is easily solved, so it can be considered as enough so far.

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Horizontal Constraints

 page 91

4.3 Figure Equality

In the previous section was proposed to use actual time instead of
musical time since it solves the Tempo Equality problem. However, the Figure
Equality problem needs exactly the opposite: consider musical time.

It is really common to have the same melodies or even the same whole
songs played by different musicians but with a change on the tempo value. It
makes necessary to consider musical time.

Therefore, two measurements are needed so far: actual time and
musical time. It would be a good idea to consider both them and make like two
different indexing processes, but this option will be discarded at the beginning
because of performance issues. It is obvious that the retrieval process will need
to compare twice the artifacts in this way.

4.4 Partial Similarity

With the Partial Similarity problem none of the previous solutions is
valid. Actually, this problem is the addition of the two previous, so a different
solution must be proposed.

The solution might be to consider the musical piece as timeless,
ignoring both actual and musical time. This means that every melody should be
transformed so that its notes have the same length, for example a crotchet.
The initial bar division will become useless, but it does not matter as long as
the time signature keeps ignored. Therefore, the Layla riff in Figure 4.2

Figure 4.2 Timeless model (part I)

will be transformed to the staff in Figure 4.3 where note lengths, time
signature, tempo and bars are ignored:

Figure 4.3 Timeless model (part II)

With this timeless model the Tempo Equality problem is solved since
musical time is somehow ignored. The Figure Equality problem is also solved
because every note will have the same length. And finally, even the Partial
Similarity problem becomes solved. Anyway, this timeless model has an obvious

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Horizontal Constraints

 page 92

loss of information as it ignores the note length, so any other additional
technique must be proposed to avoid this loss.

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 93

5 Voice Constraints

The first step to solve the Voice Problem is to recognize voices. In a
MIDI file with voices, no additional information is added in order to separate
them, but there is just a bunch of notes ordered by time. Therefore, an
algorithm must be developed for this first step.

5.1 Approaches to the Voice Separation

The main challenge when separating voices is to differentiate among
chords and different voices when notes have same duration and onset time.
Many algorithms have been proposed to achieve a solution for this problem
given as input a stream of notes. In the following subsections, these approaches
are described [Lebel, 2006].

5.1.1 Split Point Approach

The simplest solution consists on splitting the range of all possible
pitch values intro disjoint sets so that each set corresponds to a single voice.
Although this algorithm is extremely simple, it does not assign necessarily the
correct voice to each note since assumes a fixed number of voices and that
voices do not share any pitch value. Moreover, this algorithm does not support
chords.

5.1.2 Rule-based Approach

Another proposed solution is to take advantage of the voice-leading
rules used by the actual composers, such as limiting the number of voices,
prefer small intervals between successive notes or avoid overlapping voices.
The problem with this approach is that the number of rules can increase
unfeasibly and they might be not widely accepted. Moreover, some rules such
as the fixed number of voices might be proper just for some parts of the
performance, yielding to a erroneous result.

5.1.3 Local Optimization Approach

In this case, the proposed algorithm uses a heuristic algorithm. The
idea is to apply the iterative process to the input stream, splitting it into small
slices containing overlapping notes and then assigning these notes to a single
voice by using a randomized local search that optimizes a cost function [Hoos,
2002].

Even tough this solution does not find sometimes the correct voice
separation, offers a reasonable one. In addition, the major advantage is that it
recognizes chords properly, and this is a really valuable feature of the
algorithm.

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 94

5.1.4 Contig Mapping Approach

The main difference among this algorithm and the local optimization is
that it aims to provide the correct separation rather than a proper one for
transcription by running an algorithm similar to those used with DNA
processing. As [Chew, 2005] describes, the input stream is segmented into
collections of overlapping pieces and then adjacent contigs are connected by
using a shortest distance method.

5.1.5 Predicate Approach

As the Contig Mapping approach does, the Predicate approach aims to
find the correct separation for the performance’s voices. The algorithm is
implemented with a learned decision tree to decide whether two notes are or
not in the same voice, delegating in another algorithm the task of assigning
notes to voices by considering many aspects concerning distance and rhythm.
As explained in [Kirlin, 2005], the algorithm does not have a fixed number of
voices. However, and has many learned algorithms sin of, it never produces
error-free results.

5.2 The Kilian-Hoos Algorithm

So far, no algorithm has been proposed for the Voice Separation
problem producing a perfect result. Thus, the Local Optimization approach has
been chosen since it correctly detects chords, and this is a really valuable
feature since songs are made up by them and to acquire a decent set of songs
free of chords is almost impossible.

5.2.1 Preliminaries

The input to the algorithm is given as a list of notes sorted by onset
time. Note number i-th in the list is represented by a vector mi=(oi, di, pi),
where oi, di, and pi are, respectively, the onset time, the duration and the
note’s pitch. These properties are also acceded by onset(mi), duration(mi) and
pitch(mi). Moreover, two integers, vi and ci, are also linked to a note mi in
order to denote the voice and chord that the note is currently associated with.
Likewise, these properties are also acceded by voice(mi) and chord(mi). In
addition, a function is utilized to indicate the end point of a note mi.

 i i ioffset(m) onset(m) duration(m)= + [5.1]

Moreover, some relations among notes are defined:

i j i j

i j i j

m m : onset(m) onset(m)
m m : onset(m) onset(m)

≤ = ≤

= = =
 [5.2]

Furthermore, a function overlap(mi, mj) tells whether notes mi and mj
overlap in time:

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 95

i j i j i

j i j

overlap(m ,m) : onset(m) onset(m) offset(m)
onset(m) onset(m) offset(m)

= ≤ ≤ ∨

≤ ≤
 [5.3]

By means of these definitions, the input of the algorithm is formally
written as:

 () { }1 l i i 1M m ,...,m i 1,...,l 1 : m m += ∀ ∈ − ≤ [5.4]

In the output voice separation, two notes with the same onset time
can only be in different voices or be in the same one but grouped within a
chord:

 ()
i j i j

i j i j

m m voice(m) voice(m)

voice(m) voice(m) chord(m) chord(m)

= ⇒ ≠ ∨

= ∧ =
 [5.5]

For this algorithm, in case the input is quantized, chords are restricted
only to notes with the same onset time. If input is not quantized overlapping
notes with different onset times should be allowed to form a chord. Thus, in
the original implementation, chords with small overlaps or other inaccuracies
are eliminated in a preprocessing phase.

5.2.2 Input Splitting

The first step in the algorithm is to split the input M into slices yi of
consecutive overlapping notes (mk, ..., mk+p) so that there is an overlap among
any pair of notes within each slice and that between two consecutive slices,
say yi and yi+1, there are at least two notes that do not overlap, as Figure 5.1
depicts. Therefore, every note in yi but the one with the smallest offset time
may overlap with notes in yi+1.

time

pitch

y1 y2

y3

Figure 5.1 Partitioning a piece into slices

Formally, the splitting of M is defined as the set B containing indexes
of notes in M that become the first notes of the slices y1, …, yn:

{ }{

{ }()
{ }()}

1 n i

1 n

i i 1 q r

i 1 i i 1 q s

B : b ,...,b i 1,...,n : b
b 1 b l

q,r b ,...,b 1 : overlap(m ,m)

s b q b ,...,b 1 : overlap(m ,m
+

+ +

= ∀ ∈ ∈ ∧

= ∧ ≤ ∧

∀ ∈ − ∧

¬∃ ≥ ∀ ∈ −

`

 [5.6]

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 96

Thus, and based on B, the definition of the set of slices yi is as follows:

 () { }i i 11 n i b b 1Y : y ,...,y y m ,...,m
+ −= = [5.7]

and splits the input M into slices as formula [5.5] describes.

2 2 3 n

1 n2

1 b 1 b b 1 b l

y yy

M (m ,...,m ,m ,...,m ,...,m ,...,m)− −=
��	�
 ��	�
���	��

 [5.8]

From now on, the voice separation for a slice
i i 1i b b 1y (m ,...,m)

+ −= is

denoted by S(yi), and even just Si for simplicity. The vector Si is made up by the
voice and chord that the q-th note of slice yi belongs to:

 { } ()i ii i1 ip iq b q 1 b q 1S (s ,...,s) q 1,...,p : s voice(m),chord(m)+ − + −= ∀ ∈ = [5.9]

In Addition, the set of all possible combinations of S(yi) for a slice yi is
denoted by *

iS . Thus, any full voice separation S for the input is made up by
separations of slices yi so that S=(S1, …, Sn), where the set of all possible
combinations for S and a given input M is S*.

For a given slice yi, the number of possible combinations (size of set
*
iS) depends on the number of notes |yi| and on the maximum number of

voices in the desired output, say nVoices. In particular, when any subset of yi
can be combined into a chord, there are at least i|y |nVoices possible voice
separations. Therefore, the number of possible separations for M is exponential
in |M|. This means that the algorithm might be unfeasible for most of the
inputs. Therefore, a heuristic function is used in an iterative process that
constructs the voice separation based on a stochastic local search that
optimizes the partition.

The idea behind the algorithm is to construct a voice separation for M
based on local optimized separations for each slice. This optimization is based
on a cost function C assessing the quality of a separation Si given the previous
separations (S1,…,Si-1).

Listing 5.1 shows the outline of the algorithm for an unquantized
input. In case the input is quantized, the last two steps might be avoided.

procedure voiceSeparation(M, k)
 input:
 sorted list of notes M
 maximal number of voices k
 output:
 voice separation S
begin
 segment M into slices y1, ..., yn
 S := ();
 for i := 1 to n do
 Si := separateSlice(yi, S)
 S := S + Si
 eliminate overlaps within voices of S
 regularize chords where required
 end
end

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 97

Listing 5.1 Outline of the Kilian-Hoos algorithm for unquantized input data

5.2.3 The Cost Function

The cost function assessing the quality of a voice separation in slice Si
with previous separation 1 i 1S ,...S − is the weighted sum of several features:

i pitch pitch i gap gap i

chord chord i overlap overlap i

C(S ,S) K C (S ,S) K C (S ,S)
K C (S) K C (S ,S)

= + +

+ +
 [5.10]

where Cpitch penalizes large pitch intervals between successive notes, Cgap
penalizes large gaps (rests) between successive notes, Cchord penalizes large
pitch distances between the highest and the lowest note and Coverlap penalizes
overlap between successive notes in the same voice. On the other hand, Kpitch,
Kgap, Kchord and Koverlap are constants to fine tuning the result by giving different
weights to each feature.

Pitch Distance Penalty Cpitch

The pitch distance penalty increases with each interval between two
successive notes in the same voice, giving to the first one a fixed penalty for
starting a new voice. In some cases, like with melodies with short sequences of
large pitch intervals, a lookback mechanism can be used to calculate the pitch
interval not only with the last one, but with the last l notes on the voice.

In order to compare the pitch interval between a note mj and a pitch pl
a function cPitch(mj, pl) is defined so that it returns pitch(mj) in case mj does
not belong to a chord, and the pitch of the note within the chord closest in
pitch to pl otherwise.

j j

c c j
j l

k j j

k l c l

pitch(m) chord(m)
pitch(m) m chord(m)

cPitch(m ,p)
m chord(m) chord(m)

pitch(m) p pitch(m) p

¬∃⎧
⎪

∈⎪= ⎨
¬∃ ∈ ∃⎪

⎪ − < −⎩

[5.11]

Thus, if no lookback is used, the pitch distance among a voice v and a
pitch value pl is:

 ()l lcPitch(v,p) cPitch lOnset(v),p= [5.12]

where lOnset(v) is the note within v with the latest onset time:

 latest i i latestlOnset(v) m v m v : onset(m) onset(m)= ∈ ∀ ∈ ≤ [5.13]

Otherwise, if lookback is used, the algorithm in Listing 5.2 is used to
calculate the pitch distance value.

function cPitch(v, l, pj)
 input:
 voice index v

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 98

 lookback size l
 pitch pj of note j
 output:
 average pitch p of voice v for comparison to pj
begin
 prevNote := prev(lOnset(v), pj)
 p := cPitch(lOnset(v), pj)
 i := l
 while i ≤ l do
 p := 0.8 · p + 0.2 · cPitch(prevNote, pj)
 prevNote := prev(prevNote, pj)
 i := i + 1
 end
 return p
end

Listing 5.2 Pitch calculation for voice v with pitchlookback > 0

On that algorithm, function prev(mj, pl) returns the note directly
preceding mj within the same voice and not belonging to the same chord as mj.
In case the preceding figure is a chord, it will be returned the note within the
chord that is closest in pitch to pl. Constant values 0.8 and 0.2 were empirically
found by the authors as the best ones.

p j p j

k j p

p k j

c j j c

c jj l

k c

k l c l

k j k

m voice(m) onset(m) onset(m)
m voice(m) chord(m)

onset(m) onset(m) onset(m)
m voice(m) m chord(m)

onset(m) onset(m)prev(m ,p)
m chord(m)

pitch(m) p pitch(m) p
m voice(m) m

∈ < ∧

¬∃ ∈ ¬∃

< <

∈ ∉ ∧

< ∧=

¬∃ ∈

− < − ∧

¬∃ ∈ ∉

c

c

c k j

chord(m)

chord(m)
onset(m) onset(m) onset(m)

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪ ∃⎪
⎪

∧⎪
⎪ < <⎩

[5.14]

Therefore, the pitch distance penalty Cpitch for a voice v is calculated
as shown in Listing 5.3:

function Cpitch(Si, S, v)
 input:
 slice separation Si
 separation S for previous slices
 voice index v
 output:
 pitch distance pvD
begin
 mp := first note in yi // m de b de i
 prevNote := prev(mp, pitch(mp))
 pvD := 0
 foreach note mj in Si do
 if voice(mj) = v then
 pDist := |cPitch(prevNote, pitch(mj)) – pitch(mj)| / 128
 pvD := pvD + (1 – pvD) · pDist
 if chord(prevNote) ≠ chord(mj) then
 prevNote := mj
 end
 end
 end
 return pvD

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 99

end

Listing 5.3 Calculation of Cpitch for a single voice v in Si

and the final Cpitch function for a separation Si given the previous separations S
is shown in Listing 5.4:

function Cpitch(Si, S,)
 input:
 slice separation Si
 separation S for previous slices
 output:
 pitch distance penalty pD
begin
 pD := 0
 foreach voice v used in Si do
 pD := pD + (1 – pD) · Cpitch(Si, S, v)
 end
 return pD
end

Listing 5.4 Calculation of pitch distance penalty Cpitch for slice Si given previous separation S

Gap Distance Penalty Cgap

Some studies quoted in [Hoos, 2002] show that listeners prefer voices
with few and short distances, and this axiom is taken into account for the Cgap
function, as Listing 5.5 shows.

function Cgap(Si, S)
 input:
 slice separation Si
 separation S for previous slices
 output:
 gap distance penalty gD
begin
 gD := 0
 cNotes := 0
 foreach voice v used in Si do
 m := earliest note in Si with voice(m) = v
 gD := gD + cGap(m, v)
 cnotes := cnotes + 1
 end
 gD := gD / cnotes
 return gD
end

Listing 5.5 Calculation of gap distance penalty Cgap for slice Si given previous separations S

Therefore, a gap penalty arises whenever a note is added to a voice in
such a way that it introduces a gap. Moreover, the bigger the gap duration is,
the bigger the penalty is as well. In case a note starts a new voice, the gap
distance between it and the beginning of the composition m1 is also penalized.

Function Cgap(mi, v) among a note mi and a voice v penalizes the
appending of note mi to voice v by returning the gap distance introduced by mi
divided by the maximal gap length that mi would introduce to any voice,
returning thus a value between 0 and 1:

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 100

()
() { }

() ()

i
i

i max

i max i q

onset(m) offset lOnset(v)
Cgap(m ,v) q 1,...,nVoices :

onset(m) offset lOnset(v)

onset(m) offset lOnset(v) onset(m) offset lOnset(v)

−
= ∀ ∈

−

− ≥ −

 [5.15]

Chord Distance Penalty Cchord

When notes are combined within a chord, small ranges are preferred.
On the other hand, it would be expected that all notes belonging to a chord
have the same onset time and length in case of quantized data. Therefore, the
chord distance penalty increases with the range of a chord, durations of notes
and differences between onset times. Listing 5.6 outlines the steps of the
function.

function Cchord(Si)
 input:
 slice separation Si
 output:
 chord distance penalty cD
begin
 cD := 0
 foreach chord c in Si do
 p := pDuration(c) + (1 – pDuration(c)) · pRange(c)
 p := p + (1 – p) · pOnset(c)
 cD := cD + (1 – cD) · p
 end
 return cD
end

Listing 5.6 Calculation of chord distance penalty Cchord for slice Si

The range penalty pRange for a given chord c is defined as the
difference, in semitones, between the highest and the lowest notes in the
chord:

 { }
{ }

{ }

highest lowest

1 n

highest 1 n

lowest 1 n

p p
pRange(c) min ,1

24

c m ,...,m

p max pitch(m),...,pitch(m)

p min pitch(m),...,pitch(m)

−⎧ ⎫
= ⎨ ⎬

⎩ ⎭
= ∧

= ∧

=

 [5.16]

but in a range from 0 to 1, where ranges of more than two octaves receive the
same penalty.

Likewise, the pDuration penalty depends on the shortest and latest
notes in the chord c. Thus, the function returns a value from 0 to 1, where a
value of zero means that all durations are the same.

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 101

 { }
{ }
{ }

shortest

longest

1 n

shortest 1 n

longest 1 n

dpDuration(c) 1
d

c m ,...,m

d max duration(m),...,duration(m)

d min duration(m),...,duration(m)

= −

= ∧

= ∧

=

 [5.17]

Lately, the pOnset penalty depends on the earliest and latest notes in
c, as well as on the longest one. Thus, the function returns a value of 0 when
every note within c has the same onset time. Moreover, since every couple of
notes in c overlap, the penalty can never be greater than 1.

{ }
{ }
{ }
{ }

latest earliest

longest

1 n

latest 1 n

earliest 1 n

longest 1 n

o opOnset(c)
d

c m ,...,m
o max onset(m),...,onset(m)
o min onset(m),...,onset(m)
d max duration(m),...,duration(m)

−
=

= ∧

= ∧

= ∧

=

 [5.18]

With these three penalty functions, the chord distance penalty
calculates a value by combining them in such a way that if one of them is large,
the overall penalty will be large as well.

Overlap Distance Penalty Coverlap

Depending on the instrument used to play a certain performance, and
sometimes also on the style, there can be some overlaps among consecutive
notes within a voice (mainly in melodic lines) that can not be avoided with a
preprocessing phase. Moreover, in case of a not quantized performance, there
will arise, for sure, many overlaps that are not supposed to appear, and they
appear due to the fact that the performance is played by a human being.

Therefore, overlaps between notes that do not belong to the same
chord are allowed, and function Coverlap is introduced in order to penalize the
overlapping amount for a given separation Si:

function Coverlap(Si, S)
 input:
 slice separation Si
 separation S for previous slices
 output:
 overlap distance penalty oD
begin
 oD := 0
 foreach voice v used in Si do
 oDist := Coverlap(Si, S, v)
 oD := oD + (1 – oD) · oDist
 end
 return oD
end

Listing 5.7 Calculation of overlap distance penalty Coverlap for slice Si given previous separations S

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 102

and delegates on t he following function to compute the overlap penalty for a
given voice:

function Coverlap(Si, S, v)
 input:
 slice separation Si
 separation S for previous slices
 voice v
 output:
 overlap distance penalty ovD
begin
 prevNote := lOnset (v)
 ovD := 0
 foreach note mj in yi do
 if voice(mj) = v then
 oDist := Coverlap(prevNote, mj)
 ovD := ovD + (1 – ovD) · oDist
 if chord(mj) ≠ chord(prevNote) then
 prevNote := mj
 end
 end
 end
 return ovD
end

Listing 5.8 Calculation of overlap distance penalty for a single voice

Thus, a new function Coverlap will return the overlap distance between
two successive notes in the following way:

k j

j k
joverlap j k

j k

onset(m) onset(m)
1 overlap(m ,m)

duration(m)C (m ,m)
0 overlap(m ,m)

−⎧
−⎪= ⎨

⎪ ¬⎩

 [5.19]

returning a value between 0 and 1 as well.

5.2.4 Cost-Optimized Slice Separation

Based on the cost function defined in formula 5.10, and given a
separation of slices S=y1, ..., yi-1, a stochastic local search is used to find out
the optimal voice separation Si for slice yi.

Starting with an initial separation 0
i iS : S= , a randomized iterative

process tries to find out the best separation by assigning a note to a different
voice, storing the combination that minimizes the cost function. This process is
limited to a fixed number of θ steps:

 i3· y ·nVoicesθ = [5.20]

As listing 5.9 shows, the algorithm begins with an initial separation 0
iS ,

where every note of yi is assigned to the first voice, grouping into chords those
notes with equal onset times. Then, the algorithm moves to a neighbor
separation, understanding iS and iS ' as neighbor separations if they are valid
and differ in the voice and/or chord assignment of exactly one note. A
separation is considered as valid if and only if any notes with identical onset
times within the same voice are combined into a chord.

Modeling and Indexing Musical Files to allow Music Reuse
General Requirements Analysis and First Solutions Voice Constraints

 page 103

function separateSlice(yi, S)
 input:
 slice yi
 separations S for previous slices
 output:
 optimized selection Siopt
begin
 obtain Si by setting all notes of yi to voice 0 and
 combining all notes with equal onset times into chords
 Siopt := Si
 noImpr := 0
 while noImpr < |yi| · nVoices · 3 do
 with probability 0.8 do
 Si := neighbour Si’ of Si with minimal cost C(S’, S)
 otherwise
 Si := randomly selected neighbour of Si
 end
 if C(Si, S) < C(Siopt, S) then
 Siopt := Si
 noImpr := 0
 else
 noImpr := noImpr + 1
 end
 end
 return Siopt
end

Listing 5.9 Randomized iterative algorithm for finding a cost-optimized separation of slice yi

The actual next step is chosen randomly: with a fixed probability of
0.8 (chosen by the authors as the best for empirical results) the neighbor
separation with minimal cost is selected; otherwise, a random neighbor
separation is used. That way, the search process will not get stuck into local
minima of the cost function.

Part VIII:
The Mathematical Approach

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Introduction

 page 105

1 Introduction

This part of the document provides a detailed description of the
mathematical approach that is finally applied to the system. In particular, the
mathematics subfield of numerical analysis is used to model the musical files as
functions that define curves in several dimensions. After this modeling is
performed, the curve is split into several pieces that will later correspond to
relationships between artifacts.

The main advantage of this solution is that it is efficient and solves all
the general requirements shown in Section 3 of the document’s Part VI.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Preliminaries

 page 106

2 Preliminaries

Some initial work must be done upon the input sequence of notes
before applying the mathematical model to it. This section explains this
process.

2.1 Domain Normalization

The first step in this approach is to distribute notes within a single
staff maintaining a distance between two successive notes that is a multiple of
the minimum considered duration for a single note. For instance, if the shortest
note is a demisemiquaver, a distance of length 1 unit can be considered as the
minimum distance for convenience.

Therefore, the following staff in Figure 2.1

Figure 2.1 Note distribution (part I)

will distribute its notes as Figure 2.2 depicts, where every gap between two
successive dashed lines has a length of 1 unit (i. e. a demisemiquaver).

Figure 2.2 Note distribution (part II)

Thus, a crotchet will have a separation of length 8 units with its
following note, and a quaver will have a separation of 4 units.

The next step, once the time-dimension is normalized, is to normalize
the pitch-dimension. To do so, the pitch range will be considered as [0, 127],
since the MIDI specification allows only 128 possible values for a note’s pitch.
Using a musical notation, these values range from C0 until G10.

It is important to note that in this new representation system,
accidentals are not needed, since two notes that share the same height are

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Preliminaries

 page 107

commited to have the same pitch. Therefore, if a certain note has a height h,
its sharp note will have height h+1, whilst the flat note will have h-1.

Figure 2.3 depicts the same performance in Figure 2.1, but with
normalized time and pitch dimensions. Note also that every note is depicted
with a filled circle, avoiding stems and whatever the characteristic that might
make it different. Moreover, barlines are removed since the time signature is
no longer useful.

