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ABSTRACT

In test collection based evaluation of IR systems, score standardiza-

tion has been proposed to compare systems across collections and

minimize the effect of outlier runs on specific topics. The underly-

ing idea is to account for the difficulty of topics, so that systems

are scored relative to it. Webber et al. first proposed standardiza-

tion through a non-linear transformation with the standard normal

distribution, and recently Sakai proposed a simple linear transfor-

mation. In this paper, we show that both approaches are actually

special cases of a simple standardization which assumes specific

distributions for the per-topic scores. From this viewpoint, we ar-

gue that a transformation based on the empirical distribution is the

most appropriate choice for this kind of standardization. Through

a series of experiments on TREC data, we show the benefits of our

proposal in terms of score stability and statistical test behavior.
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1 INTRODUCTION

In the traditional Cranfield paradigm for test collection based eval-

uation in Information Retrieval (IR), systems are evaluated and

compared by assessing their effectiveness on the set of topics con-

tained in a collection. Specifically, an effectiveness measure like

Average Precision is used to score every system with every topic,

and the per-system mean scores over topics are often used as the

single indicator of performance to rank systems [4]. It is well known

in the IR literature that this paradigm does not allow to compare

the performance of systems tested on different collections. The

main reason for this is the very large variability we find in topic

difficulty [1, 6, 8]. A systemwith a good score on one collection may

very well achieve a low score on another. Even when comparing

systems using the same collection, not all topics contribute equally

to the final score because of their differences in difficulty (see for
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instance the bottom-left plot in Figure 1). Therefore, the observed

differences in mean scores may be disproportionately due to a few

topics in the collection [2, 9].

To mitigate this problem, Webber et al. [9] proposed a two-step

standardization process to look at scores relative to the difficulty of

the topic. First, given a raw effectiveness score x of some system

on some topic, a traditional z-score is computed

z =
x − µ

σ
, (1)

where µ and σ are the mean and standard deviation of the system

scores for the topic. The effect is twofold: whether the topic is easy

or hard (high or low µ), the distribution of z-scores is centered at

zero; and whether systems perform similarly for the topic or not

(low or high σ ), the z-scores have unit variance. Thanks to this first

step, all topics contribute equally to the final scores.

The second step is a transformation of the z-score so that the final

standardized score y is bounded between 0 and 1, as is customary

in IR measures. Webber et al. [9] propose to use the cumulative

distribution function (cdf ) of the standard normal distribution,

which naturally maps z-scores on to the unit interval:

y = Φ(z). (2)

Recently, Sakai [3] proposed a simple linear transformation of

the z-score instead of the non-linear transformation applied by Φ:

y = Az + B. (3)

On the grounds of Chebyshev’s inequality, they further suggested

A=0.15 and B=0.5 so that at least 89% of the scores will fall within

[0.05, 0.95]. Furthermore, and to ensure that standardized scores

always stay within the unit interval, they proposed to simply censor

y between 0 and 1, computing y = max(min(1,Az + B), 0) in reality.

In this paper we show that the standardizations by Webber et al.

[9] and Sakai [3] are actually special cases of a general class of

standardizations consisting in assuming a specific distribution for

the per-topic scores, and that they differ only in what distribution

they assume. From this new perspective, we argue that the empirical

distribution is actually the most appropriate choice because of its

properties. We also carry out two experiments on TREC data that

show how our proposal behaves better than both raw scores and

the previous standardization schemes.

2 SCORE STANDARDIZATION

Let F be the distribution of scores by some population of systems on

some particular topic and according to some specific measure like

AP . If we knew this distribution, we could standardize a raw score x

simply by computing y = F (x) = P(X ≤x), which naturally bounds

y between 0 and 1. The reasoning is that the cdf actually tells us

where x is with respect to the rest of scores that one may expect for

the topic, precisely computing the fraction of systems with lower





with slight deviations if censoring is needed. In the case of E-std, we

see nearly constant mean and variance. This is achieved by design,

because, in general, if X ∼ F , then Y = F (X ) follows a standard

uniform. Therefore, E-std produces standardized scores that are

uniformly distributed, ensuring y =0.5 and sy =
√

1/12.

The point still remains that µ and σ are also unknown. The way

around this limitation is to estimate them from a previous set of

systems (called standardization systems by [3, 9]). Thus, given the

scores X1, . . . ,Xn of these systems, the estimates are the per-topic

sample mean µ̂=X and standard deviation σ̂ =sX . For E-std, these

are precisely the data used in eq. (7) to standardize. In principle,

these standardization systems should represent the system popu-

lation of interest, which ultimately determines the topic difficulty

through the per-topic distributions. In our view, the most reason-

able choice would be the state of the art systems, which in a TREC

collection are arguably the set of systems participating in the track.

3 EXPERIMENTS

This section reports on two experiments to assess the effect of stan-

dardization. In the first one, we consider system comparisons using

the same test collection (within-collection), while in the second

one we consider comparisons between systems evaluated on dif-

ferent collections (between-collection). Comparisons will be made

between results produced by the raw scores, N-std, U-std and E-std.

For completeness, we also evaluate the standardization scheme that

simply computes the z-score as in eq. (1) and therefore produces

unbounded y scores. This scheme is called z-std.

The data used in our experiments are the TREC 2004 Robust (RB)

and TREC 2006 Terabyte (TB) collections. The RB data contains 110

systems evaluated on the 99 TREC 2003–2004 Robust topics. The

TB data contains 61 systems on the 149 TREC 2004–2006 Terabyte

topics. In terms of measures, we use AP and nDCG.

3.1 Within-Collection Comparisons

In order to investigate the effect of standardization on within-

collection comparisons, we proceed as follows. We randomly sam-

ple 50 topics from the full set and compute the raw scores and the

standardized scores as per each of the standardization schemes.