Figure 2.3 Note distribution (part III)

Now that the performance is normalized, an analytical process starts
so that the whole piece can be specified by a mathematical function.

2.2 Music As a Mathematical Function

The main point of this mathematical approach is to consider every
piece as a function iC (t) that defines a curve mapping positions in time with
the corresponding pitch values.

 []iC : 0,127→\ [2.1]

The best way to obtain this function is to interpolate the points
generated after the normalization phase, but distinguishing among voices. For
instance, in Figure 2.3 there appear two different voices. Considering that the
performance starts at t=0, the set of interpolating points ()i it ,p for the lower
voice is:

 () () () () () () () (){ }0,49 , 4,56 , 8,61 , 12,64 , 16,49 , 20,56 , 24,61 , 28,64 [2.2]

From this set of points, it can be defined a function 2C (t) as the
interpolating function of that set, which defines the curve that shapes the
pitch variation, as the time changes, for the second voice.

From now on, only pieces with a single voice will be considered for
simplicity. The case of a piece with several voices will be treated later on, in
Section 12 with more detail.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Comparing Musical Pieces Described as Mathematical Functions

 page 108

3 Comparing Musical Pieces Described
as Mathematical Functions

Now that every musical piece is defined as a function C(t) over time, a
way to compare two of them must be elaborated. Let us imagine, for instance,
that the following two pieces in Figure 3.1 have to be compared.

Figure 3.1 Comparison among musical functions

It is pretty clear that both curves has the same shape and, therefore,
that they are exactly the same musical piece. However, the only difference
among them is that the green one is shifted 2 pitch units downwards (2
semitones). Therefore, if the blue curve represents a piece in the tonality of D,
the green one represents the same piece but in the tonality of C. Thus, if both
curves are described as a polynomial like

n

n n 1 i
n n 1 1 0 i

i 0
C(t) a t a t a t a a t−

−
=

= + + + + = ∑… [3.1]

the only difference between them is the constant 0a that actually defines the
height difference. Hence, a good transformation that might be done to every
function C(t) is to utilize its first derivative, throwing the original away. Doing
so, the blue and green curves in Figure 3.1 will have the same first derivatives,
so that the comparison can be done easily and accurately.

Therefore, the previous musical performances will be treated as Figure
3.2 depicts, where it is clear that both functions are exactly the same, even
with the same eight.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Comparing Musical Pieces Described as Mathematical Functions

 page 109

Figure 3.2 Comparison among first derivatives

It is important to note that, even thought deriving the original
function, no loss of information arises. Indeed, the only loss is the function’s
pitch eight, which is useless as seen before. If the derivative function C'(t) is
integrated, we obtain the original function C(t) plus an integration constant,
say intK , which actually measures the tonality difference and can, therefore, be
ignored:

() n 1 n 2
n n 1 2 1

int

d C'(t)
C'(t) na t (n 1)a t 2a t a

dt
C'(t)dt C(t) K

− −
−= = + − + + +

= +

…

n n 1 2
n n 1 2 1 inta t a t a t a t K−

−= + + + + +∫ …
 [3.2]

3.2 Vertical Comparison

Due to the decision of comparing the first derivatives instead of the
original functions, every vertical constraint defined in Section 3 of the User
Requirements Definition is fulfilled.

First of all, the Octave Equality problem is not a situation because of
the use of the first derivative. The integration constant that represents the
pitch difference, would be a multiple of 12 in the case of the Octave Equality,
since a whole octave has 12 semitones. Thus, since this constant is not taken
into account, the problem is not such anymore.

The Grade Equality problem is not an issue anymore because it is the
same case as the Octave Equality problem where the integration constant can
have whatever the value.

About the Note Equality problem, the initial solution given before was
to consider pitch differences between two successive notes instead of their
actual pitch values. And this is just the idea behind the first derivative of a
function. While in a first approach there were considered entire pitch
differences such as +4, 0 or -2, the first derivative leads us to a better and

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Comparing Musical Pieces Described as Mathematical Functions

 page 110

more accurate comparison with real numbers that, moreover, depends not only
on the two successive notes, but also on the adjacent ones. This is an
important characteristic that will be discussed later on, in the Part IX.

3.3 Horizontal Comparison

Due to the time-dimension normalization time signatures are not
considered once the interpolation phase is achieved, so that the Time Signature
Equivalence problem is not an issue.

Both the Figure Equality and the Tempo Equality problem need more
considerations in this mathematical model if we want to solve them. The way
to compare two melodies that share the same pitch progression but differ in
the time-dimension is simply by applying a linear transformation to the curves
so that they coincide. For instance, the melody in Figure 3.3 (actually it is
already a first derivative), is the same as the one in Figure 3.2 but with a
difference in the time-dimension.

Figure 3.3 Differences in the time-dimension (part I)

If the curve in Figure 3.2 is denoted as C'(t) and the one above in
Figure 3.3 is named D'(t) , we can indeed say that the following equality is
true:

tD '(t) C '()
2

= [3.2]

That is to say that if two melodies are alike but differ in the time-
dimension, it can be applied a transformation upon the variable t so that, at
the end, both melodies will be exactly the same and the comparison should be
trivial.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Comparing Musical Pieces Described as Mathematical Functions

 page 111

3.4 Piecewise Comparison

Previous section showed us how to compare two identical melodies
that suffer the Figure Equality or the Tempo Equality problem. Simply by
applying a transformation to the time-dimension we can have identical copies.

However, the same method can not be used with the Partial Equality
problem, since a transformation to the time-dimension will modify the whole
curve and, hence, the comparison will not be feasible. In order to cope with
this problem, the initial approach outlined in Section 4 of the document’s Part
VII is now considered again.

The idea behind the final approach is to split the curve in pieces that
start and end exactly in the point where a note starts or ends. That is to say
that whenever a note starts (its onset time) the curve is split in that point and
will be split again whenever the note ends (its offset time). By doing so, we will
have at the end a piecewise curve where we will be able to apply a linear
transformation like before but piece to piece.

Figure 3.4 Piecewise comparison

Therefore, the curve C(t) and hence its first derivative C'(t) will be a
piecewise function defined by intervals. Thus, given a melody defined by a set
of notes ordered by onset time

 { }0 1 l i i 1M (m ,m ,...,m) i 0,...,l 1 : onset(m) onset(m)+= ∀ ∈ − < [3.4]

a function, say ic (t) is defined for each interval []i i 1onset(m),onset(m)+ , so that

the final curve is defined as:

0 0 1

1 1 2

l 1 l 1 l

c (t) t t t
c (t) t t t

C(t)

c (t) t t t− −

≤ ≤⎧
⎪ ≤ ≤⎪= ⎨
⎪
⎪ ≤ ≤⎩

#
 [3.5]

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Comparing Musical Pieces Described as Mathematical Functions

 page 112

where i it : onset(m)= , notation that will be used from now on for simplicity.

Now, with this piecewise function, we can shrink or stretch each piece
by multiplying or dividing the variable t by a certain number so that we can
have identical copies for each piece to compare.

Of course, there can be applied some penalizations each time a
transformation is needed in the time-dimension so that, at the end, the
comparison will not provide a distance of 0 since the melodies are not the same
actually.

3.5 How to Perform the Actual Comparison

Let us imagine that we are about to compare two pieces ic ' (t) and

id' (t) as Figure 3.5 depicts. The best way to compare them is by calculating the
area between them in the interval, which corresponds with the filled area in
grey between the curves.

Figure 3.5 Comparing areas

Thus, the area between both curves, in the interval
[]i i 1onset(m),onset(m)+ is defined as Δ :

i 1

i

t

i i
t

c ' (t) d' (t) dt
+

Δ = −∫ [3.6]

Since this way to calculate the difference between the curves can lead
us to a huge range of possible values, the best to do is to normalize that error
in such a way that is proportional to the curves being compared. A good
approach is to divide that error by the maximum area defined by the curves:

i 1

i

i 1 i 1

i i

t

i i
t

t t

i i
t t

c ' (t) d' (t) dt

max c ' (t) dt, d' (t) dt

+

+ +

−

Δ =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∫

∫ ∫
 [3.7]

Moreover, with this division the error will be in the range [0,1] which is
the range that the CAKE Engine uses to quantify semantic distances.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Basic Polynomial Interpolation

 page 113

4 Basic Polynomial Interpolation

The most typical way to interpolate a set of l 1+ points in 2\ is to use
the Lagrange Interpolating Polynomial of degree l or less:

0 0 l l

j
i

0 j l i j
j i

C(t) q (t)p ... q (t)p where
t t

q (t) :
t t≤ ≤

≠

= + +
−

=
−∏ [4.1]

where i ip : pitch(m)= , notation that will be used from now on for simplicity.

The best way to obtain the solution is to solve the following l 1+
equations put in matrix-form and that make up a linear system that has exactly
a unique solution:

l l 1
0 0 0 l 0
l l 1

l 1 11 1 1

l l 1
0 ll l l

t t t 1 a p
a pt t t 1

a pt t t 1

−

−
−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

"
"

% #
"

 [4.2]

The main characteristic of this interpolation method is that the
generated curve passes through the interpolating points (the notes). On the
other hand, it generates a polynomial of degree l for a given input of l 1+
notes. It is pretty obvious that this interpolating method is not feasible if we
want to compare curves by the area between them as seen on Section 3.5,
since it involves to solve a equation of degree l .

Since nowadays there are known direct formulas to calculate the roots
of polynomials with a degree up to four, a new method is needed. An
approximation method such as the Bisection method or the Newton one might
be used. However, this will lead as to an efficiency penalization because this
comparison must be done tons of times.

4.1 The Runge’s Phenomenon

A drawback of this common interpolation method is that the curve
oscillates a lot as long as the number of points, and hence the degree of the
polynomial, increases. This is called the Runge’s Phenomenon and the main
disadvantage is not only that the curve oscillates, but that it does it in such an
unpredictable way that the comparison will not make any sense.

For instance, Figure 4.1 shows two melodies that differ only in the
pitch of 3 notes (marked up with a red circle). We can see how the
interpolating curves differ a lot and how the area between both them increases
a lot.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Basic Polynomial Interpolation

 page 114

Figure 4.1 The Runge’s Phenomenon (part I)

On Figure 4.2 the corresponding first derivatives of the curves above
are depicted. These are the actual curves that are going to be compared, and
we can see that the result that this comparison would lead to is not good
enough. Indeed, we can see how the curves have a huge value for the
derivative in the boundaries.

Figure 4.2 The Runge’s Phenomenon (part II)

Moreover, we can see how by changing a single note the whole curve
will change to some extent. Of course, this is an effect that should be avoided
because a change in a single note might mess up the whole comparison.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Spline Interpolation

 page 115

5 Spline Interpolation

The most feasible solution to the Runge’s phenomenon is to
interpolate using splines instead of interpolating polynomials such as the
Langrage’s one.

At a glance, a spline function is a piecewise interpolating function that
is defined with a single function for each interval between two points. On the
other hand, the basic polynomial interpolation defined a unique function for
the whole set of points. However, now with this interpolation method the curve
is already split into pieces as we wanted from Section 3.4.

As the spline function is piecewise it offers a much more close
approximation to the points and is much smoother. Another advantage upon the
basic interpolation is that the degree of the polynomials that define the curve
can be chosen so that it does not have a certain value depending on the
number of points. Indeed, the most typical case is to utilize polynomials of
degree 3, so that the final curve is so smooth that its second derivative is
continuous in the whole domain. Therefore, since the curve is 2C it implies
that it is also curvature continuous.

5.1 Cubic Splines

The most typical case of spline interpolation is the cubic spline, which
uses polynomials of degree 3. The same example as in Figure 4.1 is depicted in
Figure 5.1 but using cubic splines.

Figure 5.1 Cubic splines

We can see how both curves follow the points much more accurately
than with a Lagrange interpolation. Indeed, the curve seems to change only in
the interval close to the point where a single note is changed (circled in red).
However, even thought it seems so the curve changes everywhere. The
difference is obviously bigger in that points, but changes all along the curve.
Thus, a change in a single note will change the whole curve since the whole
curve depends on all the interpolating points (the actual notes).

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Spline Interpolation

 page 116

5.2 Choosing a Cubic Spline

There are a few different kinds of cubic spline curves, depending on
the conditions that the spline must comply with. Starting with the same
musical input as before

 { }0 1 l i i 1M (m ,m ,...,m) i 0,...,l 1 : onset(m) onset(m)+= ∀ ∈ − < [5.1]

we are about to define a spline curve that is defined in intervals as before:

0 0 1

1 1 2

l 1 l 1 l

c (t) t t t
c (t) t t t

C(t)

c (t) t t t− −

≤ ≤⎧
⎪ ≤ ≤⎪= ⎨
⎪
⎪ ≤ ≤⎩

#
 [5.2]

In this particular case, we agree that i 3c (t)∈P , where k�P is the linear
space of polynomials of degree k . Each of these polynomial pieces must satisfy
the following conditions:

i i i

i i 1 i 1

i i i

i i 1 i 1

c (t) p
c (t) p
c ' (t) s
c ' (t) s

+ +

+ +

=
=
=
=

 [5.3]

where the slopes is are free parameters. Thus, the curve passes through the
interpolating points and its first derivative agree at these points regardless of
the value for the slopes.

In order to compute the coefficients for the i-th polynomial the
Newton form is used:

 []3 2
i i i i i i i i i i 1c (t) a (t t) b (t t) c (t t) d : t t , t += − + − + − + ∀ ∈ [5.4]

Since there are l polynomials, each of them with 4 parameters, we
need 4l independent conditions to find them. We have 2l conditions since the
curve passes through the points: i i i i i 1 i 1c (t) p c (t) p+ += ∧ = (conditions 1 and 2 in
[5.3]). Moreover, with the third and fourth conditions in [5.3] we can force
another 2l 2− conditions since i i i 1 ic ' (t) c ' (t)−= .

Therefore, we have 2l 2l 2 4l 2+ − = − conditions and two more are
needed. Spline kinds such as the Hermite spline, Bessel spline, Akima’s spline
or the Clamped spline are not valid since all of them need the values for the
slopes. These kinds of splines are used mainly for approximating a non-
polynomial function, and hence the slopes can be known by deriving it, but not
in our case.

On the other hand, the most common cubic spline is called natural and
can be defined with the following two restrictions needed to have the 4l

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Spline Interpolation

 page 117

conditions: 0 0 l 1 lc '' (t) 0 c '' (t) 0−= ∧ = . A trivial linear system can be made to
solve the 4l coefficients and be solved very efficiently.

After all, what we have is a cubic spline defined with l polynomials of
degree 3. Moreover, the first derivative is continuous so that we can compare
melodies by calculating the area among them. In addition, the second
derivative is continuous, what makes the first one smooth. Thus, the first
derivative will not have huge variations and will be more accurate.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Coping with Chords

 page 118

6 Coping with Chords

As seen in the User Requirements Definition, one of the most desired
features of the system is the capability to compare chords. However, with the
current approximation by interpolating curves it is not feasible to compare
chords since at a given point on time only one note can be defined. That is to
say that the current model does allow melodic intervals, but not harmonic
ones.

As we saw with the General Requirements, the idea behind chords is
that there might be different possible paths to go from one note to another by
crossing the chords’ notes. For instance, let us consider the linear interpolation
in Figure 6.1 where some random chords are inserted in a melodic line.

Figure 6.1 Paths through chords

The desired comparison should be able to recognize each of those
paths across the chords. Moreover, it should allow not only a single path
through all the chords, but also a set of them. For instance, a query may be the
green path adegik or the red one cdfhjk .

However, a better one would contain the green and the red ones. The
point here is that, if the green and the red paths are provided, the segments in
yellow can be inferred. Actually, what is provided is not the set of paths but
the actual notes. Therefore, we could have said that the green path would be
adehik and that the red one would be cdfgjk . Thus, since all these
combinations could be possible, all of them should be considered.

This example shows the basic idea with the chord comparison, but it
has been seen with linear interpolation (splines of degree 1). Since the degree
of the interpolating splines will probably be 3, we will come back to this issue
later on since the general case is more complex.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Parametric Curves

 page 119

7 Parametric Curves

So far, every interpolating method was of the form C(t) : →\ \ , but
for the next interpolating methods the curve will not be defined in that way.
On the other hand, it will be defined as a parametric curve. In essence, a
parametric function is defined as

 [] () n
1 2 nC(u) : 0,1 C (u),C (u),...,C (u)→ ∈\ [7.1]

Therefore, C(u) maps a value in the interval []0,1 to a point in the

space n\ . Actually, the parameter u can be evaluated in whatever the
interval, but for convenience it is always evaluated between 0 and 1.

Thus, if we want a parametric curve to interpolate the notes in the
pitch-time plane, it will have the following form:

 [] () 2C(u) : 0,1 time(u),pitch(u)→ ∈\ [7.2]

This kind of functions is mostly used for curves defined in a three
dimensional space. For instance, if we define the following parametric curve:

 () []2 3C(u) : u,u ,u u 1,1= ∈ − [7.3]

in the interval []1,1− we will have a curve defined in the space, in a box from

point ()1,0, 1− − to point ()1,1,1 , as Figure 7.1 depicts.

Figure 7.1 Parametric curves

Therefore, a parametric curve defines actually n functions, one per
dimension. The only point is the domain for u , since an approximation method
should be used to obtain the point in space that corresponds to a certain value
in a certain axis. This makes some problems arise, but they will be avoided
thanks to another solution that will be discussed later on.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Bézier Curves

 page 120

8 Bézier Curves

Another type of spline interpolation, which will give us some
interesting properties, is the Bézier curves. These curves will give us the basic
ideas for the final interpolating spline used in the system since they are based
on the Bézier curves and hence share their properties besides some others.

8.1 Definition

Given l 1+ notes 0 1 lm ,m ,...,m , called the control points, the Bézier
curve defined y these control points is

l

l,i i
i 0

C(u) B (u)·m
=

= ∑ [8.1]

where the coefficients, known as Bézier basis functions or Bernstein
polynomials, are calculated as follows:

 i l i
l,i

l!B (u) u (1 u)
i!(l i)!

−= −
−

 [8.2]

The variable u is evaluated within the interval [0,1] and therefore all
basis functions are non-negative. It is important to note that the curve is
defined as parametric, since the multiplication by each point im results in two
functions: one for the time-component and another one for the pitch-
component of the plane.

In Figure 8.1 a Bézier curve with 11 control points is depicted in blue.
The red polygon is called the control polygon or control polyline, depending on
the literature, and it connects all the control points. In addition, the green
circle marks the point in the curve that corresponds to u 0.4= .

Figure 8.1 Bézier curves

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Bézier Curves

 page 121

8.2 Properties

Bézier curves have some interesting properties that we must consider
before starting the interpolation phase:

• The degree of a Bézier curve defined by l 1+ control points is l .

• C(u) passes through 0m and lm .

• Non-negativity: all basis functions are non-negative.

• Partition of unity: the sum of all basis functions at a fixed u is 1.
Figure 8.2 shows a typical distribution for basis functions (in this
case with 5 control points). According to [8.1] each of these
functions is multiplied by the corresponding point so that the sum
leads to the actual point for the curve.

Figure 8.2 Bézier basis functions

• Convex hull: the Bézier curve lies completely in the convex hull of
the given control points. This convex hull is actually the area
contained within the outer points of the control polygon. Thus, in
Figure 8.3 appears the same curve as Figure 8.1 depicted, and due
to this property the curve lies completely in the grey area.

Figure 8.3 The convex hull property

• Variation diminishing: if the curve is in a plane, this means that no
straight line intersects the curve more times than it intersects the
curve’s control polyline. For instance, in Figure 8.4 the blue Bézier
curve is not right because the green straight line intersects it four
times and only 2 times the control polyline.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Bézier Curves

 page 122

Figure 8.4 The variation diminishing property

• Affine invariance: if an affine transformation is applied to a Bézier
curve, the resulting curve can be constructed from the affine images
of its control points. Thus, since a linear translation of the time-
dimension is needed in order to compare spans, this property assures
that the curve will not change its shape with different span lengths
an note durations. Indeed, the pitch component of the curve does
not change as long as the notes have the same pitch.

All there properties, besides some others unique for the B-Splines, will
help us to solve the General Requirements and will also lead us to a final
mathematical model that solves the whole music information retrieval issue.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach B-Splines

 page 123

9 B-Splines

Bézier basis functions were used as weights for the construction of
Bézier curves. In the case of a B-Spline, there are also basis functions used in
the same way, but they are much more complex: the domain is subdivided by
knots and each basis functions is non-zero on a few adjacent intervals so that
B-Spline basis functions are quite local.

9.1 Definition

Let U be a set of l 1+ non-decreasing numbers 0 1 lu u ... u≤ ≤ ≤ . The

iu ' s are called knots and the set U is called the knot vector, whilst the half-

open interval [)i i 1u ,u + the i-th knot span. In our case, we are going to consider

that the sequence is monotone increasing so that 0 1 lu u ... u< < < and every knot
is called a simple knot.

These knots can be considered as division points that subdivide the
interval []0 lu ,u into knot spans. Even though the domain can be chosen like it

was in the Bézier curves, for convenience the interval []0,1 is chosen as the

domain for u .

Another characteristic of the B-Spline basis functions is that they can
have whatever the degree, say p , so that each basis function is defined with
the Cox-de Boor recursion formula:

i i 1
i,0

i p 1i
i,p i,p 1 i 1,p 1

i p i i p 1 i 1

1 u u u
N (u)

0 otherwise
u uu uN (u) N (u) N (u)

u u u u

+

+ +
− + −

+ + + +

≤ ≤⎧= ⎨
⎩

−−
= +

− −

 [9.1]

Therefore, if we consider the knot vector ()U 0,0.25,0.5,0.75,1= , we

know that each i,0N (u) will be 1 in [)i i 1u ,u + , so that the basis functions will be

as Figure 9.1 depicts and Table 9.1 shows.

Basis Function Span Equation

0,0N (u) [)0,0.25 1

1,0N (u) [)0.25,0.5 1

2,0N (u) [)0.5,0.75 1

3,0N (u) [)0.75,1 1

Table 9.1 Degree 0 B-Spline basis functions

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach B-Splines

 page 124

Figure 9.1 Degree 0 B-Spline basis functions

The following shows the equations for the degree 1 basis functions.

Basis Function Span Equation
[)0,0.25 4u

0,1N (u)
[)0.25,0.5 2 4u−

[)0.25,0.5 4u 1−
1,1N (u)

[)0.5,0.75 3 4u−

[)0.5,0.75 4u 2−
2,1N (u)

[)0.75,1 4 4u−

Table 9.2 Degree 1 B-Spline basis functions

which are depicted in Figure 9.2:

Figure 9.2 Degree 1 B-Spline basis functions

In order to calculate the degree 2 functions, we only need to follow
the recursion formula in [9.1] with the equations already calculated in Table
9.2. This leads us to the following equations for the degree 2:

Basis Function Span Equation
[)0,0.25 28u

[)0.25,0.5 216u 12u 1.5− + − 0,2N (u)

[)0.5,0.75 28u 12u 4.5− +

[)0.25,0.5 28u 4u 0.5− +

[)0.5,0.75 216u 20u 5.5− + − 1,2N (u)

[)0.75,0.1 28u 16u 8− +

Table 9.3 Degree 2 B-Spline basis functions

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach B-Splines

 page 125

Each of these functions is defined in three knot spans as we can see in
Figure 9.3:

Figure 9.3 Degree 2 B-Spline basis functions

Once the basic functions are calculated, the B-Spline curve is defined
pretty similarly to the Bézier curves:

l

i,p i
i 0

C(u) N (u)m
=

= ∑ [9.2]

where p is de degree for the polynomials. Unlike a Bézier curve, a B-Spline
involves more information: a set of k 1+ knots and a degree p . However, these
parameters must satisfy the following:

 k l p 1= + + [9.3]

That is to say that, if we want a B-Spline curve of degree 3 with 10
control points, we must provide 14 knots that will give us 13 knot spans. This is
the case, for instance, of the curve depicted in Figure 9.4:

Figure 9.4 B-Spline curves

9.2 Properties

B-Spline curves share many important properties with Bézier curves,
because the former is a generalization of the later. In addition, B-Spline curves
have unique properties that make them the most suitable for our purposes.

• A B-Spline is a piecewise curve with each component a curve of
degree p . This allows us to design complex shapes with lower
degree polynomials since the curve approximates to the control
polyline as the degree decreases.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach B-Splines

 page 126

• The equality k l p 1= + + must be satisfied.

• Strong convex hull: the same property of the convex hull is present
in B-Splines but even stronger. If a point is defined for a given u in
knot span [)i i 1u ,u + , then the point will be in the hull made up by

control points i i 1 i pm ,m ,...,m− − .

Figure 9.5 Strong convex hull property

• Affine invariance: the same property of the Bézier curves appears
with B-Splines.

• Local modification scheme: changing the position of a control point

im only affects the curve on the interval)i i p 1u ,u + +⎡⎣ . Since every

basis function i,pN (u) is non-zero only on interval)i i p 1u ,u + +⎡⎣ , changing

its corresponding control point will change only that interval. This
means that if we change a note, the curve will change only in an
interval close to it. Moreover, this interval is deterministic.
In the figure below, the control point number 5 is changed and we
can see how the curve changes only in its proximity.

Figure 9.6 Local modification scheme

• C(u) is p hC − continuous at a knot of multiplicity h . If u is not a
knot, the curve is infinitely differentiable at that point because it is
a polynomial of degree p .

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach B-Splines

 page 127

• Variation diminishing: if the curve is in a plane, this means that no
straight line intersects the curve more times than it intersects the
curve’s control polyline.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Uniform B-Splines

 page 128

10 Uniform B-Splines

When the knot vector of a B-Spline contains knots that are equidistant,
the B-Spline is called uniform because every knot span has the same length.
This means that the basis functions i,pN (u) are all translates of a single blending

function pN (u) where

 i,p pN (u) N (u i)= − [10.1]

This blending function can be defined by convolution of blending
functions of lower degree and assuming a fixed span length, say 1.

10.1 The Blending Function

The uniform B-Spline blending function of degree p is defined
recursively by:

()

i i 1
0

p p 1 0

1 u u u
N (u)

0 otherwise
N (u) N N (u)

+

−

≤ ≤⎧= ⎨
⎩

= ∗
 [10.2]

This convolution can be seen to be the integral

 ()
u

p p 1 0 p 1 0 p 1
u 1

N (u) N N (u) N (x)N (u x)dx N (x)dx
∞

− − −
−∞ −

= ∗ = − =∫ ∫ [10.3]

Thus, to obtain the blending function of degree 1, we have to
calculate this defined integral as

u

1 0
u 1

N (u) N (x)dx
−

= ∫ [10.4]

and evaluate it by intervals. The two possible intervals are depicted in Figure
10.1, where every interval has a length of 1.

Figure 10.1 Degree 1 blending function integration intervals

Therefore, the blending function is defined in two intervals, and the
equations are solved by solving both integrals.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Uniform B-Splines

 page 129

u

0
1 1

u 1

dx 0 u 1
N (u)

dx 1 u 2

t 0 u 1
2 t 1 u 2

−

⎧
≤ ≤⎪

⎪= ⎨
⎪ ≤ ≤⎪⎩

≤ ≤⎧= ⎨ − ≤ ≤⎩

∫

∫ [10.5]

The blending function is quite the same as the ones in Figure 9.2:

Figure 10.2 Degree 1 blending function

Now that we have the blending function of degree 1, we can apply the
same formulas and obtain the degree 2 blending function. The intervals are:

Figure 10.3 Degree 2 blending function integration intervals

and hence, the blending function is calculated as:

u

0
1 u

2
u 1 1
2

u 1

2

2

2

xdx 0 u 1

N (u) xdx 2 xdx 1 u 2

2 xdx 2 u 3

u 0 u 1
2
2u 6u 3 1 u 2

2
u 6u 9 2 u 3

2

−

−

⎧
≤ ≤⎪

⎪
⎪⎪= + − ≤ ≤⎨
⎪
⎪
⎪ − ≤ ≤
⎪⎩
⎧

≤ ≤⎪
⎪

− +⎪= − ≤ ≤⎨
⎪
⎪ − +

≤ ≤⎪
⎩

∫

∫ ∫

∫
 [10.6]

These equations lead us to a blending function that is, once again, the
same function in essence as the one seen before in Figure 9.3:

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Uniform B-Splines

 page 130

Figure 10.4 Degree 2 blending function

If we want blending functions of a higher order, we only have to keep
on going with the convolutions. For instance, if we continue until a degree 3
(which will be the one used in the system), we have the following blending
function:

u 2

0
1 u2 2

u 1 1
3 2 u2 2

u 1 2
3 2

u 1

3

3 2

3 2

3 2

x dx 0 u 1
2

x 2x 6x 3dx dx 1 u 2
2 2

N (u)
2x 6x 3 x 6x 9dx dx 2 u 3

2 2

x 6x 9 dx 3 u 4
2

u 0 u 1
6
3u 12u 12u 4 1 u 2

6
3u 24u 60u 44 2 u 3

6
u 12u 48u 64 3 u 4

6

−

−

−

⎧
≤ ≤⎪

⎪
⎪ − +⎪ + − ≤ ≤
⎪= ⎨

− + − +⎪ − + ≤ ≤⎪
⎪
⎪ − +

≤ ≤⎪
⎩
⎧

≤ ≤⎪
⎪

− + −⎪− ≤ ≤⎪⎪= ⎨
− + −⎪ ≤ ≤

− + −
− ≤ ≤
⎩

∫

∫ ∫

∫ ∫

∫

⎪
⎪
⎪
⎪

 [10.7]

The point now is that each of these functions must be translated so
that they are evaluated in the interval []0,1 . For instance, the second equation

is evaluated in []1,2 , but it should be in []0,1 , so that the equation is

translated to the left by changing the variable u for u 1+ :

3 2 3 23(u 1) 12(u 1) 12(u 1) 4 3u 3u 3u 1

6 6
+ − + + + − − − −

− = − [10.8]

Thus, the third and fourth equations would be

3 2 3 2

3 2 3 2

3(u 2) 24(u 2) 60(u 2) 44 3u 6u 4
6 6

(u 3) 12(u 3) 48(u 3) 64 u 3u 3u 1
6 6

+ − + + + − − +
=

+ − + + + − − + −
− = −

 [10.9]

Later on, multiplying each of them by its corresponding control point
and then calculating the sum, we have the parametric function that represents

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Uniform B-Splines

 page 131

the curve in the given interval. This function is usually put in matrix form with
the blending functions and the fixed set of points that define the interval:

 []
i 1

3 2 i
i

i 1

i 2

m1 3 3 1
m3 6 3 01c (u) u u u 1 u 0,1

m3 0 3 06
m1 4 1 0

−

+

+

− − ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎡ ⎤= ∈⎣ ⎦ − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 [10.10]

It is important to note that each piece of the uniform B-Spline is
evaluated between 0 and 1 and there is no global domain for the whole curve.
Thus, each basis function is defined there and, once again, the sum of all them
is equals to 1 in the whole interval []0,1 , so that each of them is a weight for

each control point. As Figure 8.2, they are depicted in Figure 10.5:

Figure 10.5 Degree 3 uniform B-Spline basis functions

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Why Degree 3 Uniform B-Splines

 page 132

11 Why Degree 3 Uniform B-Splines

So far, we have seen many interpolating methods with many
interesting properties for the music information retrieval. Afterwards, the
chosen method uses degree 3 uniform B-Splines for some reasons that are
discussed from now on.

• Since it is a spline curve, it does not suffer of the Runge’s
phenomenon, so that the curve will not oscillate between points.

• Moreover, it has the variation diminishing property, so that the
oscillation between points is minimal.

• A B-Spline is a piecewise curve, so that the curve is already split into
pieces between control points. These pieces will be the basic
information unit for RSHPs. A discussion about the boundaries of
each piece will be seen later on in Section 11.2.

• Each piece of the curve is a parametric polynomial of degree 3, so
that the curve is differentiable. In addition, since every knot has a
multiplicity of 1, the curve is p h 2C C− = continuous. We need at least

1C continuity, but a 2C curve even makes the first derivative
smooth.

• Thanks to the convex hull property (and therefore the strong convex
hull one), the curve will not go beyond the limits of the domain. In
other words, since every control point is a note with a pitch value in
the interval []0,127 , the interpolating curve will not go beyond.

Therefore, the curve complies with the pitch domain. In addition, it
is easy to realize that it also complies with the time domain defined
by the initial and end notes.

• Thanks to the local modification scheme, and making each knot span
start and finish at the time-component of control points, the curve
will not change globally whenever a note is changed. Particularly,
since the curve has degree 3, changing a note im changes the curve

in the interval []i 2 i 2t , t− + . This is a mandatory property if we want to

cope with chord comparison, since every possible path through the
points must be compared. With the other methods of interpolation
the curves changed globally, but with B-Splines it changes around.
Therefore, since the number of affected spans is deterministic,
every single path through the points can be calculated and
compared.

• Since the curve does not pass through the actual notes and it
complies with the strong convex hull property, no large picks are
going to be created. This makes the curve not-sensible to large
changes in pitch so that we can have accuracy according to the pitch

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Why Degree 3 Uniform B-Splines

 page 133

difference between notes. In other words, the curve does not
change linearly as the pitch changes.

Figure 11.1 Moving control points

• Since the curve is parametric, we have a single function for the
pitch-dimension and another one for the time-dimension. Therefore,
no linear transformation is needed to the time-dimension in order to
compare two intervals. Actually, the time-dimension function is
useless since every span has length 1 (i. e. the piece is timeless).

• Thanks to the affine invariance property the curve will not change
its shape whenever the span lengths needs to change.

• The lower the degree is, the fewer the number of possible paths we
have for each chord. However, the lower the degree, the lower the
quality of the curve and the lower also the continuity. Therefore, a
midpoint should be chosen for the degree, and this midpoint is 3.
Consider that on each onset time, say it the song has ik harmonic
notes. Thus, for a degree p , every single span, say is , depends on

the points i i 1 i pm ,m ,...,m+ + , so that there will be
i p

j
j i

k
+

=
∏ possible single

paths in the span and hence
i p

j
j i

(p 1) k
+

=

+ ∏ possible whole paths in the

whole interval of p 1+ spans affected by im . At the end, a degree 3
is chosen since it guarantees the minimal number of possible paths
between notes with the smoothness of the first derivative.

• A uniform B-Spline is easy and efficient to calculate since it needs
only 4 multiplications of a polynomial by a number.

• Some other properties of the degree 3 uniform B-Splines are
discussed in Section 6 of the following document’s Part.

11.2 The Knot Spans

There are some issues with the knot spans lengths that must be
considered carefully because they might ruin the whole thing.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Why Degree 3 Uniform B-Splines

 page 134

In case the knot span is not uniform or the distance between
successive notes is not uniform either, the time-dimension single function of
the curve will not start and finish between the notes. In other words:

()
()

i 1 i i 2 i 1 i i 1 i 1 i 2

i 1 i i 2 i 1 i i 1 i i 1

t t t t c (1) t ' c (0) t ' t , t
t t t t c (1) t ' c (0) t ' t , t
+ + + + + +

+ + + + +

− < − → = = ∈

− > − → = = ∈
 [11.1]

This fact is depicted in Figure 11.2, where we can see the effect of
having different separation between successive notes.

Figure 11.2 Non-uniform B-Spline spans

Since the lowest-level comparison is among the polynomials between
two successive notes, these intervals must have the same length. Therefore, if
the fact of having different note durations affects to the length of the
intervals, the knot vector will be uniform as well as the set of control points.

It is obvious that by doing so we are wasting the time information, so it
has to be used in some other way so that the system realizes also about the
time-dimension.

Having a uniform knot vector we can use the basis functions in [10.10].
Then, since the distance between two successive notes is the same, say d, we
have for the time-dimension:

3 3 2 3 2 3 2u 3u 3u 3u 1 3u 6u 4 u 3u 3u 1d 2d 3d 4d d(3 u)

6 6 6 6
− − − − + − + −

− + − = − [11.2]

We can see that the polynomials for the time-dimension have degree
1, so that we do not need to approximate the value for u in case we want to
knot the exact pitch for a certain time value.

We might move the knots so that the distance between them is
somehow according to the corresponding note duration, but practical
experience shows that modifying knot positions is neither predictable nor
satisfactory.

It is important also to note that we are only changing the time-
dimension but not the pitch one. The only thing we are doing upon the curve is
shrinking or stretching it in the time-dimension. Actually this is the linear
transformation needed upon the time-dimension, but is done from the
beginning in this case so that every interval has the same length.

Lastly, if we want to have a function defined like [5.2], these spans
must be translated in time so that the first point of the interval, ic (0) , should
be placed in it t= . Therefore, the curve is defined for the time-dimension as:

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Why Degree 3 Uniform B-Splines

 page 135

1
time,0 1 0 1

2 1

2
time,1 2 1 2

3 2time

l p 1
time,l p l p 1 l p l p 1

l p 2 l p 1

t tc t t t t
t t

t tc t t t t
t tC (t)

t t
c t t t t

t t
− +

− − + − − +
− + − +

⎧ ⎛ ⎞−
+ ≤ ≤⎪ ⎜ ⎟−⎝ ⎠⎪

⎪ ⎛ ⎞−⎪ + ≤ ≤⎜ ⎟⎪ −= ⎨ ⎝ ⎠
⎪
⎪
⎪ ⎛ ⎞−

+ ≤ ≤⎜ ⎟⎪ ⎜ ⎟−⎪ ⎝ ⎠⎩

#
 [11.3]

and for the pitch dimension as:

1
pitch,0 0 1

2 1

2
pitch,1 1 2

3 2pitch

l p 1
pitch,l p l p l p 1

l p 2 l p 1

t tc t t t
t t

t tc t t t
t tC (t)

t t
c t t t

t t
− +

− − − +
− + − +

⎧ ⎛ ⎞−
≤ ≤⎪ ⎜ ⎟−⎝ ⎠⎪

⎪ ⎛ ⎞−⎪ ≤ ≤⎜ ⎟⎪ −= ⎨ ⎝ ⎠
⎪
⎪
⎪ ⎛ ⎞−

≤ ≤⎜ ⎟⎪ ⎜ ⎟−⎪ ⎝ ⎠⎩

#
 [11.4]

The last issue about the degree 3 B-Spline, and particularly related to
its derivatives, will be discussed in the Part IX of the document, when the
mathematical model is translated into the RSHP metamodel.

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Coping with Voices

 page 136

12 Coping with Voices

So far, we have been talking about the mathematical model assuming
that the performances have only one single voice. However, we must deal with
voices as it is a general constraint to the system. The whole idea of normalizing
the domain, interpolating by using B-Splines and then compare each piece of
the curve will be kept with voices.

In previous sections we have seen that the curve for a certain
performance was of the form:

0 0 1

1 1 2

l 1 l 1 l

c (t) t t t
c (t) t t t

C(t)

c (t) t t t− −

≤ ≤⎧
⎪ ≤ ≤⎪= ⎨
⎪
⎪ ≤ ≤⎩

#
 [12.1]

This function interpolates the set of notes over a time-pitch plane. The
issue about voices is that they have to be compared independently and
together, as we saw in the General Requirements. Therefore, the best solution
is to use an additional dimension for each voice, maintaining the time-
dimension.

Doing so, a performance with two voices will be defined in a space of 3
dimensions and, in general, a performance with v voices will be defined in a
space with v 1+ dimensions. By doing so, if we want to compare two
performances, say C(t) and D(t) , we have to consider that each of them will
return a vector in a voice1-voice2 plane:

 ()1 2C(t) pitch ,pitch= [12.2]

Therefore, if we consider the staff in Figure 2.1, after having
normalized it and interpolated, the final curve would be like Figure 12.1
depicts, where the red and green curves are the single voices and the blue one
is calculated by adding the other two as ()1 2C(t) C (t),C (t)= :

Modeling and Indexing Musical Files to allow Music Reuse
The Mathematical Approach Coping with Voices

 page 137

Figure 12.1 3-dimensional interpolating curve

With this kind of curves, we can compare C(t) and D(t) like seen
before, calculating the area between them in a certain interval. On the other
hand, if we want to compare only single voices, say iC (t) and jD (t) , we can

compare their single components, which lead us to a comparison among their
partial derivatives:

i jpitch pitch

i j

C(t) D(t)C (t) and D (t)
pitch pitch
∂ ∂

= =
∂ ∂

 [12.3]

This way, we can compare the pitch variation of both curves together
so that we can focus only on the partial derivative of one of them but also get
some information about the pitch variation of the others so that shifted copies
in time will be detected.

In the following part of the document we will see how this multi-
dimensional model is translated into the RSHP metamodel and how we will be
able to compare voices separately and together. The main lack that the RSHP
metamodel sins of is that it is not able to represent mathematical expressions
like functions, polynomials, derivatives and so on, so that the transformation is
not trivial if we want to guarantee a successful comparison.

Part IX:
Translation to the RSHP

Metamodel and the CAKE
Engine

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Artifacts’ Topology

 page 139

1 Artifacts’ Topology

To begin the RSHP modeling, we have to define first the topology of
the main artifact and their subartifacts, as well as the relationships that each
of them contains. Thus, the main artifact’s type is going to be a Sequence. In
addition, this Sequence artifact will have an artifact Staff for each of them.
That way, we can compare, for instance, the piano of a Sequence with the
guitar of another one.

Even though this version of the system allows only one staff per
sequence, the model presented here is valid for more staffs. However, in
Section 2 of Part XI we will see some future work that would be suitable at the
time of adding more than one single staff per sequence.

Later on, each of these Staff artifacts will contain a subartifact of type
Voice that will contain the actual musical information about a single voice in
the staff. Doing so, we will be able to compare voices separately.

Voice

Voice

Staff

Voice

Staff

Sequence

Figure 1.1 Main artifacts’ topology (part I)

In the above Figure 1.1 appears a Sequence artifact that contains two
Staff subartifacts: one of them has two Voice subartifacts and the other one
has a single Voice subartifact. This topology corresponds to a performance like
the one depicted in Figure 1.2.

Figure 1.2 Main artifacts’ topology (part II)

Now that each voice is defined separately, let us consider, from now
on, that coping only with staffs that have one single voice.

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Single Voices without Chords

 page 140

2 Single Voices without Chords

Here we have a Voice artifact that must be filled up with the
information about a single curve iC (t) that has no chord. This function is
actually defined by intervals between two successive notes, so we have to add
information about each of these single pieces.

We saw in Section 3.5 of the document’s Part VIII that the comparison
among two intervals will be made by calculating the area between both curves
and then dividing it by the maximum area of the two intervals. Note that we
are comparing the first derivatives instead of the actual interpolating curves.

Even though this comparing method seems to be the best one for our
purposes, it is quite difficult to translate that mathematical model into the
RSHP metamodel. And not only this translation, but also the way the CAKE
engine compares artifacts and RSHPs. After having considered many ways to
represent polynomials with the RSHP metamodel and considering the results
they would yield with the CAKE Engine, another comparison method is proposed
taking advantage of the B-Spline interpolation method chosen.

2.1 Final Method to Compare Intervals

After having discarded the comparison method by calculating the area
between curves, a new method is proposed by comparing punctual values of
the first derivative along with the interval’s duration and the shape of the
curve in that interval. This information is going to be called information unit.

For instance, considering the first derivative in Figure 2.1, the
information units to represent in the RSHP metamodel is (note that the values
for the first derivatives are known):

• A piece of duration 4 that has a convex shape. The derivative value
at the beginning is C'(0) and the value at the end is C'(4) .

• A piece of duration 2 that has a concave shape. The derivative value
at the beginning is C'(4) and the value at the end is C'(6) .

• A piece of duration 2 that has a convex shape. The derivative value
at the beginning is C'(6) and the value at the end is C'(8) .

Figure 2.1 Comparing intervals

Later on, we can compare these information units by considering the
shape, the duration and where are they placed in the pitch-dimension by means
of the derivative values. Firstly, let us see how to represent this in the RSHP
metamodel.

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Single Voices without Chords

 page 141

2.2 How to Represent Information Units

Reminding the RSHP metamodel seen in the document’s Part V, there
seems to be a clear way to represent information units. First of all, we have to
consider the point that every RSHP must have a type, an action that gives
semantics to that specific type of relationship and one or more information
elements to connect by the RSHP.

Since we are comparing the derivatives of degree 3 polynomials, we
have degree 2 curves. In addition, a degree 2 polynomial can have only three
possible shapes: concave, convex or flat despite of whether they have maxima
or minima points or not.

Figure 2.2 Degree 2 polynomial shapes

Thus, we are going to have three kinds of RSHP: Concave, Convex and
Flat.

On the other hand, the action of the RSHP will be the duration of the
interval, whilst the left IE will be a Term containing the derivative at the
beginning (with concept order 1) and the right IE will be another Term
containing the derivative value at the end (with concept order 2).

Therefore, if we have an interval of duration 6, with a concave
polynomial that goes from a derivative value of 4 to a value of 3, the
relationship is going to be depicted as Figure 2.3 shows (note that the line
linking the IEs has a concave shape due to the RSHP’s type):

Figure 2.3 A Concave RSHP

Therefore, if we have a sequence that contains only the curve in
Figure 2.1, the resulting Sequence Artifact would be like the one in Figure 2.4:

Voice

Staff

Sequence

-0.25 0.64 0.6 0.92 0.9 1.42

Figure 2.4 Sequence with a single voice

In addition, each of these RSHP is marked up with a position in the
Voice artifact so that the sequence is somehow modeled too.

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Single Voices with Chords

 page 142

3 Single Voices with Chords

Now that we have seen how to model a basic melody with RSHP, let us
see how to model a melody with some harmony, i. e. chords. For instance, let
us consider the first derivative depicted in Figure 3.1:

Figure 3.1 Voice with chords (part I)

The point is that a query might have only a few of the possible paths
contained in the original artifact, like the following one:

Figure 3.2 Voice with chords (part II)

Moreover, the semantic of the chord is that all the paths must be
together. That is to say that the blue curves, for example, must appear
together in the same time span. If they appear in different spans they will not
be a chord, so that we must group all the possible paths of a chord (or a
melody) into a bigger information unit containing all of them. This information
unit is, of course, an artifact.

Therefore, each of the previous spans in the query would be grouped
into a single artifact of type Span that is a subartifact of the Voice artifact:

Span

Voice

6 0.54

6 -2

6 -24

4

Span

0.5 -3.52

-2 -3.5

-2 -3.52

2

Figure 3.3 The Span artifact

Note that all the previous examples would be modeled also as a set of
Span artifacts containing a single RSHP. The thing is that if the artifact in
Figure 3.3 is compared with the corresponding artifact in Figure 3.1, a
comparison by inclusion would lead as to a semantic distance of 0, since we
have some paths of the chord in the query’s artifact.

Like before, each Span subartifact has a position within the Voice
artifact, and the RSHPs have now the position in the Span subartifact.

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Several Voices without Chords

 page 143

4 Several Voices without Chords

As seen in Section 1, there will be a Voice artifact for each single voice
of each span. Therefore, the comparison of single voices will be directly done
by the CAKE Engine, but there are some issues when comparing more than one
voice simultaneously. For instance, consider the staff in Figure 4.1 which is the
beginning of the Beethoven’s sonata number 14, Fur Elise.

Figure 4.1 Several voices without chords (part I)

There we have two single voices. If a query only contains the upper
one, the comparison by inclusion will give a semantic distance of 0 as well as if
we compare the lower one. The point now is what happens if we compare a
query that has both of them. Once again, the comparison will yield a distance
of zero. But now, consider the following staff:

Figure 4.2 Several voice without chords (part II)

where we have basically the same staff, but with a translation in time of the
lower voice. Moreover, we have the same problem in case the translation is not
applied to the whole voice but only to a portion of it, or several translations
with different amplitudes. The point here is that the distance among both
sequences will be zero as well as it is zero comparing voice by voice. Obviously,
this is not a valid result.

The problem arises from the simple fact that we are comparing voices
separately by comparing the partial derivatives as we saw in Section 12 of the
previous document’s Part. On the other hand, to compare the whole curve in
every dimension we should compare each vector of values for the dimensions as
a single unit, and not separately as we are doing here. Therefore, we must join
somehow both voices but maintaining them separated enough to be able to
compare them one by one.