From these data we compute three statistics. First, we compute

the correlation between the ranking of systems by raw scores and

the ranking by standardized scores, using Kendall’s τ and Yilmaz’s

τap [10]1. A high correlation indicates that the standardized scores

are not much different from the raw scores, so in principle we look

for lower coefficients. The third indicator evaluates the statistical

power of the evaluation. In particular, we run a 2-tailed paired t-test

between every pair of systems and, under the assumption that the

null hypothesis is indeed false, look for schemes that maximize

power. The process is repeated 10,000 times with both the RB and

TB datasets, on both AP and nDCG.

Figure 2 shows the results for a selection of collection-measure

combinations2. The two plots in the first row show the distribu-

tions of τ correlations. As expected, U-std and z-std perform very

similarly because the former is simply a linear transformation of

1In particular, we compute τb and τap ,b to deal with tied systems. See [5] for details.
2All plots, along with data and code to reproduce results, are available from
https://github.com/julian-urbano/sigir2019-standardization.
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Figure 2: Within-collection comparisons. First row: τ corre-

lation between rankings of systems with raw and standard-

ized scores (lower is better); rugs mark the means. Second

row: τap correlation (lower is better). Third row: power of

paired t-tests at various α levels (higher is better).

the latter; differences come from the necessity to censor outliers in

U-std. Indeed, because they are both a linear transformation of the

raw scores, they produce the most similar rankings. N-std results

in slightly lower correlations, but E-std sets itself clearly apart from

the others, yielding significantly lower τ scores. The plots in the

second row show even clearer differences in terms of τap . We see

that U-std and z-std are almost identical, but more importantly we

see that N-std and E-std are even further away, likely because they

eliminate outliers that could affect the top ranked systems.

The two plots in the last row show statistical power for a range

of significance levels. We can first observe that all standardization

schemes achieve higher power than the raw scores, showing a clear

advantage of the standardization principle. Once again, U-std and

z-std perform nearly identically, and both are outperformed by

N-std and, specially, E-std.

3.2 Between-Collection Comparisons

Here we study how standardization affects between-collection com-

parisons. In this case, we randomly sample two disjoint subsets of

50 topics each and compute raw and standardized scores on both

subsets. Because topics are sampled from the full set, both results

can be regarded as coming from two different collections having

different topics from the same population. In this case we are not

interested in how standardized scores compare to raw scores, but

rather on how stable the results are between both sets of topics, so

we compute the following four statistics. First, we compute the τ

and τap correlations between both rankings. We seek high corre-

lations, indicating high score stability across topic sets. Third, for



every system we run a 2-tailed unpaired t-test between both sets.

By definition, the null hypothesis is true because we are comparing

a system to itself simply on a different sample, so we expect as many

Type I errors as the significance level α . Finally, we run another test

between every system on one collection and every other system on

the other collection, looking again to maximize statistical power

under the assumption that all systems are different and thus null

hypotheses are false. As before, this process is repeated 10,000 times

with both the RB and TB datasets, on both AP and nDCG.

Figure 3 shows the results for a selection of collection-measure

combinations. The plots in the first two rows show that standard-

ization generally produces more stable results, as evidenced by raw

scores yielding lower correlations. U-std and z-std perform very

similarly once again, and E-std generally outperforms the others,

producing slightly more stable comparisons between collections.

An exception can be noticed for τap on the TB dataset, which re-

quires further investigation.

The third row of plots show the Type I error rates.We can see that

all scoring schemes behave just as expected by the significance level

α . This evidences on the one hand the robustness of the t-test [7]

(recall the diversity of distributions from the boxplots in Figure 1),

and on the other hand that standardization neither harms nor helps

from the point of view of Type I errors (this is rather a characteristic

of the test). Finally, the last two plots show the power achieved by

the tests when comparing different systems. Here we first notice

that all standardization schemes are substantially more powerful

than the raw scores, achieving about twice as much power. While

the results are very similar in the RB set, we see clear differences in

the TB set, with E-std once again outperforming the other schemes.

4 CONCLUSIONS

In this paper we revisit the problem of score standardization tomake

IR evaluation robust to variations in topic difficulty. We introduced

a new scheme for standardization based on the distributions of per-

topic scores, and showed that previous methods by Webber et al.

[9] and Sakai [3] are special cases of this scheme. From this point

of view we propose the empirical distribution as an alternative, and

discuss a number of points that highlight its superiority.

In experiments with TREC data, we showed that, even though

the raw and standardized rankings are the same topic by topic, the

rankings by mean scores may differ considerably. In addition, stan-

dardization achieves higher statistical power. Thus, standardization

offers an alternative and quite different view on system compar-

isons. However, it is important to note that these comparisons are

made on a different scale altogether, so one may not just use stan-

dardized scores to make statements about raw scores. Nonetheless,

standardization with the empirical distribution is arguably more

faithful to our notion of relative system effectiveness.

Future work will follow three main lines. First, we will study

additional datasets and measures for generality. However, because

TREC collections are usually limited to 50 topics, we also plan

on using recent simulation methods so that we can analyze more

data [7]. Finally, we will study the stability of E-std for varying

numbers of systems. This is interesting because, even though the

empirical function converges to the true distribution, it is unclear

how large the set of systems needs to be for the results to be stable.
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Figure 3: Between-collection comparisons. First row: τ cor-

relation between the rankings of systems produced by the

two collections (higher is better); rugs mark the means. Sec-

ond row: τap correlation (higher is better). Third row: Type

I error rate of unpaired t-tests at various α levels (diagonal

is better). Fourth row: statistical power (higher is better).
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