The solution lies in the addition of more data to the information units
seen before. Reminding, we have a Term with concept order 1 that stores the
value for the first derivative at the beginning of the interval and another Term

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Several Voices without Chords

 page 144

with concept order 2 that stores the value for the derivative at the end of the
value. However, we need some information about how the other voices are
changing in the interval, how their derivatives evolve.

The change consists on introducing also the values of the other voice’s
derivative at both limits of the interval. Let us take a look at the first
derivative of the interpolating curve for Figure 4.1:

Figure 4.3 Derivatives with several voices

The idea is to include in the RSHP information about the other
derivative, which will be the values at the beginning (with concept order 3) and
the end of the interval (with concept order 4). Thus, a single RSHP for the
interval 1,8 1,9t , t⎡ ⎤⎣ ⎦ as a type Convex, a duration of 4 and a concept order 1 of

1 1,8C '(t) as well as a concept order 2 of 1 1,9C '(t) . Now, we are going to add
information about the other curve, so we ad a Term with concept order 3
containing 2 1,8C '(t) and a Term with concept order 4 containing 2 1,9C '(t) .

Likewise, the RSHP for the interval 2,0 2,1t , t⎡ ⎤⎣ ⎦ is Concave as well, with a

duration of 4 units and a concept order 1 of 2 2,0C '(t) , concept order 2 of

2 2,1C '(t) , concept order 3 of 1 2,0C '(t) and concept order 4 of 1 2,1C '(t) . Note that
some RSHPs might not have concept order 3 or 4, like it happens with the one
modeling the interval 1,7 1,8t , t⎡ ⎤⎣ ⎦ , which does not have a value for the concept

order 3 but it does have the value for the concept order 4.

Thus, if we have translated copies of the voices, the concept orders 3
and 4 will change accordingly even though the original concept orders 1 and 2
will remain unchanged. Note that if another voice is present, there will be
another pair of Terms with concept orders 3 and 4.

Therefore, with some additional considerations, comparisons between
single voices will still work if the number of voices differs, since the concept
orders 1 and 2 are the same. On the other hand, comparisons of the whole staff
(all the voices) will realize of the time-translations and will give semantic
distances accordingly.

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Several Voices with Chords

 page 145

5 Several Voices with Chords

The last scenario for a staff is the case with several voices containing
chords. Let us consider the staff in Figure 5.1

Figure 5.1 Several voices with chords (part I)

that has the following first derivatives:

Figure 5.2 Several voices with chords (part II)

The point here is that in the interval 1,8 1,9t , t⎡ ⎤⎣ ⎦ , for instance, there are

several values for the derivatives that should be placed in the concept orders 3
and 4. We might put all their corresponding Terms with the corresponding
concept order, but this would lead us to an error.

Let us imagine that we have three voices and we are modeling a RSHP
for the first of them. The second voice provides concept order 3 with values a
and b . Moreover, the third voice contributes with values c and d. Therefore,
the RSHP would have 4 Terms with concept order 3.

Now consider a query with two voices, where the corresponding RSHP
has the same concept orders 1and 2, the same action and the same duration.
That is, the same interval. Imagine also that the second derivative provides
Terms with concept order 3 and values a and c . Both RSHP are represented in
Figure 5.3.

The comparison among them would give a semantic distance of zero
since the query is contained in the repository. But it is pretty clear that the
semantic comparison is not correct because we are comparing voices 2 and 3 of
the repository with the voice 2 of the query, and we must compare them
separately. That is to say that we have to compare the voice 2 of the repository
with the second of the query and later on the last with the third of the
repository.

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Several Voices with Chords

 page 146

2 3

4

a

b

c

d

...

3

4

2

a

c ...

1

3

3

3

3

2

4 4

21

3

3

Figure 5.3 Several voices with chords (part III)

Thus, we have to group the derivative values for each of the
derivatives so that we do not mix their values. Doing so, a new subartifact type
arises, which is called Derivatives and will appear at both ends of the RSHPs,
which are contained in subartifacts of type Span. Therefore, the final
representation will be:

4

2

...

1

3

2

4

Derivatives

a

Derivatives

b

c

Derivatives

d

3

3

Derivatives

4

2

...

1

3

2

4

Derivatives

a

Derivatives

c

3

Derivatives

Figure 5.4 Several voices with chords (part IV)

This way we split the semantic of the other derivatives and separate
them according to their voice.

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Representing Numbers with Terms

 page 147

6 Representing Numbers with Terms

The problem we must deal now with is the impossibility of
representing real numbers in the RSHP metamodel. However, we can have
some approximations so that we can define a closed domain for the possible
note durations and the possible derivative values.

6.1 Score Durations

Right now, the real-time is not considered so that we only deal with
score durations. As seen in Section 2.1 of the last document’s Part, a minimum
time unit must be defined so that we can normalize the time-dimension. The
decision taken there is to consider a minimum length of demisemiquaver, so
that a quaver would be 4 units for instance.

However, we must deal with the possibility of having tuplets so that a

demisemiquaver in the tuplet would have duration of
unit

3
. Thus, minimum

duration is going to be 3 units so that the demisemiquaver in a tuplet will have
duration of 2 units. Doing so, the standard notes have the following durations:

Name Figure Duration In tuplet

Semibreve 96 64

Minim

48 32

Crotchet 24 16

Quaver 12 8

Semiquaver 6 4

Demisemiquaver

3 2

Table 6.1 Score durations for notes

Therefore, we can use this numbers as the Tems used in the action of
the relationships. However, but must consider the possibility of having ties and
rhythm dots (see Section 4 of the Part II), so that a crotched might be tied with
a quaver and a rhythm dot. This would lead us to a duration of
24 12 12 2 42+ + = which can not be modeled with Terms.

We might define a huge number of Terms, each of them for the
possible values in increments of 1 by 1, but this would be unfeasible at the end
because we do not knot where to stop. If we consider again ties, let us imagine
a tie between two semibreves where the resulting duration would be 192 units.
And even more, imagine three tied semibreves with a crotched plus a
semiquaver in a tuplet.

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Representing Numbers with Terms

 page 148

The point is that we can not know, at the time of creating the domain,
what are the possible values for the duration of notes. Therefore, the solution
taken by now is to consider intervals between the values in Table 6.1. That is,
imagine all the values ordered in a vector:

 ()2,3,4,6,8,12,16,24,32,48,64,96 [6.1]

We are about to define intervals around each of these numbers, from
the midpoint towards the previous number until the midpoint towards the
following one. For instance, the interval containing 24 is [)20,28 , whilst the

one containing the 8 is [)7,10 . On the other hand, since we know that no note

will have a duration less that 2, the first interval is [)2,3 . In addition, the last

interval to be considered is [)80,+∞ , where every note with a duration longer

than 80 is going to be grouped under this Term.

Thus, we have 12 Terms that define intervals for the possible durations
in score time and that are defined as so in the domain of the RSHP repository.
In addition, these Terms are linked in the domain so that a certain interval, say

jL , is linked with an Association RSHP to the intervals j 1L − and j 1L + .

6.2 Derivative Values

Something similar to the case of the score durations happens here, but
let us see, first of all, why B-Splines of degree 3 were chosen.

As seen in the previous Section 10, the pitch-component of a span is
calculated as:

3 3 2 3 2 3 2

i 1 i i 1 i 2
u 3u 3u 3u 1 3u 6u 4 u 3u 3u 1p p p p
6 6 6 6− + +

− + + + − + − + − +
+ + + [6.2]

where jp denotes the pitch of the note jm . However, what we are about to

compare is the first derivative of this function, which is

2 2 2 2

i 1 i i 1 i 2
u 3u 2u 1 3u 4u u 2u 1p p p p
2 2 2 2− + +

− + + − − + −
+ + + [6.3]

Moreover, we are obtaining the value of the first derivative evaluated
at u 0= , so that the values to put in the RSHPs are calculated as:

 i i 2p p
2

+−
 [6.4]

That is to say that the derivative evaluated in 0 depends only on the
notes im and i 2m − . On the other hand, the value at u 1= is the same as the
value of the following span evaluated in 0, so that it is

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Representing Numbers with Terms

 page 149

 i 1 i 3p p
2

+ +−
 [6.5]

Thus, the values at both ends of the RSHP depend on the 4 points that
define the interval. Moreover, these values depend on the difference in pitch
between two notes, and this is actually the idea behind the first derivative.
That is to say that every pair of points i i 2p p +− or i 1 i 3p p+ +− that keeps the pitch
difference is going to have the same derivatives. And if we think on it, this is
the case of a given interval in different tonalities:

Figure 6.1 First derivative intervals

Therefore, the two values put in a RSHP can not correspond to
different intervals in two curves. Since the left value depends on the interval
between 2 notes and the right value depends on the interval between the other
2 notes, no other sequence of notes is possible with these values.

This is what gives us the sense of sequence in our representation of
music. Remind that the RSHP metamodel does not have any mechanism that
might help us with the issue of taking into account the sequence of notes.
However, with B-Splines of degree p , we assure that a polynomial is unique of
a fixed sequence of p 1+ points (actually the derivative of the curve). This acts
like a sliding window that compares the curve by pieces of 4 notes.

Moreover, there is another good point from equations [6.4] and [6.5].
We know that every pitch value is in the interval []0,127 , so that the

difference is -127 as minimum and 127 as maximum, which leads us to 255
possible values.

Thus, we have the domain entirely defined with the interval
[]127,127− ∈] , so that we might create a Term for the domain with each of

the values in the interval.

6.2.1 Derivative Values with Voices

We have seen so far that the values for the first derivatives can be
normalized with 255 Terms in the domain. However, this technique is not valid
with staffs containing more than a single voice. For instance, considering again
the curve in Figure 4.3, the values having concept order 3 and 4 are not
necessary integers.

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Representing Numbers with Terms

 page 150

The point is that, when calculating the concept order 3 by obtaining
the derivative value 2 1,8C '(t) , the polynomial has to be evaluated in u 0.25= ,

and later on 2 1,9C '(t) will evaluate the polynomial in u 0.5= . In general, the
curves might be evaluated in any value for u between 0 and 1, and this makes
it impossible to define a domain by extension so that a domain by definition of
intervals is proposed again.

With the examples considered so far, no derivative value has been
greater than 14 or smaller than -14. Therefore, intervals are chosen by now
with length 1 between -14 and 14, so that integer numbers are in the middle of
each interval and hence we will not be penalized for distances of, for instance,
3 and 3.2.

Thus, the domain defines Terms for the derivative values that are
distributed as follows, so that we have 31 intervals:

 () [) [) [) [), 14.5 , 14.5, 13.5 ,..., 0.5,0.5 ,..., 13.5,14.5 , 14.5,−∞ − − − − ∞ [6.6]

Like before these Terms are linked with an Association RSHP in de
domain, so that every interval is associated with the previous and the following
ones. That way, the CAKE Engine can penalize distances in the derivatives.

Modeling and Indexing Musical Files to allow Music Reuse
Translation to the RSHP Metamodel and the CAKE Engine Extending the CAKE Engine

 page 151

7 Extending the CAKE Engine

The current implementation of the CAKE Engine is not suitable at all
for MIKE and for mathematical models in general. As seen in Section 6 there are
some problems with the representation and comparison of numbers.

Even though Part XI of the document outlines a possible solution to the
problem, the point is that that solution might not be the best at all.

Moreover, there are some problems with the comparison of the
information elements contained in the RSHPs. As seen in previous sections, the
RSHPs have five concept orders right now:

• Duration of the interval as concept order 0.

• Value of the derivative at the beginning of the span with concept
order 1.

• Value of the derivative at the end of the span as concept order 2.

• Values of the other voices’ derivatives at the beginning of the span
as concept order 3.

• Values of the other voices’ derivatives at the end of the span as
concept order 4.

The right way to compare two RSHP is to compare only information
elements with the same concept order. That is to say that if two elements in
two RSHP are being compared, their semantic distance will be automatically 1
in case they do not have the same concept order in their respective
relationships.

Therefore, the CAKE Engine has been modified so that an extension is
possible. This extension allows a particular engine to implement the function in
charge of calculating the semantic distance among two information elements.
Once there, the concept orders can be compared and the distance returned
accordingly.

Moreover, since the current model has more or less random intervals
for the possible derivative values as well as for the possible durations in score
time. Thus, the current version of the system uses a deprecated field in the
Information Elements that is precisely a floating point number which is used to
store the actual value of the derivative.

Therefore, another extension is made so that, provisionally, the
semantic distance between two terms can be calculated by dividing their
difference by the maximum of them. Thus, a relative distance is given between
0 and 1.

Part X:
Implementation Details

Modeling and Indexing Musical Files to allow Music Reuse
Implementation Details The Music Information Retrieval Process

 page 153

1 The Music Information Retrieval
Process

The music information retrieval process is a complex procedure that is
divided into several phases that need to be executed in sequence, one after
the other.

MIDI File Reading

Preprocessing

Voice Separation

Quantization

Minimization

Interpolation

RSHP Modeling

Toub Model

Preprocessed Model

Separated Model

Quantized Model

Minimized Model

Interpolated Model

MIDI File

RSHP Model

Figure 1.1 The music information retrieval process

As seen in Figure 1.1, there are mainly 7 phases executed in sequence,
each of which returns an intermediate model that serves as input for the next
phase.

• Midi File Reading. In this first phase of the process, the MIDI file is
read and modeled with the Toub library [Toub].

Modeling and Indexing Musical Files to allow Music Reuse
Implementation Details The Music Information Retrieval Process

 page 154

• Preprocessing. In this part the file is preprocessed to clean it and
remove useless information. For instance, the event-driven model is
translated to a score-driven model where there are instances of
notes with a certain onset time, duration and pitch. All the data but
the NoteOn and NoteOff events, as well as the division, unit are
removed.

• Voice Separation. In this third stage, the preprocessed model is split
into several voices if applicable. This phase yields a figure-driven
model where chords appear grouped.

• Quantization. In this phase the staff is quantized so that the onset
time and the duration given in milliseconds are expressed in score
units such as crotchet or minim. Moreover, the tempo is detected in
this phase.

• Minimization. Once the input is quantized, it can be minimized by
obtaining the possible repetitions in the performance such as riffs.

• Interpolation. Applying the technique seen in the mathematical
approach, the performance is interpolated so that the curves that
describe its pitch change for each voice are calculated.

• RSHP Modeling. In this final stage, the mathematical model is
translated to artifacts as it was described before. This generated
RSHP model can then be used for indexing or for accomplish a query.

These stages are implemented in MIKE with some aspects that need to
be considered.

Modeling and Indexing Musical Files to allow Music Reuse
Implementation Details Implementation in MIKE

 page 155

2 Implementation in MIKE

Each of the previous phases in the music information retrieval process
is implemented in MIKE as a different package, nesting from a parent package
named MIKE.

2.1 Preprocessing

In this first package the preprocessing task is implemented. The
package defines a IPreprocessor interface that is going to be implemented by a
particular preprocessor. The input to this phase is a Toub model (an instance of
class MidiSequence) that is event-driven and, after the phase is executed, a
preprocessed model is returned.

PreprocessedSequence
Division PreprocessedTrack

PreprocessedNote
Onset
Duration
Pitch

Figure 2.1 Preprocessed model

The implemented preprocessor used in this version is called
SillyPreprocessor since the only task that it is going to perform is to remove
useless events from the stream. Therefore, the preprocessor is going to deal
only with NoteOn and NoteOff messages. For the output model, the
preprocessor creates instances of notes that do have a certain onset time and
duration, so that the event-driven model is no longer used.

2.2 VoiceSeparation

As well as the Preprocessing package, this one also defines an
interface IVoiceSeparator that can be implemented in order to provide the
voice separation functionality. This phase is also in charge of detecting chords,
so that the output model is slightly changed. A chord is going to be considered
as a collection of single notes. Thus, an interface ISeparatedNote is declared to
deal with single notes and chords.

In this version of the system, a SillyVoiceSeparator is implemented
even though the Kilian-Hoos algorithm should be used. The point is that the
Kilian-Hoos algorithm needs some feedback from the user in order to adjust the
penalization weights so that the input can be split correctly.

Modeling and Indexing Musical Files to allow Music Reuse
Implementation Details Implementation in MIKE

 page 156

Thus, the Kilian-Hoos algorithm can not be used right now because the
process does not have any kind of interaction with the user. Instead, the
SillyVoiceSeparator is used to generate a separated model.

SeparatedSequence
Division SeparatedTrack

SeparatedSingleNote
Pitch

SeparatedVoice

ISeparatedNote
Onset
Duration

SeparatedChord

Figure 2.2 Separated model

The point is that the SillyVoiceSeparator actually does not do anything
but recognizing and grouping chords. Thus, the input must have a special
format so that, by now, the voices are already separated and stored in
different tracks. In other words, if a certain staff has more than a single voice,
it is separated into several tracks, one per voice. Therefore, the current
version allows only one staff per sequence.

Anyway, the KilianHoos algorithm is implemented waiting for an
extension to the current version that could use it so that the voice separation is
actually performed and the input does not need to be already separated.

2.3 Quantization

So far, the onset time and duration of notes are expressed in
milliseconds, and the quantization phase intends to recognize the tempo and
hence the score onset time and score duration of notes.

Once again, the package defines an interface name IQuantizator that
declares a method to quantize a given instance of the SeparatedModel. Like
before, a SillyQuantizator is implemented in this version for several reasons.
First of all, this version only deals with mechanical or metrical sequences,
where the onset and duration of notes is precisely defined accordingly to the
division field of the file. This means that the sequence can be quantized simply
by division and multiplication.

As seen in Section 6 of the document’s Part VIII, the crotched has
assigned a score duration of 24, so that for a given delta time the score time is

Modeling and Indexing Musical Files to allow Music Reuse
Implementation Details Implementation in MIKE

 page 157

24·delta
division

 [2.1]

On the other hand, with the tempo detection and quantization
happens more or less the same as with the voice separation: none of the
existing algorithms generates a precise output. There are some approaches to
the tempo detection based on rules, probabilistic models, multiple agents,
oscillators and many more. For the quantization there are also some
approaches based on grids, rules, transcriptions, vector models, cellular
automata and more. In [Kilian, 2004] some hybrid techniques are proposed so
that they might be used in a future.

On the other hand, the most typical way to record a live performance
is with a clicktrack model where the tempo is defined before so that the
quantization can be performed in real-time while playing. Thus, the
quantization phase is used in some particular cases.

After all, the model generated in this phase is basically identical as the
one generated in the voice separation. This time, the duration and onset time
of the notes is stored in score time, but in the future it would be nice to store
also the real time values so that both them can be used when comparing.

QuantizedSequence QuantizedStaff

QuantizedSingleNote
Pitch

QuantizedVoice

QuantizedNote
Onset
Duration

QuantizedChord

Figure 2.3 Quantized model

2.4 Minimization

This phase is neither implemented in the current version. Therefore,
no minimization is applied upon the sequences so that they are not optimized.
This is, however, an important issue for the efficiency of the system since the
number of artifacts to create can be huge. Some algorithms such as BLAST can
be applied here to recognize patterns in the sequence. Indeed, in [Kilian, 2004]
an extension called MusicBLAST is introduced for the pattern induction and
segmentation of sequences.

Modeling and Indexing Musical Files to allow Music Reuse
Implementation Details Implementation in MIKE

 page 158

Therefore, no minimized model is created and the quantized one is
directly forwarded to the Interpolating phase.

2.5 Interpolation

This package uses a class name Polynomial used to perform operations
with polynomials such as additions or differentiation. This Polynomial class is
used from class UniformBSpline in order to generate the corresponding
polynomial functions for the interpolating curves.

Basically, an interface IInterpolator is again defined so that the actual
interpolation, from a quantized model, is executed in a class named
BSplineInterpolator. Here, the input is separated into normalized spans and
then every possible path is calculated according to the number of
simultaneously notes and the degree of the curves, which is 3 currently.

Once the sequence is interpolated the polynomials are stored in a
interpolated model as follows:

InterpolatedSequence InterpolatedStaff

Polynomial
Degree
Shape

InterpolatedVoice

InterpolatedSpan
Onset
Duration

pitch time

Figure 2.4 Interpolated model

Note that, since a certain span might have more than one path due to
the existence of a close chord, each span has a collection of polynomials for
the pitch component of the curve.

2.6 RSHP Modeling

The last phase in the music modeling process is to generate an
instance of the RSHP metamodel that represents the original input sequence.
An interface IRSHPzator is defined so that the current implementation in
RSHPzator performs the model translation. After loading the domain from the

Modeling and Indexing Musical Files to allow Music Reuse
Implementation Details Implementation in MIKE

 page 159

given repository, the RSHPzator generates the Sequence Artifact as explained
in Part IX.

2.7 The CAKE Studio Manager

In the parent package, named MIKE, there are some classes used to
incorporate MIKE to the CAKE Studio. Basically there is a Manager that declares
the kind of indexing. It is the one in charge of starting the whole MIR process
and storing the artifacts in the repository as well as creating some others for
queries. In addition, the MIKEManager is in charge of creating the domain in the
repository in the first time it is executed.

Part XI:
Epilogue

Modeling and Indexing Musical Files to allow Music Reuse
Epilogue Conclusions

 page 161

1 Conclusions

Considering the initial objectives proposed it can be affirmed that all
of them have been achieved.

Even though the project leaves many points where an extension and
future work can be done, the main objective of providing a metamodel for
music information in the RSHP information representation metamodel that
allows the music reuse with the CAKE Engine has been achieved.

Moreover, the whole thing has a solid mathematical basis that solves
all of the common problems in the music information retrieval process. The
main advantage of MIKE is that it solves, in a single system, all these problems.
Nowadays there are many approaches to the music information retrieval, but
none of them is as extensive as MIKE at least about the comparison capabilities.

The main disadvantage of the current methods of music information
retrieval is that they are not thought for the actual music information. There
are many proposals based on probabilistic models that do not offer reliability.
Some others are based on text information retrieval techniques applied to some
textual representation of the music such as the GUIDO music notation. Others
apply regular expressions searches to these textual representations, but the
issue is the same: music is not text.

On the other hand, MIKE is thought for music since the beginning so
that every decision made was focused only on music information. It uses a
mathematical model that solves in a single system all the General
Requirements considered and it is easily extensible to include more information
thanks to the versatility of the RSHP metamodel.

This project opens many interesting doors for the music information
retrieval by establishing the theoretical basis for the whole process. Much more
work is remaining as seen in Part X, so that some other contributions to MIKE
would lead to an important and strong reference point in the field of music
information retrieval.

Modeling and Indexing Musical Files to allow Music Reuse
Epilogue Future Work

 page 162

2 Future Work

As seen in Section X, many parts of the music information retrieval
process are not yet implemented. Phases such as the Quantization or the
Minimization would be suitable for a future work upon MIKE.

On the other hand, an important extension to consider is to definitely
include the Kilian-Hoos voice separation algorithm (or an improved one). The
point is that the algorithm needs some kind of feedback from the user in order
to assign a value to each of the penalization constants (see Section 5.2.3 of the
Part VII). Therefore, a good future work would be to provide some kind of staff
visualization window for the CAKE Studio so that the user can see the
intermediate voice separations and change the penalization constants
accordingly. A good point would be to offer the possibility of fixing the
separation note by note with a single action like clicking on it and swaping the
voice assigned.

Once the voice separation is fully integrated, it would be possible to
model into a single Sequence artifact several Staff subartifacts so that several
instruments can be included in a single piece. Therefore, it could be possible to
compare instruments one by one or as a whole, like the case with voices.

Another point is to add some extra information to the current model
such as metadata about the piece, instruments or whatever. Another good
point is to offer the possibility of comparing pieces not only by score time like
now, but also by real time. The thing would be to change the action of the
RSHP so that it becomes an artifact containing terms for both cases.

However, the most important and critical applicable work to MIKE is
about the domain definition for the duration and derivative values. Right now
the values are split into intervals that are linked one to each other so that the
CAKE Engine penalizes distances. However, this interval definition is almost
random right now.

The point is that intervals with a lot of occurrences should have more
accuracy than those with a few occurrences. Therefore, the best solution would
be to do a statistic study with a large MIDI database so that we could see how
many occurrences appear for each derivative and duration value. Thus, with a
histogram it would be possible to perform an optimal distribution of the
domain.

In addition, the current model is open to modifications. A possible
modification would be to add the information about the other voices not for
each RSHP in a single span, but in the own Span artifact. Another extension is
to add some values of the second derivative in the RSHPs so that the function
that maps a polynomial to a RSHP would become surjective.

Modeling and Indexing Musical Files to allow Music Reuse
Epilogue Future Work

 page 163

Figure 2.1 Surjective mapping to RHSP

Right now, both curves (they are already the first derivatives) in Figure
2.1 are treated as equal because the current model does not have collect
information about the curvature. However, it is clear that they are not the
same, the green one changes much more than the blue one. It can be easily
demonstrated that by adding the value of the second derivative evaluated in
u 0= is enough to make the mapping surjective.

If the derivative polynomial is in the form 2au bu c+ + , the RSHP
already contains the value of c since it is evaluated in 0. On the other hand, it
has the value of a b c+ + when evaluated in u 1= . This is why the curvature is
not taken into account. However, the second derivative has the form 2au b+ ,
so that evaluating it in u 0= would give the value of b and hence the value of
a . This way, the polynomial is totally defined in the RSHP.

This change would mean a new artifact type to add or the usage of
new concept orders in the RSHPs, but will assure that there will not be false
positives.

Therefore, several extensions can be applied upon MIKE, and all of
them are welcome.

Modeling and Indexing Musical Files to allow Music Reuse
Epilogue Project Budget

 page 164

3 Project Budget

In order to specify the budget of the current herein described, there
are established some assumptions:

• 8 full working hours per day.

• 20 days per month.

Moreover, the project can be developed by two different kinds of
workers:

• Senior engineer with experience and research skills, responsible of
the research area and schedule. A salary of 155 €/day is
established1.

• Junior engineer responsible of the programming tasks, with a salary
of 105 €/day.

In addition, the identified tasks needed to accomplish the project are:

• Documentation about the MIDI standard and the SMF format.

• Documentation about the RSHP metamodel and the CAKE Engine.

• Documentation about the state of the art in the field of music
information retrieval.

• Goals and software scope establishment.

• Analysis.

• Research in the field of numerical analysis.

• Design.

• Implementation.

• Tests.

• Documentation that yields to the current report.

Therefore, the effort can be calculated as follows:

1 Salaries containing all applicable taxes like 40% for Social Security.

Modeling and Indexing Musical Files to allow Music Reuse
Epilogue Project Budget

 page 165

Task Worker Estimated Days Cost
Documentation on MIDI and SMF Senior 7 1,085€

Documentation on RSHP and CAKE Senior
Junior 12 3,120€

Documentation on State of the art Senior 16 2,480€
Goals establishment Senior 3 465€
Analysis Senior 7 1,085€
Research in numerical analysis Senior 36 5,580€

Design Senior
Junior 7 1,830€

Implementation Junior 15 1,575€

Test Senior
Junior 3 780€

Documentation Senior
Junior 8 2,080€

Total 114 20,080€

Table 3.1 Human effort cost estimation

Moreover, during the elaboration of the project there were needed
some stuff spending as well as the purchase of books and related
documentation stuff.

Stuff Quantity Unitary
Cost Cost

Notebook Samsung NP-X20 1 during 114
days 1,277€ 199€

Printer Samsung ML-2510 1 during 114
days 86€ 13€

Microsoft Windows XP Professional 1 Student
License 0€

Microsoft Visual Studio .net 2003 1 Student
License 0€

Microsoft Office 2003 Professional 1 Student
License 0€

Reuse Studio with Indexing
License 1 3,480€ 3,480€

Paper 2000 0.01€ 20€
Toner ink 1 64€ 64€
CD-ROM 5 0.20€ 1€
Internet connection 6 months 20€ 120€
Books and related documentation - - 82€

Total 3,979€

Table 3.2 Stuff and documentation cost

Moreover, the project was developed as part of an Erasmus grant
awarded during 5 months in the city of Mariehamn, in Finland. Thus, the
applicable cost resulting from the grant is:

Modeling and Indexing Musical Files to allow Music Reuse
Epilogue Project Budget

 page 166

Concept Quantity Unitary
Cost Cost

Travel to and from Mariehamn 2 120€ 240€

Housing 5 months Included in
the grant 0€

Subsistence allowance 5 months 450€ 2,250€
Total 2,490€

Table 3.3 Erasmus grant estimated cost

Therefore, the total cost of the project before taxes is:

 20,080 3,979 2,490 26,549€+ + = [3.1]

Finally, by applying taxes and the corresponding risk and profit
percentages:

Concept Cost
Total cost 26,549€
Risk (8%) 2,124€
Profit (14%) 3,717€

Subtotal
VAT (16%)

Total

32,390€
5,182€

37,572€

Table 3.4 Final cost calculation

Therefore, the total final cost of the project focused on a potential
client would be 37,572€.

Part XII:
Source Code

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE

 page 168

1 MIKE

1.1 MikeManagerFactory
using System;

using CAKE;
using CAKE.Managers;

namespace MIKE {
 public class MIKEManagerFactory : CAKEManagerFactory{
 public override string ModuleNamespace{
 get{
 return "MIKE";
 }
 }
 protected override void AddManagerNames(){
 base.AddManager(MIKEManager.DisplayName, MIKEManager.Description,
 typeof(MIKEManager).Name, MIKEManager.Version, MIKEManager.Projects);
 }
 public override CAKEManager CreateManagerByName(string managerName){
 if(managerName == typeof(MIKEManager).Name){
 return new MIKEManager(this);
 }
 return null;
 }
 public override CAKELicenseInfo GetLicenseInfo(string managerName){
 return null;
 }
 protected override void RegisterIndexers(){
 base.RegisterIndexer(MIKEManager.KnownExtensions,
 new MIKEIndexerCreator());
 }
 }
}

1.2 MIKEIndexerCreator
using System;

using CAKE;
using CAKE.Managers;
using CAKE.IndexingServices;

namespace MIKE {
 public class MIKEIndexerCreator : IFileIndexerCreator {
 public IFileIndexer CreateFileIndexer(IndexingManager indexerManager) {
 return new MIKEManager(indexerManager);
 }
 }
}

1.3 MIKEManager
using System;
using System.ComponentModel;
using System.Windows.Forms;
using System.Collections;
using WindowDockerLib;

using CAKE;
using CAKE.Managers;
using CAKE_Indexer;
using CAKE.IndexingServices;

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE

 page 169

using Toub.Sound.Midi;
using MIKE.Preprocessing;
using MIKE.Preprocessing.Silly;
using MIKE.VoiceSeparation;
using MIKE.VoiceSeparation.Silly;
using MIKE.Quantization;
using MIKE.Quantization.Silly;
using MIKE.Interpolation;
using MIKE.RSHPzation;

namespace MIKE {
 public class MIKEManager : CAKEManagerIndexable{

 protected IPreprocessor _prep;
 protected IVoiceSeparator _sep;
 protected IQuantizator _quant;
 protected IInterpolator _inte;
 protected IRSHPzator _rshp;

 internal const string DisplayName = "MIKE";
 internal const string Description =
 "Music Indexer based on the CAKE Engine";
 internal static Version Version{
 get{
 return new Version(1, 0);
 }
 }
 internal static ProjectInfoCollection Projects{
 get{
 ProjectInfoCollection projects = new ProjectInfoCollection();
 projects.Add(new ProjectInfo("MIKE Project"));
 return projects;
 }
 }
 internal static String[] KnownExtensions{
 get{
 return new string[] {"midi", "mid"};
 }
 }

 private bool _isDestroyed;
 public override bool IsDestroyed{
 get{
 return _isDestroyed;
 }
 }

 protected internal MIKEManager(MIKEManagerFactory f) : base(f){
 this._isDestroyed = false;
 _prep = new SillyPreprocessor();
 _sep = new SillySeparator();
 _quant = new SillyQuantizator();
 _inte = new BSplineInterpolator(3);
 _rshp = new RSHPzator();
 }
 protected internal MIKEManager(IndexingManager idxManager) :
 base(idxManager){
 _prep = new SillyPreprocessor();
 _sep = new SillySeparator();
 _quant = new SillyQuantizator();
 _inte = new BSplineInterpolator(3);
 _rshp = new RSHPzator();
 }
 protected override void AddManagerForms(){
 this.AddForm(typeof(MIKEManagerMainForm).FullName);
 }
 protected override CAKEItem OnCreate(ProjectInfo projectType, string name){
 CreateNewProject(name);
 return null;
 }
 protected override void OnConnect(){
 return;
 }
 protected override void OnDisconnecting(CancelEventArgs e){

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE

 page 170

 return;
 }
 protected override void OnDisconnect(){
 return;
 }
 protected override void OnDestroy(){
 if(!this.IsDestroyed){
 _isDestroyed = true;
 if(base.MainForm != null){
 base.MainForm.Close();
 base.MainForm.Dispose();
 }
 base._mainForm = null;
 }
 }
 protected override bool OnLoad(string location){
 return true; /** @todo OnLoad */
 }
 public override bool IsDependentForm(DockableForm formInstance){
 return formInstance.Equals(base.MainForm);
 }
 public override Form CreateFormByName(string formTypeName){
 return this.CreateDockedFormByName(formTypeName);
 }
 public override DockableForm CreateDockedFormByName(string formTypeName){
 if(formTypeName == typeof(MIKEManagerMainForm).FullName){
 return this.GetMainForm();
 }

 return null;
 }
 public override bool Save(string location){
 return true; /** @todo Save */
 }
 internal void CreateNewProject(string name){
 this.GetMainForm();
 base.GetDocker().Add(base.MainForm, true, DockStyle.Left);
 MIKEManagerMainForm frmChild = new MIKEManagerMainForm(this);
 frmChild.MdiParent = base.GetDocker().DockingForm;
 }
 internal MIKEManagerMainForm GetMainForm(){
 if(base.MainForm != null && !base.MainForm.IsDisposed){
 return (MIKEManagerMainForm)base.MainForm;
 }
 base._mainForm = new MIKEManagerMainForm(this);
 return (MIKEManagerMainForm)base.MainForm;
 }

 public override string[] AvailableExtensions{
 get{
 return KnownExtensions;
 }
 }
 protected override Artifact OnBatchIndex(IndexingManager idxManager,
 string fullName){
 CAKEEngine engine = idxManager.Repository;
 // Start the MIR process
 MidiSequence mSeq = MidiSequence.Import(fullName);
 PreprocessedMidiSequence pSeq = _prep.Preprocess(mSeq);
 SeparatedSequence sSeq = _sep.SeparateVoices(pSeq);
 QuantizedSequence qSeq = _quant.Quantize(sSeq);
 InterpolatedSequence iSeq = _inte.Interpolate(qSeq);
 Artifact rSeq = _rshp.RSHPtize(iSeq, engine, fullName, false);

 rSeq.Save(false);
 return rSeq;
 }
 protected override Artifact OnBatchQuery(IndexingManager idxManager,
 string fullName){
 CAKEEngine engine = idxManager.Repository;
 // Start the MIR process
 MidiSequence mSeq = MidiSequence.Import(fullName);
 PreprocessedMidiSequence pSeq = _prep.Preprocess(mSeq);
 SeparatedSequence sSeq = _sep.SeparateVoices(pSeq);

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE

 page 171

 QuantizedSequence qSeq = _quant.Quantize(sSeq);
 InterpolatedSequence iSeq = _inte.Interpolate(qSeq);
 Artifact rSeq = _rshp.RSHPtize(iSeq, engine, fullName, true);

 return rSeq;
 }
 protected override Artifact OnIndex(Indexer idx){
 CAKEEngine eng = idx.Repository;
 return null;
 }
 protected override Artifact OnQuery(Indexer idx){
 return null;
 }

 public void CreateDomain(CAKEEngine Engine) {
 Engine.Clear();
 Engine.Load(true);
 Engine.DeleteAndSaveArtifacts();

 // The language for MIKE
 Language music = new Language(Engine, "MI", "MIKE", "MIKE Language",
 null, 30000, 0);

 // Artifact Types
 ArtifactType atSequence = new ArtifactType(Engine, "Sequence", 0, null,
 30000, 0);
 ArtifactType atStaff = new ArtifactType(Engine, "Staff", 0, null,
 30001, 0);
 ArtifactType atVoice = new ArtifactType(Engine, "Voice", 0, null,
 30002, 0);
 ArtifactType atSpan = new ArtifactType(Engine, "Span", 0, null,
 30003, 0);
 ArtifactType atDerivative = new ArtifactType(Engine, "Derivatives", 0,
 null, 30004, 0);

 // Types of Term
 TermSemanticItem tsiDerivatives = newTermSemanticItem(Engine,
 "Derivatives", 30000, 0);
 TermSemanticItem tsiDurationsScore = newTermSemanticItem(Engine,
 "Score Durations", 30001, 0);

 // Types of RSHP
 SemanticItem siAssociation = Engine.SemanticItemFromJC(300);
 if(siAssociation== null){
 siAssociation = new SemanticItem(Engine, "Association", null, false,
 1, true, true, true, true, "Related", "Related", false, "RT",
 "RT", 300, 0);
 }
 SemanticItem siConcave = newSemanticItem(Engine, "Concave", 30000, 0);
 SemanticItem siConvex = newSemanticItem(Engine, "Convex", 30001, 0);
 SemanticItem siFlat = newSemanticItem(Engine, "Flat", 30002, 0);

 // Intervals for the 1st derivatives as Terms
 ArrayList derivativeIntervals = new ArrayList();
 derivativeIntervals.Add(newTerm(Engine, "(-inf, -14.5)", tsiDerivatives,
 music, null, 0));
 for(int i = 13; i >= 0; i--) {
 derivativeIntervals.Add(newTerm(Engine, "[-"+(i+1)+".5, -"+i+".5)",
 tsiDerivatives, music, null, 0));
 }
 derivativeIntervals.Add(newTerm(Engine, "[-0.5, 0.5)", tsiDerivatives,
 music, null, 0));
 for(int i = 0; i < 14; i++) {
 derivativeIntervals.Add(newTerm(Engine, "["+i+".5, "+(i+1)+".5)",
 tsiDerivatives, music, null, 0));
 }
 derivativeIntervals.Add(newTerm(Engine, "[14.5, +inf)", tsiDerivatives,
 music, null, 0));

 // Durations for the notes in score time
 ArrayList scoreDurationIntervals = new ArrayList();
 scoreDurationIntervals.Add(newTerm(Engine, "[2, 3)",
 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[3, 4)",

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE

 page 172

 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[4, 5)",
 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[5, 7)",
 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[7, 10)",
 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[10, 14)",
 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[14, 20)",
 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[20, 28)",
 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[28, 40)",
 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[40, 56)",
 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[56, 80)",
 tsiDurationsScore, music, null, 0));
 scoreDurationIntervals.Add(newTerm(Engine, "[80, +inf)",
 tsiDurationsScore, music, null, 0));

 // Domain creation
 Artifact domain = Engine.DomainArtifact;
 if(domain != null) {
 // Relationships among 1st derivative value terms
 for(int i = 0; i < derivativeIntervals.Count-1; i++) {
 RSHP rshpT = new RSHP(domain, siAssociation, false, false,
 0, false, false, false, false, false, 0, 0);
 KE keT1 = new KE(rshpT, derivativeIntervals[i] as Term,
 1, 0, 0, 0, 0);
 KE keT2 = new KE(rshpT, derivativeIntervals[i+1] as Term,
 2, 0, 0, 0, 0);
 }
 // Relationships among score time terms
 for(int i = 0; i < scoreDurationIntervals.Count-1; i++) {
 RSHP rshpT = new RSHP(domain, siAssociation, false, false, 0,
 false, false, false, false, false, 0, 0);
 KE keT1 = new KE(rshpT, scoreDurationIntervals[i] as Term,
 1, 0, 0, 0, 0);
 KE keT2 = new KE(rshpT, scoreDurationIntervals[i+1] as Term,
 2, 0, 0, 0, 0);
 }
 }else{
 MessageBox.Show("There was an error creating the domain.",
 "Domain Not Created", MessageBoxButtons.OK, MessageBoxIcon.Error);
 return;
 }
 Engine.Save(false);
 Engine.CalculateTermDistances(
 CalculateDistancesType.CalculateOnlyOneLevel, false, domain);
 MessageBox.Show("The domain was created successfully.",
 "Domain Created", MessageBoxButtons.OK, MessageBoxIcon.Information);
 }
 // Auxiliar functions to create the domain with default parameters
 protected SemanticItem newSemanticItem(CAKEEngine engine, string category,
 int JC, int databaseCode) {
 return new SemanticItem(engine, category, null, false, 180, false,
 false, false, false, null, null, false, null, null, JC,databaseCode);
 }
 protected TermSemanticItem newTermSemanticItem(CAKEEngine engine,
 string description, int JC, int databaseCode) {
 return new TermSemanticItem(engine, description,
 engine.TermSemanticItemFromJC(100), false, 1, 0, 0, 0.00001, 0.00001,
 false, false, JC, databaseCode);
 }
 protected Term newTerm(CAKEEngine engine, string normalizedTermName,
 TermSemanticItem kind, Language language, SemanticItem semanticItem,
 int databaseCode) {
 return new Term(engine, normalizedTermName, kind, language,semanticItem,
 false, 0, 0, null, null, null, null, null, null, null, null, true,
 0, 0, null, 0, 0, false, false, 0, 0, 0.00001, 0.00001,databaseCode);
 }
 }

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE

 page 173

}

1.4 MIKEManagerMainForm
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;

using WindowDockerLib;
using CAKE.Managers;
using CAKE;

namespace MIKE {
 public class MIKEManagerMainForm : DockableForm {
 private System.ComponentModel.Container components = null;
 private System.Windows.Forms.Button button1;

 private readonly MIKEManager _manager;

 public MIKEManagerMainForm(MIKEManager workingManager) : base() {
 _manager = workingManager;
 InitializeComponent();
 }
 protected override void Dispose(bool disposing) {
 if(disposing) {
 if(components != null) {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 #region Código generado por el Diseñador de Windows Forms
 private void InitializeComponent() {
 this.button1 = new System.Windows.Forms.Button();
 this.SuspendLayout();

 this.button1.Location = new System.Drawing.Point(8, 8);
 this.button1.Name = "button1";
 this.button1.Size = new System.Drawing.Size(88, 32);
 this.button1.TabIndex = 0;
 this.button1.Text = "Create Domain";
 this.button1.Click += new System.EventHandler(this.button1_Click);

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(292, 273);
 this.ControlBox = false;
 this.Controls.Add(this.button1);
 this.Name = "MIDIManagerMainForm";
 this.Text = "MIDIManagerMainForm";
 this.ResumeLayout(false);

 }
 #endregion

 private void button1_Click(object sender, System.EventArgs e) {
 if(_manager.IndexingManager != null) {
 button1.Enabled = false;
 _manager.CreateDomain(_manager.IndexingManager.Repository);
 button1.Enabled = true;
 }else{
 MessageBox.Show("You must be first connected to the repository",
 "No Repository Open", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 }
 }
}

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Preprocessing

 page 174

2 MIKE.Preprocessing

2.1 IPreprocessor
using System;
using Toub.Sound.Midi;

namespace MIKE.Preprocessing {
 public interface IPreprocessor {
 PreprocessedMidiSequence Preprocess(MidiSequence seq);
 }
}

2.2 PreprocessedMidiSequence
using System;
using System.Collections;
using System.IO;

namespace MIKE.Preprocessing {
 public class PreprocessedMidiSequence : IEnumerable{

 protected ArrayList _tracks;
 protected int _division;

 public int Count {
 get { return this._tracks.Count; }
 }
 public int Division {
 get { return _division; }
 }
 public PreprocessedMidiSequence(int division){
 _division = division;
 this._tracks = new ArrayList();
 }

 public void Add(PreprocessedMidiTrack trk) {
 this._tracks.Add(trk);
 }
 public PreprocessedMidiTrack this[int index] {
 get { return (PreprocessedMidiTrack)(this._tracks[index]); }
 set { this._tracks[index] = value; }
 }
 public IEnumerator GetEnumerator() {
 return this._tracks.GetEnumerator();
 }
 }
}

2.3 PreprocessedMidiTrack
using System;
using System.Collections;
using System.IO;

namespace MIKE.Preprocessing {
 public class PreprocessedMidiTrack : IEnumerable{
 protected ArrayList _notes;

 public int Count {
 get { return this._notes.Count; }
 }

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Preprocessing

 page 175

 public PreprocessedMidiTrack() {
 this._notes = new ArrayList();
 }

 public void Add(PreprocessedNote fig) {
 this._notes.Add(fig);
 }
 internal void SortByOnset() {
 this._notes.Sort(new PreprocessedNote.OnsetComparer());
 }
 public PreprocessedNote this[int index] {
 get { return (PreprocessedNote)(this._notes[index]); }
 set { this._notes[index] = value; }
 }
 public virtual IEnumerator GetEnumerator() {
 return _notes.GetEnumerator();
 }
 }
}

2.4 PreprocessedMidiNote
using System;
using System.Collections;

namespace MIKE.Preprocessing {
 public class PreprocessedNote {
 private long _onset;
 private int _duration;
 private byte _pitch;

 public long Onset {
 get { return this._onset; }
 }
 public int Duration {
 get { return this._duration; }
 }
 public byte Pitch {
 get { return this._pitch; }
 }
 public long Offset {
 get { return this._onset + this._duration; }
 }

 public PreprocessedNote(long onset, int duration, byte pitch) {
 this._onset = onset;
 this._duration = duration;
 this._pitch = pitch;
 }
 public static bool operator <= (PreprocessedNote n1, PreprocessedNote n2) {
 return n1.Onset <= n2.Onset;
 }
 public static bool operator >= (PreprocessedNote n1, PreprocessedNote n2) {
 return n1.Onset >= n2.Onset;
 }

 public bool Overlap(PreprocessedNote n2) {
 return (this.Onset <= n2.Onset && n2.Onset < this.Offset) ||
 (n2.Onset <= this.Onset && this.Onset < n2.Offset);
 }
 public override string ToString() {
 return this.Onset +"\t"+ this.Duration +"\t"+ this.Pitch;
 }
 public static string NoteName(byte note) {
 // Get the octave and the pitch within the octave
 int octave = note / 12;
 int pitch = note % 12;

 // Translate the pitch into a note name
 string name;
 switch(pitch) {
 case 0: name = "C"; break;

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Preprocessing

 page 176

 case 1: name = "C#"; break;
 case 2: name = "D"; break;
 case 3: name = "D#"; break;
 case 4: name = "E"; break;
 case 5: name = "F"; break;
 case 6: name = "F#"; break;
 case 7: name = "G"; break;
 case 8: name = "G#"; break;
 case 9: name = "A"; break;
 case 10: name = "A#"; break;
 case 11: name = "B"; break;
 default: name = ""; break;
 }
 // Append the octave onto the name
 return name + octave;
 }
 public class OnsetComparer : IComparer {
 public int Compare(object x, object y) {
 PreprocessedNote X = x as PreprocessedNote;
 PreprocessedNote Y = y as PreprocessedNote;

 // Compare the onset times
 return X.Onset.CompareTo(Y.Onset);
 }
 }
 }
}

2.5 MIKE.Preprocessing.Silly

2.5.1 SillyPreprocessor
using System;
using Toub.Sound.Midi;
using MIKE.Preprocessing;

namespace MIKE.Preprocessing.Silly {
 public class SillyPreprocessor: IPreprocessor {
 public PreprocessedMidiSequence Preprocess(MidiSequence seq) {
 if(seq.Format != 0 && seq.Format != 1)
 throw new ArgumentException(
 "SMF format "+ seq.Format +" not supported");

 PreprocessedMidiSequence pSeq =
 new PreprocessedMidiSequence(seq.Division);
 foreach(MidiTrack trk in seq) {
 PreprocessedMidiTrack pTrk = new PreprocessedMidiTrack();

 long[] onsets = new long[128];
 long onset = 0;
 foreach(MidiEvent e in trk.Events) {
 onset += e.DeltaTime;
 if(e is NoteVoiceMidiEvent) {
 NoteVoiceMidiEvent v = e as NoteVoiceMidiEvent;
 if(IsNoteOff(v)) {
 PreprocessedNote n = new PreprocessedNote(
 onsets[v.Note], (int)(onset - onsets[v.Note]), v.Note);
 pTrk.Add(n);
 } else if(IsNoteOn(v)) {
 onsets[v.Note] = onset;
 }
 }
 }
 pTrk.SortByOnset();
 if(pTrk.Count != 0){
 pSeq.Add(pTrk);
 }
 }
 return pSeq;
 }
 protected bool IsNoteOff(MidiEvent e) {

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Preprocessing

 page 177

 return (e is NoteOff || (e is NoteOn && ((NoteOn)e).Velocity == 0));
 }
 protected bool IsNoteOn(MidiEvent e) {
 return (e is NoteOn);
 }
 protected void DeltasToTotals(MidiTrack trk) {
 // Update all delta times to be total times
 MidiEventCollection evs = trk.Events;
 long total = evs[0].DeltaTime;
 for(int i = 1; i < evs.Count; i++) {
 total += evs[i].DeltaTime;
 evs[i].DeltaTime = total;
 }
 }
 }
}

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 178

3 MIKE.VoiceSeparation

3.1 IVoiceSeparator
using System;
using MIKE.Preprocessing;

namespace MIKE.VoiceSeparation {
 public interface IVoiceSeparator {
 SeparatedSequence SeparateVoices(PreprocessedMidiSequence pSeq);
 }
}

3.2 SeparatedSequence
using System;
using System.Collections;
using System.IO;

namespace MIKE.VoiceSeparation {
 public class SeparatedSequence : IEnumerable{

 protected ArrayList _tracks;
 protected int _division;

 public int Count {
 get { return this._tracks.Count; }
 }
 public int Division {
 get { return _division; }
 }
 public SeparatedSequence(int division){
 _division = division;
 this._tracks = new ArrayList();
 }

 public void Add(SeparatedTrack sTrk) {
 this._tracks.Add(sTrk);
 }
 public SeparatedTrack this[int index] {
 get { return (SeparatedTrack)(this._tracks[index]); }
 set { this._tracks[index] = value; }
 }
 public IEnumerator GetEnumerator() {
 return this._tracks.GetEnumerator();
 }
 }
}

3.3 SeparatedTrack
using System;
using System.Collections;
using System.IO;

namespace MIKE.VoiceSeparation {
 public class SeparatedTrack : IEnumerable{
 protected ArrayList _voices;

 public int Count {
 get { return _voices.Count; }
 }

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 179

 public SeparatedTrack() {
 _voices = new ArrayList();
 }

 public int Add(SeparatedVoice sVoice) {
 return _voices.Add(sVoice);
 }
 public SeparatedVoice this[int index] {
 get { return (SeparatedVoice)(_voices[index]); }
 set { _voices[index] = value; }
 }
 public virtual IEnumerator GetEnumerator() {
 return _voices.GetEnumerator();
 }
 }
}

3.4 SeparatedVoice
using System;
using System.Collections;
using System.IO;
using MIKE.Preprocessing;

namespace MIKE.VoiceSeparation {
 public class SeparatedVoice : IEnumerable{
 protected ArrayList _notes;

 public int Count {
 get { return this._notes.Count; }
 }

 public SeparatedVoice() {
 this._notes = new ArrayList();
 }

 public void Add(SeparatedNote sNote) {
 _notes.Add(sNote);
 SortByOnset();
 }
 public void Remove(SeparatedNote sNote) {
 _notes.Remove(sNote);
 SortByOnset();
 }
 public int IndexOf(SeparatedNote sNote) {
 return this._notes.IndexOf(sNote);
 }
 internal void SortByOnset() {
 this._notes.Sort(new MIKE.VoiceSeparation.OnsetComparer());
 }
 public SeparatedNote this[int index] {
 get { return (SeparatedNote)(this._notes[index]); }
 set { this._notes[index] = value; }
 }
 public virtual IEnumerator GetEnumerator() {
 return _notes.GetEnumerator();
 }
 }
}

3.5 SeparatedNote
using System;
using System.Collections;
using MIKE.Preprocessing;

namespace MIKE.VoiceSeparation {
 public interface SeparatedNote {
 long Onset {

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 180

 get;
 }
 int Duration {
 get;
 }
 long Offset {
 get;
 }
 bool IsChord {
 get;
 }
 }

 public class OnsetComparer : IComparer {
 public int Compare(object x, object y) {
 SeparatedNote X = x as SeparatedNote;
 SeparatedNote Y = y as SeparatedNote;
 // Compare the onset times
 return X.Onset.CompareTo(Y.Onset);
 }
 }
}

3.6 SeparatedSingleNote
using System;
using System.Collections;
using MIKE.Preprocessing;

namespace MIKE.VoiceSeparation {
 public class SeparatedSingleNote : SeparatedNote{
 private long _onset;
 private int _duration;
 private byte _pitch;

 public long Onset {
 get { return _onset; }
 }
 public int Duration {
 get { return _duration; }
 }
 public byte Pitch {
 get { return _pitch; }
 }
 public long Offset {
 get { return _onset + _duration; }
 }
 public bool IsChord {
 get { return false; }
 }

 public SeparatedSingleNote(long onset, int duration, byte pitch) {
 this._onset = onset;
 this._duration = duration;
 this._pitch = pitch;
 }
 }
}

3.7 SeparatedChord
using System;
using System.Collections;
using System.IO;
using MIKE.Preprocessing;

namespace MIKE.VoiceSeparation {
 public class SeparatedChord : SeparatedNote, IEnumerable{
 protected ArrayList _notes;

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 181

 private long _onset;
 private int _duration;

 public long Onset {
 get { return this[0].Onset; }
 }
 public int Duration {
 get { return (int)(this[Count-1].Offset-this[0].Onset); }
 }
 public long Offset {
 get { return this[Count-1].Offset; }
 }
 public bool IsChord {
 get { return true; }
 }

 public int Count {
 get { return _notes.Count; }
 }

 public SeparatedChord() {
 _notes = new ArrayList();
 }

 public void Add(SeparatedSingleNote sNote) {
 _notes.Add(sNote);
 SortByOnset();
 }
 public void Remove(SeparatedSingleNote sNote) {
 _notes.Remove(sNote);
 SortByOnset();
 }
 protected void SortByOnset() {
 _notes.Sort(new MIKE.VoiceSeparation.OnsetComparer());
 }
 public SeparatedSingleNote this[int index] {
 get { return (SeparatedSingleNote)(_notes[index]); }
 set { _notes[index] = value; }
 }
 public virtual IEnumerator GetEnumerator() {
 return _notes.GetEnumerator();
 }
 }
}

3.8 MIKE.VoiceSeparation.KilianHoos

3.8.1 KilianHoosVoiceSeparator
using System;
using System.Collections;
using MIKE.Preprocessing;

namespace MIKE.VoiceSeparation.KilianHoos {

 public class KilianHoosVoiceSeparator : IVoiceSeparator {

 protected const int N_VOICES = 2;
 protected const double K_pitch = 0.3;
 protected const double K_gap = 0.8;
 protected const double K_chord = 0.3;
 protected const double K_overlap = 0.1;

 public SeparatedSequence SeparateVoices(PreprocessedMidiSequence pSeq) {
 return null;
 }

 public SeparatedSequence SeparateVoices(PreprocessedMidiSequence pSeq) {
 ArrayList Ss = new ArrayList();
 foreach(PreprocessedMidiTrack pTrk in pSeq) {

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 182

 if(pTrk.Count != 0){
 ArrayList B = CalculateVectorB(pTrk);
 ArrayList Y = CalculateSlicesY(B, pTrk);
 ArrayList S = new ArrayList();
 foreach(ArrayList y_i in Y) {
 ArrayList S_i = SeparateSlice(y_i, S);
 S.Add(S_i);
 // Remove overlaps and regularize chords
 }
 Ss.Add(S);
 }
 }
 return Ss;
 }

 #region Main Algorithm's Procedures

 protected ArrayList SeparateSlice(ArrayList y_i, ArrayList S) {
 ArrayList S_i = InitializeS_i(y_i);
 ArrayList S_i_opt = S_i;
 int noImpr = 0;

 Random r = new Random();
 while(noImpr < y_i.Count*N_VOICES*3) {
 ArrayList neighbors = CalculateNeighbors(S_i);
 if(r.Next(10) <= 8) {
 if(neighbors.Count != 0){
 ArrayList S_min = neighbors[0] as ArrayList;
 foreach(ArrayList S_j in neighbors) {
 if(C(S_j, S) < C(S_min, S)){
 S_min = S_j;
 }
 }
 S_i = S_min;
 Console.Write(" Minima con C="+C(S_i, S)+": ");
 foreach(KilianHoosSingleNote m in S_i) {
 Console.Write(m+", ");
 }
 Console.WriteLine();
 }else{
 noImpr = Int32.MaxValue-1;
 }
 }else{
 if(neighbors.Count != 0){
 S_i = neighbors[r.Next(neighbors.Count-1)] as ArrayList;
 Console.Write(" Random con C="+C(S_i, S)+": ");
 foreach(KilianHoosSingleNote m in S_i) {
 Console.Write(m+", ");
 }
 Console.WriteLine();
 }else{
 noImpr = Int32.MaxValue-1;
 }
 }
 if(C(S_i, S) < C(S_i_opt, S)) {
 S_i_opt = S_i;
 noImpr = 0;
 }else{
 noImpr++;
 }
 }
 return S_i_opt;
 }
 private ArrayList InitializeS_i(ArrayList y_i) {
 ArrayList S_i = new ArrayList();
 ArrayList temp = new ArrayList();
 // Add them to a temporal list, without chords
 foreach(KilianHoosSingleNote m in y_i) {
 KilianHoosSingleNote m2 = m.Clone();
 m2.Voice = 0;
 temp.Add(m2);
 }
 // Group into chords when possible
 KilianHoosNote last = null;

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 183

 foreach(KilianHoosSingleNote m in temp) {
 if(last != null && m.Onset == last.Onset) {
 // If has the same onset and duration as another one,
 // group them into a chord
 if(!last.IsChord) {
 KilianHoosChord c = new KilianHoosChord();
 c.Add(last as KilianHoosSingleNote);
 last = c;
 }
 (last as KilianHoosChord).Add(m);
 }
 S_i.Add(m);
 last = m;
 }
 return S_i;
 }
 private ArrayList CalculateNeighbors(ArrayList S_i) {
 ArrayList neighbors = new ArrayList();
 // Create neighbors by changing voices note by note
 for(int i = 0; i < S_i.Count; i++){
 KilianHoosSingleNote m_i = S_i[i] as KilianHoosSingleNote;
 // Create a neighbor for each of the remaining voices of note m_i
 for(int v = m_i.Voice+1; v < N_VOICES; v++) {
 ArrayList neighbor = new ArrayList();
 // Add previous notes to the neighbor maintaining voice
 // and with no chord
 for(int j = 0; j < i; j++) {
 KilianHoosSingleNote m_j = S_i[j] as KilianHoosSingleNote;
 KilianHoosSingleNote m_j_2 = m_j.Clone();
 m_j_2.Voice = m_j.Voice;
 neighbor.Add(m_j_2);
 }
 // Add the current note with another voice
 KilianHoosSingleNote m_i_2 = m_i.Clone();
 m_i_2.Voice = v;
 neighbor.Add(m_i_2);
 // Add following notes to the neighbor maintaining voice
 // and with no chord
 for(int j = i+1; j < S_i.Count; j++){
 KilianHoosSingleNote m_j = S_i[j] as KilianHoosSingleNote;
 KilianHoosSingleNote m_j_2 = m_j.Clone();
 m_j_2.Voice = m_j.Voice;
 neighbor.Add(m_j_2);
 }
 // Group notes with same onset and voice into chords
 ArrayList grouped = new ArrayList();
 for(int j = 0; j < neighbor.Count; j++) {
 if(!grouped.Contains(j as Object)) {
 KilianHoosSingleNote m_j = neighbor[j]
 as KilianHoosSingleNote;
 // Check the following notes
 for(int k = j+1; k < neighbor.Count; k++) {
 KilianHoosSingleNote m_k = neighbor[k]
 as KilianHoosSingleNote;
 if(m_j.Voice == m_k.Voice && m_j.Onset == m_k.Onset){
 if(!m_j.IsChord){
 m_j.Chord = new ArrayList();
 }
 m_k.Chord = m_j.Chord;
 grouped.Add(k as object);
 grouped.Add(j as object);
 }
 }
 }
 }
 neighbors.Add(neighbor);
 }
 }
 return neighbors;
 }
 protected double C(ArrayList S_i, ArrayList S) {
 double p = K_pitch*C_pitch(S_i, S);
 double g = K_gap*C_gap(S_i, S);
 double c = K_chord*C_chord(S_i);

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 184

 double o = K_overlap*C_overlap(S_i, S);
 /*double r = p + (1-p)*g;
 r = r + (1-r)*c;
 r = r + (1-r)*o;
 return r;*/
 return p+g+c+o;
 }

 #endregion

 #region Input Splitting

 protected ArrayList CalculateVectorB(PreprocessedMidiTrack pTrk) {
 ArrayList B = new ArrayList();
 // First index is the first note's
 B.Add((object)0);
 for(int i = 1; i < pTrk.Count; i++) {
 int j = (int)B[B.Count-1];
 // Check that overlaps with all previous notes
 // within the current slice
 while(j < i && pTrk[i].Overlap(pTrk[j])) {
 j++;
 }
 // If not, start new slice with that index
 if(i != j) {
 B.Add(i as object);
 }
 }
 return B;
 }
 protected ArrayList CalculateSlicesY(ArrayList B,
 PreprocessedMidiTrack pTrk) {
 ArrayList Y = new ArrayList();
 ArrayList y = null;
 for(int i = 0, b = 0; i < pTrk.Count; i++) {
 if(B.GetRange(b, B.Count-b).Contains(i as object)) {
 // If the note index is beyond the current slice,
 // create a new one
 y = new ArrayList();
 Y.Add(y);
 y.Add(new KilianHoosSingleNote(pTrk[i]));
 b++;
 }else{
 // If not, add it to the current slice
 y.Add(new KilianHoosSingleNote(pTrk[i]));
 }
 }
 return Y;
 }

 #endregion

 #region Pitch Distance Penalty

 protected byte cPitch(KilianHoosSingleNote m_j, byte p_l) {
 return cPitchNote(m_j, p_l).Pitch;
 }
 private KilianHoosSingleNote cPitchNote(KilianHoosSingleNote m_j,byte p_l){
 if(!m_j.IsChord) {
 // If m_j does not belong to a chord, return itself
 return m_j;
 }else{
 // If not, return the note within the chord that is
 // closest in pitch to p_l
 KilianHoosSingleNote m_c = m_j;
 foreach(KilianHoosSingleNote m_k in m_j.Chord) {
 if(Math.Abs(m_k.Pitch - p_l) < Math.Abs(m_c.Pitch - p_l)) {
 m_c = m_k;
 }
 }
 return m_c;
 }
 }
 protected KilianHoosSingleNote lOnset(int v, ArrayList S) {

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 185

 KilianHoosSingleNote m_latest = null;
 int i = S.Count-1;
 // Search within the previous separations
 while(i >= 0 && m_latest == null){
 ArrayList S_i = S[i] as ArrayList;
 int j = S_i.Count-1;
 // Search within the notes of each separation
 while(j >= 0 && m_latest == null){
 KilianHoosSingleNote m_j = S_i[j] as KilianHoosSingleNote;
 if(m_j.Voice == v) {
 m_latest = m_j;
 }
 j--;
 }
 i--;
 }
 return m_latest;
 }
 protected double C_pitch(ArrayList S_i, ArrayList S,
 KilianHoosSingleNote m_0) {
 // Take the last note in S with voice v
 KilianHoosSingleNote prevNote = lOnset(m_0.Voice, S);
 double pvD = 0;
 if(prevNote == null) {
 // m_0 starts a new voice
 prevNote = m_0;
 pvD = 0.3;
 }
 foreach(KilianHoosSingleNote m_j in S_i) {
 if(m_j.Voice == m_0.Voice) {
 double pDist = (double)Math.Abs(cPitch(prevNote, m_j.Pitch) -
 m_j.Pitch) / 128;
 pvD += (1-pvD)*pDist;
 if(!prevNote.IsChord || !m_j.IsChord ||
 !prevNote.Chord.Equals(m_j.Chord)) {
 prevNote = m_j;
 }
 }
 }
 return pvD;
 }
 protected double C_pitch(ArrayList S_i, ArrayList S) {
 double pD = 0;
 ArrayList usedVoices = new ArrayList();
 foreach(KilianHoosSingleNote m_j in S_i) {
 if(!usedVoices.Contains(m_j.Voice)){
 usedVoices.Add(m_j.Voice as object);
 pD += (1-pD)*C_pitch(S_i, S, m_j);
 }
 }
 return pD;
 }
 #endregion

 #region Gap Distance Penalty

 protected double cGap(KilianHoosSingleNote m_g, ArrayList S) {
 if(lOnset(m_g.Voice, S) == null) {
 // m_g starts a new voice
 return 0.1; // Penalize accordingly
 }
 ArrayList calculatedVoices = new ArrayList();
 KilianHoosSingleNote m_max = m_g;
 KilianHoosSingleNote m_max_v = null;
 int i = S.Count-1;
 // Search within the previous separations
 while(i >= 0 && calculatedVoices.Count != N_VOICES){
 ArrayList S_i = S[i] as ArrayList;
 int j = S_i.Count-1;
 // Search within the notes of each separation
 while(j >= 0 && calculatedVoices.Count != N_VOICES){
 KilianHoosSingleNote m_j = S_i[j] as KilianHoosSingleNote;
 if(!calculatedVoices.Contains(m_j.Voice as object)) {
 calculatedVoices.Add(m_j.Voice as object);

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 186

 if(m_j.Voice == m_g.Voice) {
 m_max_v = m_j;
 }
 if(m_max.Offset > m_j.Offset) {
 m_max = m_j;
 }
 }
 j--;
 }
 i--;
 }
 if(m_g.Onset != m_max.Offset){
 return (m_g.Onset - m_max_v.Offset) / (m_g.Onset - m_max.Offset);
 }else{
 return 0;
 }
 }
 protected double C_gap(ArrayList S_i, ArrayList S) {
 double gD = 0;
 int cNotes = 0;
 ArrayList usedVoices = new ArrayList();
 foreach(KilianHoosSingleNote m_j in S_i) {
 if(!usedVoices.Contains(m_j.Voice)){
 usedVoices.Add(m_j.Voice as object);
 gD += cGap(m_j, S);
 cNotes++;
 }
 }
 gD /= cNotes;
 return gD;
 }

 #endregion

 #region Chord Distance Penalty

 protected double C_chord(ArrayList S_i) {
 double cD = 0;
 ArrayList usedChords = new ArrayList();
 foreach(KilianHoosSingleNote m in S_i) {
 if(m.IsChord && !usedChords.Contains(m.Chord)){
 usedChords.Add(m.Chord);
 double p = pDuration(m.Chord) +
 (1-pDuration(m.Chord))*pRange(m.Chord);
 p += (1-p)*pOnset(m.Chord);
 cD += (1-cD)*p;
 }
 }
 return cD;
 }
 protected double pRange(ArrayList c) {
 KilianHoosSingleNote p_highest = c[0] as KilianHoosSingleNote;
 KilianHoosSingleNote p_lowest = c[0] as KilianHoosSingleNote;
 foreach(KilianHoosSingleNote m_i in c) {
 if(m_i.Pitch > p_highest.Pitch) {
 p_highest = m_i;
 }else if(m_i.Pitch < p_lowest.Pitch) {
 p_lowest = m_i;
 }
 }
 double r = Math.Min((double)(p_highest.Pitch - p_lowest.Pitch) / 24, 1);
 return r;
 }
 protected double pDuration(ArrayList c) {
 KilianHoosSingleNote d_longest = c[0] as KilianHoosSingleNote;
 KilianHoosSingleNote d_shortest = c[0] as KilianHoosSingleNote;
 foreach(KilianHoosSingleNote m_i in c) {
 if(m_i.Duration > d_longest.Duration) {
 d_longest = m_i;
 }else if(m_i.Duration< d_shortest.Duration) {
 d_shortest = m_i;
 }
 }
 double r = 1 - (double)(d_longest.Duration / d_shortest.Duration);

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 187

 return r;
 }
 protected double pOnset(ArrayList c) {
 KilianHoosSingleNote o_earliest = c[0] as KilianHoosSingleNote;
 KilianHoosSingleNote o_latest = c[0] as KilianHoosSingleNote;
 KilianHoosSingleNote d_longest = c[0] as KilianHoosSingleNote;
 foreach(KilianHoosSingleNote m_i in c) {
 if(m_i.Onset > o_latest.Onset) {
 o_latest = m_i;
 }else if(m_i.Onset < o_earliest.Onset) {
 o_earliest = m_i;
 }
 if(m_i.Duration > d_longest.Duration) {
 d_longest = m_i;
 }
 }
 double r = (double)(o_latest.Onset - o_earliest.Onset) /
 d_longest.Duration;
 return r;
 }
 #endregion

 #region Overlap Distance Penalty

 protected double C_overlap(ArrayList S_i, ArrayList S) {
 double oD = 0;
 ArrayList usedVoices = new ArrayList();
 foreach(KilianHoosSingleNote m in S_i) {
 if(!usedVoices.Contains(m.Voice as object)){
 usedVoices.Add(m.Voice as object);
 double oDist = C_overlap(S_i, S, m);
 oD += (1-oD)*oDist;
 }
 }
 return oD;
 }
 protected double C_overlap(ArrayList S_i, ArrayList S,
 KilianHoosSingleNote m_0) {
 KilianHoosSingleNote prevNote = lOnset(m_0.Voice, S);
 if(prevNote == null) {
 // m_0 starts the voice
 prevNote = m_0;
 }
 double ovD = 0;
 foreach(KilianHoosSingleNote m_j in S_i) {
 if(m_j.Voice == m_0.Voice) {
 double oDist = cOverlap(prevNote, m_j);
 ovD += (1-ovD)*oDist;
 if(!prevNote.IsChord || !m_j.IsChord ||
 !prevNote.Chord.Equals(m_j.Chord)) {
 prevNote = m_j;
 }
 }
 }
 return ovD;
 }
 protected double cOverlap(KilianHoosSingleNote m_j,
 KilianHoosSingleNote m_k) {
 if(m_j.Onset != m_k.Onset && m_j.Overlap(m_k)) {
 return 1-((double)(m_k.Onset-m_j.Onset)/m_j.Duration);
 }else{
 return 0;
 }
 }

 #endregion
 }
}

3.8.2 KilianHoosNote
using System;

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 188

namespace MIKE.VoiceSeparation.KilianHoos {
 public interface KilianHoosNote {
 long Onset {
 get;
 }
 bool IsChord {
 get;
 }
 int Voice {
 get;
 set;
 }
 }
}

3.8.3 KilianHoosSingleNote
using System;
using System.Collections;
using MIKE.Preprocessing;

namespace MIKE.VoiceSeparation.KilianHoos {
 public class KilianHoosSingleNote : PreprocessedNote, KilianHoosNote {
 private ArrayList _chord;
 private int _voice;

 public ArrayList Chord {
 set {
 if(this.IsChord){
 this._chord.Remove(this);
 }
 this._chord = value;
 if(this.IsChord){
 this.Chord.Add(this);
 }
 }
 get { return this._chord; }
 }
 public bool IsChord {
 get { return this.Chord != null; }
 }
 public int Voice {
 set { this._voice = value; }
 get { return this._voice; }
 }
 public KilianHoosSingleNote(PreprocessedNote pNote) :
 base(pNote.Onset, pNote.Duration, pNote.Pitch) {
 this._chord = null;
 this._voice = -1;
 }
 protected KilianHoosSingleNote(long onset, int duration, byte pitch) :
 base(onset, duration, pitch) {
 this._chord = null;
 this._voice = -1;
 }
 public KilianHoosSingleNote Clone() {
 KilianHoosSingleNote m = new KilianHoosSingleNote(
 this.Onset, this.Duration, this.Pitch);
 return m;
 }
 }
}

3.8.4 KilianHoosChord
using System;
using System.Collections;

namespace MIKE.VoiceSeparation.KilianHoos {
 public class KilianHoosChord : KilianHoosNote, IEnumerable {
 private int _voice;
 public int Voice {
 get{ return this._voice; }

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.VoiceSeparation

 page 189

 set{ this._voice = value; }
 }
 public long Onset {
 get { return this[0].Onset; }
 }
 public bool IsChord {
 get { return true; }
 }
 private ArrayList _notes;

 public KilianHoosChord() {
 this._notes = new ArrayList();
 }
 public void Add(KilianHoosSingleNote m){
 this._notes.Add(m);
 }
 public KilianHoosSingleNote this[int index] {
 get { return this._notes[index] as KilianHoosSingleNote; }
 }
 public IEnumerator GetEnumerator() {
 return this._notes.GetEnumerator();
 }
 }
}

3.9 MIKE.VoiceSeparation.Silly

3.9.1 SillyVoiceSeparator
using System;
using System.Collections;
using MIKE.Preprocessing;
using MIKE.VoiceSeparation;

namespace MIKE.VoiceSeparation.Silly {
 public class SillySeparator : IVoiceSeparator {

 public SeparatedSequence SeparateVoices(PreprocessedMidiSequence pSeq) {
 SeparatedSequence sSeq = new SeparatedSequence(pSeq.Division);
 SeparatedTrack sTrk = new SeparatedTrack();
 foreach(PreprocessedMidiTrack pVoice in pSeq) {
 SeparatedVoice sVoice = new SeparatedVoice();

 SeparatedNote prev = null;
 foreach(PreprocessedNote m in pVoice){
 SeparatedSingleNote ssn = new SeparatedSingleNote(
 m.Onset, m.Duration, m.Pitch);
 if(prev != null && m.Onset == prev.Onset){
 if(!prev.IsChord){
 SeparatedChord c = new SeparatedChord();
 c.Add(prev as SeparatedSingleNote);
 c.Add(ssn);
 prev = c;
 }else{
 (prev as SeparatedChord).Add(ssn);
 }
 }else{
 if(prev != null){
 sVoice.Add(prev);
 }
 prev = ssn;
 }
 }
 sVoice.Add(prev);
 sTrk.Add(sVoice);
 }
 sSeq.Add(sTrk);
 return sSeq;
 }
 }
}

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Quantization

 page 190

4 MIKE.Quantization

4.1 IQuantizator
using System;
using MIKE.VoiceSeparation;

namespace MIKE.Quantization {
 public interface IQuantizator {
 QuantizedSequence Quantize(SeparatedSequence sSeq);
 }
}

4.2 QuantizedSequence
using System;
using System.Collections;
using System.IO;
using MIKE.VoiceSeparation;

namespace MIKE.Quantization {
 public class QuantizedSequence : IEnumerable{

 protected ArrayList _staffs;

 public int Count {
 get { return _staffs.Count; }
 }

 public QuantizedSequence(){
 _staffs = new ArrayList();
 }

 public void Add(QuantizedStaff qStaff) {
 _staffs.Add(qStaff);
 }
 public QuantizedStaff this[int index] {
 get { return (QuantizedStaff)(_staffs[index]); }
 set { _staffs[index] = value; }
 }
 public IEnumerator GetEnumerator() {
 return _staffs.GetEnumerator();
 }
 }
}

4.3 QuantizedStaff
using System;
using System.Collections;
using System.Drawing;

namespace MIKE.Quantization {
 public class QuantizedStaff : IEnumerable {
 protected ArrayList _voices;

 public int Count {
 get { return _voices.Count; }
 }
 public QuantizedStaff() {
 _voices = new ArrayList();
 }
 public void Add(QuantizedVoice voice) {

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Quantization

 page 191

 _voices.Add(voice);
 }
 public QuantizedVoice this[int index] {
 get { return _voices[index] as QuantizedVoice; }
 }
 public IEnumerator GetEnumerator() {
 return _voices.GetEnumerator();
 }

 public void Paint(Graphics g, int s, int offset) {
 foreach(QuantizedVoice v in this) {
 foreach(QuantizedNote n in v) {
 if(n.IsChord) {
 foreach(QuantizedSingleNote sn in (n as QuantizedChord)) {
 g.DrawRectangle(new Pen(Color.Black, 1),
 sn.Onset*s*-1, offset-sn.Pitch*s-1, 2, 2);
 }
 }else{
 g.DrawRectangle(new Pen(Color.Black, 1),
 ((QuantizedSingleNote)n).Onset*s-1,
 offset-((QuantizedSingleNote)n).Pitch*s-1, 2, 2);
 }
 }
 }
 }
 }
}

4.4 QuantizedVoice
using System;
using System.Collections;

namespace MIKE.Quantization {
 public class QuantizedVoice : IEnumerable {
 protected ArrayList _notes;

 public int Count {
 get { return _notes.Count; }
 }
 public QuantizedVoice() {
 _notes = new ArrayList();
 }
 public void Add(QuantizedNote note) {
 _notes.Add(note);
 }
 public QuantizedNote this[int index] {
 get { return _notes[index] as QuantizedNote; }
 }
 public IEnumerator GetEnumerator() {
 return _notes.GetEnumerator();
 }
 }
}

4.5 QuantizedDurations
using System;

namespace MIKE.Quantization {
 public enum QuantizedDurations {
 TupletDemisemiquaver = 2,
 Demisemiquaver = 3,
 TupletSemiquaver = 4,
 Semiquaver = 6,
 TupletQuaver = 8,
 Quaver = 12,
 TupletCrotchet = 16,
 Crotchet = 24,

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Quantization

 page 192

 TupletMinim = 32,
 Minim = 48,
 TupletSemibreve = 64,
 Semibreve = 96,
 }
}

4.6 QuantizedNote
using System;

namespace MIKE.Quantization {
 public interface QuantizedNote {
 int Onset {
 get;
 }
 bool IsChord {
 get;
 }
 }
}

4.7 QuantizedSingleNote
using System;

namespace MIKE.Quantization {
 public class QuantizedSingleNote : QuantizedNote {
 protected byte _pitch;
 protected int _onset;
 protected int _duration;

 public byte Pitch {
 get { return _pitch; }
 }
 public int Onset {
 get { return _onset; }
 }
 public bool IsChord {
 get { return false; }
 }
 public QuantizedSingleNote(byte pitch, int onset, int duration) {
 _pitch = pitch;
 _onset = onset;
 _duration = duration;
 }
 }
}

4.8 QuantizedChord
using System;
using System.Collections;

namespace MIKE.Quantization {
 public class QuantizedChord : QuantizedNote, IEnumerable {
 protected ArrayList _notes;

 public int Onset {
 get { return ((QuantizedSingleNote)_notes[0]).Onset; }
 }
 public bool IsChord {
 get { return true; }
 }
 public int Count {
 get { return _notes.Count; }
 }

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Quantization

 page 193

 public QuantizedChord(){
 _notes = new ArrayList();
 }
 public void Add(QuantizedSingleNote note) {
 _notes.Add(note);
 }
 public QuantizedSingleNote this[int index] {
 get { return _notes[index] as QuantizedSingleNote; }
 }
 public IEnumerator GetEnumerator() {
 return _notes.GetEnumerator();
 }
 }
}

4.9 MIKE.Quantization.Silly

4.9.1 SillyQuantizator
using System;
using MIKE.VoiceSeparation;

namespace MIKE.Quantization.Silly {
 public class SillyQuantizator : IQuantizator {
 public QuantizedSequence Quantize(SeparatedSequence sSeq) {
 int division = sSeq.Division;

 QuantizedSequence qSeq = new QuantizedSequence();
 foreach(SeparatedTrack sTrack in sSeq){
 QuantizedStaff qStaff = new QuantizedStaff();
 foreach(SeparatedVoice sVoice in sTrack){
 QuantizedVoice qVoice = new QuantizedVoice();
 foreach(SeparatedNote sNote in sVoice){
 if(sNote.IsChord) {
 QuantizedChord qChord = new QuantizedChord();
 foreach(SeparatedSingleNote m in (sNote as SeparatedChord)){
 int onset = ((int)(m.Onset*
 (int)QuantizedDurations.Crotchet)/division);
 int duration = ((int)(m.Duration*
 (int)QuantizedDurations.Crotchet)/division);
 QuantizedSingleNote qNote = new QuantizedSingleNote(
 m.Pitch, onset, duration);
 qChord.Add(qNote);
 }
 qVoice.Add(qChord);
 }else{
 SeparatedSingleNote m = sNote as SeparatedSingleNote;
 int onset = ((int)(m.Onset*
 (int)QuantizedDurations.Crotchet)/division);
 int duration = ((int)(m.Duration*
 (int)QuantizedDurations.Crotchet)/division);
 QuantizedSingleNote qNote = new QuantizedSingleNote(
 m.Pitch, onset, duration);
 qVoice.Add(qNote);
 }
 }
 qStaff.Add(qVoice);
 }
 qSeq.Add(qStaff);
 }
 return qSeq;
 }
 }
}

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Interpolation

 page 194

5 MIKE.Interpolation

5.1 IInterpolator
using System;
using MIKE.Quantization;

namespace MIKE.Interpolation {
 public interface IInterpolator {
 InterpolatedSequence Interpolate(QuantizedSequence qSeq);
 }
}

5.2 InterpolatedSequence
using System;
using System.Collections;
using System.IO;
using MIKE.Quantization;

namespace MIKE.Interpolation {
 public class InterpolatedSequence : IEnumerable{

 protected ArrayList _staffs;

 public int Count {
 get { return _staffs.Count; }
 }

 public InterpolatedSequence(){
 _staffs = new ArrayList();
 }

 public void Add(InterpolatedStaff iStaff) {
 _staffs.Add(iStaff);
 }
 public InterpolatedStaff this[int index] {
 get { return (InterpolatedStaff)(_staffs[index]); }
 set { _staffs[index] = value; }
 }
 public IEnumerator GetEnumerator() {
 return _staffs.GetEnumerator();
 }
 }
}

5.3 InterpolatedStaff
using System;
using System.Collections;
using System.Drawing;

namespace MIKE.Interpolation {
 public class InterpolatedStaff : IEnumerable {
 protected ArrayList _voices;

 public int Count {
 get { return _voices.Count; }
 }
 public InterpolatedStaff() {
 _voices = new ArrayList();
 }
 public void Add(InterpolatedVoice voice) {

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Interpolation

 page 195

 _voices.Add(voice);
 }
 public InterpolatedVoice this[int index] {
 get { return _voices[index] as InterpolatedVoice; }
 }
 public IEnumerator GetEnumerator() {
 return _voices.GetEnumerator();
 }
 public ArrayList GetDerivativesAt(int scoreTime) {
 ArrayList l = new ArrayList();
 foreach(InterpolatedVoice iVoice in _voices) {
 l.Add(iVoice.GetDerivativesAt(scoreTime));
 }
 return l;
 }
 public void Paint(Graphics g, int ss, int offset) {
 Pen[] pens = new Pen[]{ new Pen(Color.Blue, 1),
 new Pen(Color.Green, 1),
 new Pen(Color.Red, 1)};
 float s = 6f;
 offset = 1000;
 g.DrawLine(new Pen(Color.Gray, 1), 0, offset/2, 3000, offset/2);
 g.DrawLine(new Pen(Color.Gray, 1), 0, offset, 3000, offset);

 int e=0;
 foreach(InterpolatedVoice iVoice in _voices){
 PointF dp_1 = new PointF(0, 0);
 PointF dp_2 = new PointF(0, 0);
 foreach(InterpolatedSpan iSpan in iVoice) {
 foreach(Polynomial poly in iSpan) {
 double d = 1f/20;
 for(int j = 0; j <= 20; j++){
 float x = (float)(iSpan.ScoreOnset+iSpan.ScoreDuration*j*d);
 float dy = (float)(poly.Evaluate(j*d));
 dp_2 = new PointF(x*s, offset/2-dy*s*2);
 g.DrawLine(pens[e%pens.Length], dp_1, dp_2);
 dp_1 = dp_2;
 if(j%5==0)
 g.DrawString(Math.Round(dy, 3)+"",
 new Font("Arial Narrow", 6), Brushes.Black, dp_2);
 }
 }
 e++;
 }
 }
 }
 }
}

5.4 InterpolatedVoice
using System;
using System.Collections;

namespace MIKE.Interpolation {
 public class InterpolatedVoice : IEnumerable {
 protected ArrayList _spans;

 public int Count {
 get { return _spans.Count; }
 }
 public InterpolatedVoice() {
 _spans = new ArrayList();
 }
 public void Add(InterpolatedSpan span) {
 _spans.Add(span);
 }
 public InterpolatedSpan this[int index] {
 get { return _spans[index] as InterpolatedSpan; }
 }
 public IEnumerator GetEnumerator() {
 return _spans.GetEnumerator();

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Interpolation

 page 196

 }
 public InterpolatedSpan GetSpanAt(int scoreTime) {
 return GetSpanAt(scoreTime, 0, Count-1);
 }
 private InterpolatedSpan GetSpanAt(int scoreTime, int left, int right) {
 if(right < left){
 return null;
 }
 int iMid = (left+right)/2;
 InterpolatedSpan mid = _spans[iMid] as InterpolatedSpan;
 if(mid.EvaluateXAt(0) <= scoreTime && scoreTime <= mid.EvaluateXAt(1)){
 return mid;
 }
 if(mid.EvaluateXAt(0) > scoreTime){
 return GetSpanAt(scoreTime, left, iMid-1);
 }else{
 return GetSpanAt(scoreTime, iMid+1, right);
 }
 }
 public ArrayList GetDerivativesAt(int scoreTime) {
 ArrayList l = new ArrayList();
 InterpolatedSpan iSpan = GetSpanAt(scoreTime);
 if(iSpan != null) {
 l = iSpan.GetDerivativesAt(scoreTime);
 }
 return l;
 }
 }
}

5.5 InterpolatedSpan
using System;
using System.Collections;
using MIKE.Quantization;

namespace MIKE.Interpolation {

 public class InterpolatedSpan : IEnumerable {

 protected Polynomial _x;
 protected ArrayList _polys;
 protected int _scoreOnset;
 protected int _scoreDuration;

 public int ScoreOnset {
 get { return _scoreOnset; }
 }
 public int ScoreDuration {
 get { return _scoreDuration; }
 }
 public int Count {
 get { return _polys.Count; }
 }

 public InterpolatedSpan(Polynomial x, int scoreOnset, int scoreDuration) {
 _x = x;
 _polys = new ArrayList();
 _scoreOnset = scoreOnset;
 _scoreDuration = scoreDuration;
 }
 public void Add(Polynomial poly) {
 _polys.Add(poly);
 }
 public Polynomial this[int index] {
 get { return _polys[index] as Polynomial; }
 }
 public IEnumerator GetEnumerator() {
 return _polys.GetEnumerator();
 }
 public ArrayList GetDerivativesAt(int scoreTime) {
 double u = ((double)(scoreTime-ScoreOnset))/ScoreDuration;

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Interpolation

 page 197

 ArrayList l = new ArrayList();

 foreach(Polynomial p in _polys) {
 l.Add(p.Evaluate(u) as object);
 }
 return l;
 }
 public double EvaluateXAt(double u) {
 return _x.Evaluate(u)*ScoreDuration+ScoreOnset;
 }
 }
}

5.6 Polynomial
using System;
using System.Collections;
using System.Text;

namespace MIKE.Interpolation {
 public class Polynomial {

 public static readonly Polynomial ZERO = new Polynomial(new double[] {0});
 public static readonly Polynomial ONE = new Polynomial(new double[] {1});

 protected double[] _coefs;
 public int Degree {
 get{ return _coefs.Length-1; }
 }

 public PolynomialShapes Shape {
 get {
 Polynomial ddd = Derivative().Derivative();
 if(ddd.Evaluate(0)<0)
 return PolynomialShapes.Convex;
 else if(ddd.Evaluate(0)==0)
 return PolynomialShapes.Flat;
 else
 return PolynomialShapes.Concave;
 }
 }
 protected Polynomial(int degree) {
 this._coefs = new double[degree+1];
 }
 public Polynomial(double[] coefs) {
 _coefs = new double[coefs.Length];
 for(int i = 0; i < coefs.Length; i++){
 _coefs[i] = coefs[i];
 }
 Narrow();
 }

 public Polynomial Add(Polynomial p) {
 Polynomial r = new Polynomial(Math.Max(Degree, p.Degree));
 for(int i = 0; i <= Degree; i++){
 r._coefs[i] = _coefs[i];
 }
 for(int i = 0; i<= p.Degree; i++){
 r._coefs[i] += p._coefs[i];
 }
 r.Narrow();
 return r;
 }
 public Polynomial Subtract(Polynomial p) {
 Polynomial r = new Polynomial(Math.Max(Degree, p.Degree));
 for(int i = 0; i <= Degree; i++) {
 r._coefs[i] = _coefs[i];
 }
 for(int i = 0; i <= p.Degree; i++){
 r._coefs[i] -= p._coefs[i];
 }
 r.Narrow();

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Interpolation

 page 198

 return r;
 }
 public Polynomial Multiply(Polynomial p) {
 Polynomial r = new Polynomial(Degree+p.Degree);
 for(int i = Degree; i >= 0; i--){
 for(int j = p.Degree; j >= 0; j--){
 r._coefs[i+j] += _coefs[i]*p._coefs[j];
 }
 }
 r.Narrow();
 return r;
 }
 public Polynomial Multiply(double d) {
 Polynomial r = new Polynomial(_coefs);
 for(int i = this.Degree; i >= 0; i--) {
 r._coefs[i] *= d;
 }
 return r;
 }
 public Polynomial Divide(double d) {
 Polynomial r = new Polynomial(_coefs);
 for(int i = this.Degree; i >= 0; i--) {
 r._coefs[i] /= d;
 }
 return r;
 }
 public Polynomial Derivative() {
 if(Degree == 0){
 return Polynomial.ZERO;
 }
 Polynomial r = new Polynomial(Degree-1);
 for(int i = Degree; i > 0; i--){
 r._coefs[i-1] = _coefs[i]*i;
 }
 return r;
 }
 public double Evaluate(double x) {
 double r = _coefs[0];
 for(int i = 1; i <= Degree; i++){
 r += _coefs[i]*Math.Pow(x, i);
 }
 return r;
 }
 protected void Narrow() {
 int i = Degree;
 while(i > 0 && _coefs[i] == 0){
 i--;
 }
 if(i >= 0 && i != Degree){
 double[] aux = new double[i+1];
 for(i = i ; i >= 0; i--) {
 aux[i] = _coefs[i];
 }
 _coefs = aux;
 }
 }
 public ArrayList Solve(double val) {
 if(Degree == 3) {
 return SolveDegree3(val);
 }else if(Degree == 2) {
 return SolveDegree2(val);
 }else {
 return SolveDegree1(val);
 }
 }
 private ArrayList SolveDegree3(double val) {
 ArrayList res = new ArrayList();
 double d = _coefs[0] - val;
 double c = _coefs[1];
 double b = _coefs[2];
 double a = _coefs[3];

 double s1 = 2*Math.Sqrt(b*b-3*a*c);
 double s2 = ((27*a*a*d-9*a*b*c+2*b*b*b)*Math.Sign(a))/

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Interpolation

 page 199

 (2*(b*b-3*a*c)*Math.Sqrt(b*b-3*a*c));
 double s3 = 3*Math.Abs(a);
 double s4 = b/(3*a);

 double s5 = -b*b+3*a*c;
 double s6 = -2*b*b*b+9*a*b*c-27*a*a*d;
 double s7 = Math.Pow(s6+Math.Sqrt(4*Math.Pow(
 s5, 3)+Math.Pow(s6, 2)),1d/3);

 double r0 = -b/(3*a)-(Math.Pow(2, 1d/3)*s5)/(3*a*s7)+s7/
 (3*a*Math.Pow(2, 1d/3));
 double r1 = (s1*Math.Cos(Math.Acos(-s2)/3))/s3-s4;
 double r2 = (-s1*Math.Sin(Math.Asin(s2)/3 + Math.PI/3))/s3-s4;
 double r3 = (s1*Math.Sin(Math.Asin(s2)/3))/s3-s4;

 res.Add(r0 as object);
 res.Add(r1 as object);
 res.Add(r2 as object);
 res.Add(r3 as object);
 return res;
 }
 private ArrayList SolveDegree2(double val) {
 ArrayList res = new ArrayList();
 double d = _coefs[0] - val;
 double c = _coefs[1];
 double b = _coefs[2];

 double r1 = -c+Math.Sqrt(c*c-4*b*d)/(2*b);
 double r2 = -c-Math.Sqrt(c*c-4*b*d)/(2*b);

 res.Add(r1 as object);
 res.Add(r2 as object);
 return res;
 }
 private ArrayList SolveDegree1(double val) {
 ArrayList res = new ArrayList();
 double d = _coefs[0] - val;
 double c = _coefs[1];

 double r1 = -d/c;

 res.Add(r1 as object);
 return res;
 }
 public override string ToString() {
 StringBuilder r = new StringBuilder();
 for(int i = Degree; i > 0; i--){
 if(_coefs[i] != 0){
 r.Append(Math.Round(_coefs[i], 4)+"x^"+i+" ");
 }
 }
 if(this.Degree == 0 || _coefs[0] != 0){
 r.Append(Math.Round(_coefs[0], 4));
 }
 return r.ToString();
 }
 }
}

5.7 BSplineInterpolator
using System;
using System.Drawing;
using System.Collections;
using MIKE.Quantization;

namespace MIKE.Interpolation {
 public class BSplineInterpolator : IInterpolator {
 protected UniformBSpline _bSpline;

 public int Degree {
 get{ return _bSpline.Degree; }

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Interpolation

 page 200

 }

 public BSplineInterpolator(int degree) {
 _bSpline = new UniformBSpline(degree);
 }

 protected ArrayList ExpandChords(QuantizedVoice qVoice) {
 ArrayList points = new ArrayList();
 for(int i = 0; i < qVoice.Count; i++){
 QuantizedNote n = qVoice[i];
 if(n.IsChord){
 QuantizedChord c = n as QuantizedChord;
 // Duplicate previous unfinished polynomials n_j
 for(int j = 1; j < Degree+1 && (i-j) >= 0; j++) {
 ArrayList l_n_j = points[i-j] as ArrayList;
 // Create c.Count-1 copies of l_n_j
 ArrayList copies = new ArrayList();
 for(int k = 1; k < c.Count; k++) {
 foreach(ArrayList l_n_j_k in l_n_j){
 ArrayList copy = new ArrayList();
 foreach(Point n_j in l_n_j_k){
 copy.Add(n_j);
 }
 copy.Add(new Point(c[k].Onset, c[k].Pitch));
 copies.Add(copy);
 }
 }
 // Append c[0] to previous polynomials
 foreach(ArrayList l_n_j_k in l_n_j){
 l_n_j_k.Add(new Point(c[0].Onset, c[0].Pitch));
 copies.Add(l_n_j_k);
 }
 // Swap previous l_n_j for copies
 points[i-j] = copies;
 }
 // Create a new ArrayList for polynomials starting at n_i
 ArrayList l_n_i = new ArrayList();
 foreach(QuantizedSingleNote n_i in c) {
 ArrayList l_n_i_0 = new ArrayList();
 l_n_i_0.Add(new Point(n_i.Onset, n_i.Pitch));
 l_n_i.Add(l_n_i_0);
 }
 points.Add(l_n_i);
 }else {
 QuantizedSingleNote n_i = n as QuantizedSingleNote;
 // Append n_i to previous unfinished polynomials n_j
 for(int j = 1; j < Degree+1 && (i-j) >= 0; j++){
 ArrayList l_n_j = points[i-j] as ArrayList;
 foreach(ArrayList l_n_j_k in l_n_j){
 l_n_j_k.Add(new Point(n_i.Onset, n_i.Pitch));
 }
 }
 // Create a new ArrayList for polynomials starting at n_i
 ArrayList l_n_i = new ArrayList();
 ArrayList l_n_i_0 = new ArrayList();
 l_n_i_0.Add(new Point(n_i.Onset, n_i.Pitch));
 l_n_i.Add(l_n_i_0);
 points.Add(l_n_i);
 }
 }
 // Remove Last #Degree polynomials
 points.RemoveRange(points.Count-Degree, Degree);
 return points;
 }
 public InterpolatedSequence Interpolate(QuantizedSequence qSeq) {
 InterpolatedSequence iSeq = new InterpolatedSequence();
 InterpolatedStaff iStaff = new InterpolatedStaff();
 foreach(QuantizedStaff qStaff in qSeq){
 foreach(QuantizedVoice qVoice in qStaff) {
 InterpolatedVoice iVoice = new InterpolatedVoice();
 ArrayList points = ExpandChords(qVoice);
 // Create a new InterpolatedSpan foreach list l_i
 foreach(ArrayList l_i in points){
 ArrayList l_i_0 = l_i[0] as ArrayList;

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.Interpolation

 page 201

 Point l_i_0_0 = (Point)l_i_0[l_i_0.Count/2-1];
 Point l_i_0_1 = (Point)l_i_0[l_i_0.Count/2];
 InterpolatedSpan iSpan = new InterpolatedSpan(
 _bSpline.ComputeX(l_i[0] as ArrayList),
 l_i_0_0.X, l_i_0_1.X-l_i_0_0.X);
 // Add a polynomial foreach combination l_i_j
 foreach(ArrayList l_i_j in l_i) {
 // Interpolate points and get the blending polynomial
 Polynomial p_i_j = _bSpline.ComputeY(l_i_j).Derivative();
 iSpan.Add(p_i_j);
 }
 iVoice.Add(iSpan);
 }
 iStaff.Add(iVoice);
 }
 iSeq.Add(iStaff);
 }
 return iSeq;
 }
 }
}

5.8 UniformBSpline
using System;
using System.Drawing;
using System.Collections;

namespace MIKE.Interpolation {
 public class UniformBSpline {
 protected int _degree;

 public int Degree {
 get { return _degree; }
 }
 protected static readonly Polynomial[][] Blendings =
 new Polynomial[][]{
 new Polynomial[] {
 new Polynomial(new double[] {0, 0, 0, 1}).Divide(6),
 new Polynomial(new double[] {1, 3, 3, -3}).Divide(6),
 new Polynomial(new double[] {4, 0, -6, 3}).Divide(6),
 new Polynomial(new double[] {1, -3, 3, -1}).Divide(6)},

 new Polynomial[] {
 new Polynomial(new double[]{0, 0, 0, 0, 1}).Divide(24),
 new Polynomial(new double[]{1, 4, 6, 4, -4}).Divide(24),
 new Polynomial(new double[]{11, 12, -6, -12, 6}).Divide(24),
 new Polynomial(new double[]{11, -12, -6, 12, -4}).Divide(24),
 new Polynomial(new double[]{1, -4, 6, -4, 1}).Divide(24)}
 };
 protected Polynomial[] Blending {
 get { return Blendings[Degree-3]; }
 }

 public UniformBSpline(int degree) {
 _degree = degree;
 }
 public Polynomial ComputeY(ArrayList points) {
 Polynomial y = Polynomial.ZERO;
 Polynomial[] b = Blendings[Degree-3];
 for(int i = 0; i <= Degree; i++){
 Point p_i = (Point)points[Degree-i];
 y = y.Add(b[i].Multiply(p_i.Y));
 }
 return y;
 }
 public Polynomial ComputeX(ArrayList points) {
 return new Polynomial(new double[]{0, 1});;
 }
 }
}

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.RSHPzation

 page 202

6 MIKE.RSHPzation

6.1 IRSHPzator
using System;
using System.Collections;
using MIKE.Interpolation;
using CAKE;

namespace MIKE.RSHPzation {
 public interface IRSHPzator {
 Artifact RSHPtize(InterpolatedSequence iSeq,
 CAKEEngine Engine, string fullName, bool isQuery);
 }
}

6.2 RSHPzator
using System;
using MIKE.Interpolation;
using System.Collections;

using CAKE;

namespace MIKE.RSHPzation {
 public class RSHPzator : IRSHPzator {
 protected bool _domainLoaded;

 protected Language _language;

 protected ArtifactType _atSequence;
 protected ArtifactType _atStaff;
 protected ArtifactType _atVoice;
 protected ArtifactType _atSpan;
 protected ArtifactType _atDerivatives;

 protected TermSemanticItem _tsiDerivatives;
 protected TermSemanticItem _tsiScoreDurations;

 protected SemanticItem _siConcave;
 protected SemanticItem _siConvex;
 protected SemanticItem _siFlat;

 protected ArrayList _tNegativeDerivatives;
 protected ArrayList _tPositiveDerivatives;
 protected ArrayList _tScoreDurations;

 public RSHPzator() {
 _domainLoaded = false;
 }

 protected void LoadDomain(CAKEEngine Engine) {
 _language = Engine.LanguageFromJC(30000);

 _atSequence = Engine.ArtifactTypeFromJC(30000);
 _atStaff = Engine.ArtifactTypeFromJC(30001);
 _atVoice = Engine.ArtifactTypeFromJC(30002);
 _atSpan = Engine.ArtifactTypeFromJC(30003);
 _atDerivatives = Engine.ArtifactTypeFromJC(30004);

 _tsiDerivatives = Engine.TermSemanticItemFromJC(30000);
 _tsiScoreDurations = Engine.TermSemanticItemFromJC(30001);

 _siConcave = Engine.SemanticItemFromJC(30000);
 _siConvex = Engine.SemanticItemFromJC(30001);

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.RSHPzation

 page 203

 _siFlat = Engine.SemanticItemFromJC(30002);

 _tNegativeDerivatives = new ArrayList();
 _tNegativeDerivatives.Add(Engine.Term("[-0.5, 0.5)", _tsiDerivatives,
 false));
 for(int i = 1; i <= 14; i++) {
 _tNegativeDerivatives.Add(Engine.Term("[-"+i+".5, -"+(i-1)+".5)",
 _tsiDerivatives, false));
 }
 _tNegativeDerivatives.Add(Engine.Term("(-inf, -14.5)", _tsiDerivatives,
 false));

 _tPositiveDerivatives = new ArrayList();
 _tPositiveDerivatives.Add(Engine.Term("[-0.5, 0.5)", _tsiDerivatives,
 false));
 for(int i = 0; i <= 13; i++) {
 _tPositiveDerivatives.Add(Engine.Term("["+i+".5, "+(i+1)+".5)",
 _tsiDerivatives, false));
 }
 _tPositiveDerivatives.Add(Engine.Term("[14.5, +inf)", _tsiDerivatives,
 false));

 _tScoreDurations = new ArrayList();
 Term t = Engine.Term("[2, 3)", _tsiScoreDurations, false);
 for(int i = 0; i < 3; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[3, 4)", _tsiScoreDurations, false);
 for(int i = 3; i < 4; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[4, 5)", _tsiScoreDurations, false);
 for(int i = 4; i < 5; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[5, 7)", _tsiScoreDurations, false);
 for(int i = 5; i < 7; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[7, 10)", _tsiScoreDurations, false);
 for(int i = 7; i < 10; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[10, 14)", _tsiScoreDurations, false);
 for(int i = 10; i < 14; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[14, 20)", _tsiScoreDurations, false);
 for(int i = 14; i < 20; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[20, 28)", _tsiScoreDurations, false);
 for(int i = 20; i < 28; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[28, 40)", _tsiScoreDurations, false);
 for(int i = 28; i < 40; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[40, 56)", _tsiScoreDurations, false);
 for(int i = 40; i < 56; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[56, 80)", _tsiScoreDurations, false);
 for(int i = 56; i < 80; i++)
 _tScoreDurations.Add(t);
 t = Engine.Term("[80, +inf)", _tsiScoreDurations, false);
 _tScoreDurations.Add(t);
 }

 public Artifact RSHPtize(InterpolatedSequence iSeq, CAKEEngine Engine,
 string fullName, bool isQuery){
 if(!_domainLoaded) {
 LoadDomain(Engine);
 }
 Artifact rSeq = new Artifact(Engine, fullName, _atSequence, fullName,
 null, _language, false, "Sequence", isQuery, 0);

 for(int staff = 0; staff < iSeq.Count; staff++){
 InterpolatedStaff iStaff = iSeq[staff];
 Artifact rStaff = new Artifact(Engine, rSeq, fullName+":"+staff,
 _atStaff, null, null, _language, 0, staff, 0, 0, null, false,
 "Staff "+staff, isQuery, 0);

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.RSHPzation

 page 204

 for(int voice = 0; voice < iStaff.Count; voice++){
 InterpolatedVoice iVoice = iStaff[voice];
 Artifact rVoice = new Artifact(Engine, rStaff, fullName+":"+
 staff+":"+voice, _atVoice, null, null, _language, 0, voice, 0,
 0, null, false, "Voice "+voice, isQuery, 0);

 for(int span = 0; span < iVoice.Count; span++){
 InterpolatedSpan iSpan = iVoice[span];
 Artifact rSpan = new Artifact(Engine, rVoice,
 fullName+":"+staff+":"+voice+":"+span,
 _atSpan, null, null, _language, 0, span, 0, 0, null, false,
 "Span "+span, isQuery, 0);

 for(int poly = 0; poly < iSpan.Count; poly++){
 Polynomial iPoly = iSpan[poly];
 RSHP rshp = new RSHP(rSpan, GetSemanticItem(iPoly), false,
 false, 0, false, false, false, false, false, 0, 0);
 KE action = new KE(rshp, GetScoreDuration(
 iSpan.ScoreDuration), 0, 0, 0, 0, 0);
 Artifact dy0 = new Artifact(Engine, rshp, fullName+":"+
 staff+":"+voice+":"+span+"dy0", _atDerivatives, null,
 null, _language, 1, 0, 0, 0, GetDerivative(
 iPoly.Evaluate(0)), false, "dy0", isQuery, 0);
 Artifact dy1 = new Artifact(Engine, rshp, fullName+":"+
 staff+":"+voice+":"+span+"dy1", _atDerivatives, null,
 null, _language, 2, 0, 0, 0, GetDerivative(
 iPoly.Evaluate(1)), false, "dy0", isQuery, 0);
 // Add Concept Orders 3
 ArrayList co3 = iStaff.GetDerivativesAt(iSpan.ScoreOnset);
 for(int i = 0; i < co3.Count; i++){
 ArrayList co3_ = co3[i] as ArrayList;
 if(i != voice && co3_.Count != 0) {
 Artifact dy0_ = new Artifact(Engine, rshp, fullName+
 ":"+staff+":"+voice+":"+span+"dy0_",_atDerivatives,
 null, null, _language, 3, 0, 0, 0, null, false,
 "dy0_", isQuery, 0);
 foreach(double dy0_d in co3_) {
 KE dy0_k = new KE(dy0_, GetDerivative(dy0_d), 0,
 0, 0, dy0_d, 0);
 }
 }
 }
 // Add Concept Orders 4
 ArrayList co4 = iStaff.GetDerivativesAt(iSpan.ScoreOnset+
 iSpan.ScoreDuration);
 for(int i = 0; i < co4.Count; i++){
 ArrayList co4_ = co4[i] as ArrayList;
 if(i != voice && co4_.Count != 0) {
 Artifact dy1_ = new Artifact(Engine, rshp, fullName+
 ":"+staff+":"+voice+":"+span+"dy1_",_atDerivatives,
 null, null, _language, 4, 0, 0, 0, null, false,
 "dy1_", isQuery, 0);
 foreach(double dy1_d in co4_) {
 KE dy1_k = new KE(dy1_, GetDerivative(dy1_d), 0,
 0, 0, dy1_d, 0);
 }
 }
 }
 }
 }
 }
 }
 return rSeq;
 }
 protected Term GetDerivative(double dy) {
 if(dy > 0){
 double dy2 = Math.Round(Math.Round(dy, 3));
 return _tPositiveDerivatives[(int)Math.Min(dy2,
 _tPositiveDerivatives.Count-1)] as Term;
 }else{
 double dy2 = Math.Round(Math.Round(dy, 3));
 dy2 = Math.Sign(dy2)*dy2;
 return _tNegativeDerivatives[(int)Math.Min(dy2,
 _tNegativeDerivatives.Count-1)] as Term;

Modeling and Indexing Musical Files to allow Music Reuse
Source Code MIKE.RSHPzation

 page 205

 }
 }
 protected Term GetScoreDuration(int duration) {
 if(duration >= 80) {
 return _tScoreDurations[_tScoreDurations.Count-1] as Term;
 }else{
 return _tScoreDurations[duration] as Term;
 }
 }
 protected SemanticItem GetSemanticItem(Polynomial poly){
 switch(poly.Shape){
 case PolynomialShapes.Concave: return _siConcave;
 case PolynomialShapes.Convex: return _siConvex;
 default: return _siFlat;
 }
 }
 }

}

Part XIII:
Resumen en Español

Modeling and Indexing Musical Files to allow Music Reuse
Resumen en Español Notación Musical, MIDI y SMF

 page 207

1 Notación Musical, MIDI y SMF

El presente proyecto fin de carrera se basa en el estándar MIDI y en
SMF para representación de archivos musicales. En esta Sección se presenta una
muy breve introducción a los conceptos básicos de la notación musical así como
de MIDI y SMF 1.0.

1.1 Notación Musical

En el sistema actual de representación de música se usan pentagramas
como los de la Figura 1.1, en el que aparece el llamado gran pentagrama, con
claves de Sol y de Fa.

Figure 1.1 El gran pentagrama

Las notas se representan con símbolos como los de la figura, de tal
forma que cada uno de ellos representa una duración distinta de la nota y la
altura en la que esté representará el tono (cuanto más algo más agudo).

Nombre Figura Duración

Redonda Taken as unit

Blanca

La mitad de una redonda

Negra La mitad de una blanca

Corchea La mitad de una negra

Semicorchea La mitad de una corchea

Fusa

La mitad de una semicorchea

Table 1.1 Notas musicales

Estas notas, según la tonalidad elegida para una determinada canción,
tienen de forma natural unos intervalos entre notas sucesivas. Estos intervalos
definen la escala del tono y el modo del mismo. Por ejemplo, la Figura 1.2
muestra una escala mayor en la tonalidad de do.

Modeling and Indexing Musical Files to allow Music Reuse
Resumen en Español Notación Musical, MIDI y SMF

 page 208

Figure 1.2 Escala mayor de Do

1.2 El Estándar MIDI

MIDI es un estándar de representación de información musical dirigida
por eventos. Básicamente, un flujo de datos MIDI consiste en una secuencia
ordenada en el tiempo de eventos.

Estos eventos pueden ser de muy variados tipos, pero principalmente
interesan los eventos NoteOn y NoteOff, que son los que indican cuando una
nota debe sonar o detenerse.

Hay otros tipos de información en un flujo MIDI, pero carecen de
interés para el objetivo de este proyecto.

1.3 Standard MIDI Files

SMF es una especificación acerca de cómo almacenar contenido
musical en archivos. Básicamente contiene también eventos al igual que un
flujo MIDI. Sin embargo, un archivo SMF puede contener mucha más
información adicional como la tonalidad, tiempo, letra, copyright, etc.
Además, en un archivo SMF los eventos se separan por tracks, que
esencialmente se pueden corresponder con distintos instrumentos que aparecen
en la composición.

Para la realización de este proyecto fin de carrera se ha elegido MIDI
como medio de representación musical porque está muy extendido actualmente
(es un estándar de hace dos décadas), es sencillo, ampliable y contiene toda la
información necesaria.

Modeling and Indexing Musical Files to allow Music Reuse
Resumen en Español El Modelo RSHP y el CAKE Engine

 page 209

2 El Modelo RSHP y el CAKE Engine

RSHP es un metamodelo de representación de información que permite
modelar cualquier dominio de información de una única forma. Está basado en
relaciones entre elementos de información, que a su vez se pueden agrupar en
artefactos. La Figura 2.1 muestra un diagrama UML del modelo.

RSHPSemantics
Name
DefaultPonderation
Reflexive
Loops
Transitive
Symetric

NormalizedGrammatical
RotateConcept

«Enumeration»
ArtifactKind

«Enumeration»
TermKind

Term
Language
NormalizedTerm
ScopeNote
Kind
Domain

DynamicTerm

InformationElement
Position

Artifact
Name
Kind
Description
PhysicalLocation
PhysicalName
Indexed
Language

Property
Relationship
Negative
Conditional
PerfectTense
Domain
Power
Perfect
Pasive
Question

RSHPEnd
Order

normalized

*

0..1

grammatical

1

*

concept* 0..1

owned element

0..1

*

kind* 1

relationship
1

*

metadata
1

*

metaproperty
1

*

tag

*

1

value

*

1..*

dynamic action

*

0..1

static concepts

*

2...*

{LXor} {LXor}

{LXor}

Figure 2.1 El metamodelo RSHP

Aunque RSHP se originó para recuperación de información textual, lo
cierto es que su diseño permite el modelado de cualquier dominio de
información (salvo algunos pequeños aspectos), y en este caso se va a aplicar a
la representación de información musical.

La unidad de comparación son los artefactos, que pueden ser
comparados entre sí de acuerdo a su tipo. Un artefacto a su vez puede tener
más subartefactos y relaciones RSHP entre, de nuevo, artefactos o términos.

Cada RSHP tiene también un tipo y se le asocia un elemento de
información llamado acción y que recoge la semántica dinámica de la relación,
mientras que el tipo recoge la semántica estática. A su vez, cada RSHP conecta
elementos de información entre sí. Así, por ejemplo, para decir que un
ordenador es un tipo que hereda desde el tipo máquina, podemos establecer
una relación jerarquía de la siguiente forma:

Modeling and Indexing Musical Files to allow Music Reuse
Resumen en Español El Modelo RSHP y el CAKE Engine

 page 210

 { }Jerarquía
1RSHP ser,ordenador,máquina= [2.1]

2.2 El CAKE Engine

Por otro lado, el metamodelo RSHP sólo sirve para representar
información. Cuando se quieran comparar artefactos para realizar búsquedas,
debe incluirse un framework que realice tal tarea. Aquí es donde entra el CAKE
Engine, encargado de ofrecer procesos de indexación y recuperación sobre
artefactos modelados con RSHP.

El CAKE Engine ofrece consultas por similitud o por inclusión. Realiza
dos tipos de comparación en cualquier caso:

• Toma en cuenta la topología de los artefactos, de forma que
considera aspectos como número de subartefactos, su estructura,
tipo, etc.

• Distancias semánticas entre elementos de información, de forma que
permite establecer relaciones y distancias entre términos de una red
semántica.

Los datos obtenidos se ponen en forma vectorial sobre un espacio n-
dimensional en el que cada artefacto base está representado por un vector.
Después, una distancia euclídea sirve para determinar la distancia semántica
entre una query y un artefacto en el repositorio.

El CAKE Engine se encuentra integrado en una herramienta llamada
Software Reuse o CAKE Studio. Así, el proyecto deberá estar integrado a su vez
con esta herramienta, estableciendo así el entorno operativo del mismo.

Modeling and Indexing Musical Files to allow Music Reuse
Resumen en Español Requisitos Generales

 page 211

3 Requisitos Generales

En esta Sección se presentan una serie de requisitos generales con los
que el sistema debe cumplir. Se dividen en requisitos verticales y horizontales,
atendiendo a la dimensión musical que tratan.

3.1 Restricciones Verticales

Primeramente, el sistema no debe ser sensible a cambios de octava. Es
decir, que las dos piezas en la Figura 3.1 deben ser consideradas como iguales
al tratarse aisladamente.

Figure 3.1 Equivalencia de octava

Por otro lado, tampoco debe ser sensible a cambios de tonalidad. Esto
significa que si se comparan dos piezas musicales iguales pero en distinta
tonalidad, el sistema deberá retornar una distancia semántica cero.

Figure 3.2 Igualdad de grados

Sin embargo, también debe reconocer como iguales las secuencias en
las que aparezcan las mismas notas, aunque se trate de grados distintos en
distintas tonalidades.

Figure 3.3 Igualdad de notas

Otra característica deseable del sistema es la capacidad de reconocer
acordes y armonía en general. Particularmente, debería ser posible la

Modeling and Indexing Musical Files to allow Music Reuse
Resumen en Español Requisitos Generales

 page 212

comparación parcial de acordes, de forma que un acorde de 3 notas comparado
con otro que tenga sólo 2 de ellas no debería dar una distancia semántica de 1,
sino algo más cercano a 0.

3.2 Restricciones Horizontales

El sistema no debe ser sensible a diferencias en la clave de tiempo.
Así, las siguientes dos piezas musicales deben ser consideradas como iguales:

Figure 3.4 Equivalencia de clave de tiempo

Tampoco se deben considerar estrictamente cambios en el tempo
global, de forma que las dos piezas siguientes se pueden considerar iguales:

Figure 3.5 Igualdad de tempo

Por otra parte, tampoco deben ser estrictamente consideradas
diferencias en tempo si la duración métrica de las notas que componen dos
canciones son las mismas, como en la Figura 3.6.

Figure 3.6 Igualdad de figuras

Y, por último, tampoco deben ser restrictivas diferencias parciales
entre dos piezas. Una consulta podría ser igual que otra canción en el
repositorio pero con algunas partes tocadas más rápidamente que otras. Estas
diferencias no deberían ser fatales.

3.3 Separación de Voces

Otra característica deseable del sistema sería la separación de voces,
de forma que puedan ser comparadas por separado o en conjunto. Por ejemplo,
un piano tocado con dos voces no podría ser igual a una flauta en la que sólo es
posible representar una de las voces y, además, no es posible la armonía.

Modeling and Indexing Musical Files to allow Music Reuse
Resumen en Español Requisitos Generales

 page 213

Así, piezas como la de la Figura 3.7 deberían separar las voces azul y
verde:

Figure 3.7 Separación de voces

Modeling and Indexing Musical Files to allow Music Reuse
Resumen en Español El Modelo Matemático

 page 214

4 El Modelo Matemático

La solución propuesta para el proceso de recuperación de información
musical pasa por el uso del análisis numérico para interpolar la secuencia de
notas en un espacio multidimensional de forma que los elementos a comparar
sean las derivadas de las curvas generadas.

4.1 Normalización de Dominios

Primeramente, debe realizarse un proceso de normalización de los
dominios temporal y de tono. Aprovechando el intervalo de tonos posibles de
MIDI [0,127], y estableciendo una unidad mínima de tiempo para las notas, una
pieza como la de la Figura 4.1

Figure 4.1 Normalización de dominios (parte I)

se convertiría en una secuencia normalizada de puntos como la siguiente:

Figure 4.2 Normalización de dominios (parte II)

Una vez hecho esto, se podría empezar la interpolación de los puntos
para generar las curvas. Entre los distintos tipos de interpolación existentes, se
ha elegido interpolación por B-Splines paramétricos debido a una gran cantidad
de propiedades que los hacen destacar sobre el resto de opciones:

• No sufre el fenómeno de Runge, por lo que no habrá oscilaciones de
la curva entre dos puntos.

• La curva se define por partes, justamente para poder comparar el
intervalo entre dos notas de forma más precisa.

Modeling and Indexing Musical Files to allow Music Reuse
Resumen en Español

 page 215

• Cada parte de la curva es un polinomio de grado 3, por lo que es
derivable y además tiene continuidad geométrica.

• Los B-Spline aseguran que la curva se mantendrá en un dominio
deseado de valores, por lo que el intervalo [0,127] de MIDI se
mantendrá siempre.

• El cambio de una de las notas sólo afecta a la curva en un intervalo
determinista, por lo que los cambios locales no repercutirán
globalmente y hacen además posible la comparación de acordes.

• Son muy fáciles de calcular ya que solo necesitan cuatro
multiplicaciones de un polinomio por una constante.

Así, la pieza musical de la Figura 4.1 quedaría, lista para comparación,
como sigue (con una voz simple por cada dimensión):

Figure 4.3 Interpolación de canciones

This page is intentionally left blank.

 page 217

Julián Urbano Merino, autor del presente Proyecto Fin de Carrera
titulado Modeling and Indexing Musical Files to allow Music Reuse, autoriza a
que la información y documentación contenida en esta memoria pueda ser
utilizada para la realización de otros Proyectos Fin de Carrera así como
cualquier otra actividad docente.

Fdo.: Julián Urbano Merino

