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ABSTRACT
The reliability of a test collection is proportional to the
number of queries it contains. But building a collection
with many queries is expensive, so researchers have to find
a balance between reliability and cost. Previous work on
the measurement of test collection reliability relied on data-
based approaches that contemplated random what if scenar-
ios, and provided indicators such as swap rates and Kendall
tau correlations. Generalizability Theory was proposed as
an alternative founded on analysis of variance that provides
reliability indicators based on statistical theory. However,
these reliability indicators are hard to interpret in practice,
because they do not correspond to well known indicators like
Kendall tau correlation. We empirically established these
relationships based on data from over 40 TREC collections,
thus filling the gap in the practical interpretation of Gener-
alizability Theory. We also review the computation of these
indicators, and show that they are extremely dependent on
the sample of systems and queries used, so much that the
required number of queries to achieve a certain level of relia-
bility can vary in orders of magnitude. We discuss the com-
putation of confidence intervals for these statistics, providing
a much more reliable tool to measure test collection reliabil-
ity. Reflecting upon all these results, we review a wealth of
TREC test collections, arguing that they are possibly not as
reliable as generally accepted and that the common choice
of 50 queries is insufficient even for stable rankings.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation.

General Terms
Experimentation, Measurement, Reliability.

Keywords
Test Collection, Evaluation, Reliability, Generalizability
Theory, TREC.
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1. INTRODUCTION
The purpose of evaluating the effectiveness of an Informa-

tion Retrieval (IR) system is to assess how well it would sat-
isfy real users. The main tool used in these evaluations are
test collections, which comprise a collection of documents
to search, a set of queries Q, and a set of relevance judg-
ments that contains information as to what documents are
relevant, and to which degree, to the queries [16]. Given
the results returned by a system A for one of the queries
q ∈ Q, an effectiveness measure uses the information in the
relevance judgments to compute a score λq,A that represents
the effectiveness of the system for that query. After run-
ning the system for all queries in the collection, the average
λQ,A = 1

|Q|

∑

λi,A is usually reported as the main measure

of system effectiveness, representing the expected behavior
of the system for an arbitrary new query. When comparing
two systems A and B, the main measure reported is the av-
erage effectiveness difference ∆λQ,AB = λQ,A − λQ,B. Based
on this difference, we conclude which system is better.

The immediate question to ask is: how reliable are those

conclusions about system effectiveness? Ideally, researchers
would evaluate the system with the set of all possible queries
that a user might request. In such a case, we could be sure
that the true average performance of the system corresponds
to the score we computed with the collection. The prob-
lem is that building such a collection is either impractical
for requiring an enormous amount of queries and relevance
judgments, or just impossible if the potential query set is
not defined, which use to be the case because we can not
account for future queries that do not yet exist. Therefore,
the query set Q in a test collection must be regarded as
a sample from the universe of all queries, and the sample
mean λQ,A as an estimate of the true effectiveness mean λA.
But because we are estimating this score with a sample of
queries, our estimates are erroneous to some degree. The
results may change drastically with a different query set Q′,
so much that differences between systems could be reversed.

An evaluation result is reliable if it can be replicated with
another collection: if the set of queries Q suggests that sys-
tem A outperforms system B, we can be very sure that the
conclusion would hold for a different set of queries Q′, and in
the end, for the universe of all queries. A simple way to make
a collection reliable is to include many queries; the more we
employ the smaller the variance of the estimates and thus
the more reliable the conclusion. The problem is that more
queries also means more cost to create the collection, so re-
searchers have to find a balance between the reliability of
the results and the cost of the collection. To this end, it is
necessary to develop indicators of test collection reliability.



Several works in the last fifteen years have studied the
problem of reliability in IR evaluation experiments. The ba-
sic methodology consisted in evaluating a series of systems
with two different and random sets of queries, computing
several reliability indicators that measured how similar those
evaluations were. Using different query sample sizes and ran-
domizing query selection, researchers were able to map query
set size to reliability and extrapolate results to larger query
sets. The data used consisted in runs submitted to several
TREC tracks (mostly the Ad Hoc tracks), and the sets of
queries employed in each edition. While these approaches
are clearly faithful to the data, they are limited in that the
full query set had to be partitioned in two disjoint sets to
comply with the assumption that they were independent.
In 2007 Bodoff and Li [6] proposed Generalizability The-

ory (GT) as an alternative [7, 18]. GT is grounded on analy-
sis of variance components, which allows to dissect the vari-
ability in effectiveness scores and figure out how much of it
is due to system differences, query difficulty, assessors, etc.
In an ideal evaluation setting, we would like all variance to
be due to actual differences between systems and not due
to query variability; if the queries in the collection are too
varied, or differences between systems too small, then we
need many queries to ensure that our estimates are reliable.
From these variance components GT allows researchers to
estimate the reliability of a test collection even before it has
been created. Based on some previous data, GT can es-
timate the reliability of a collection with a larger number
of queries, more than one assessor providing judgments for
each query, etc. GT provides indicators for the stability
of both the absolute scores and the relative differences by
computing different variance ratios.
The main advantages of GT against the traditional data-

based approaches are that 1) it is based on statistical theory,
2) it is easy to employ because it does not require tedious
and repetitive what if scenarios, and 3) it allows us to es-
timate the reliability of a collection or experimental design
that does not exist yet. But it has disadvantages too: 1) it
is unknown the extent to which reliability indicators are af-
fected by the data used to estimate variance components,
and 2) it is very hard to interpret them in practical terms.
We address these two problems of GT applied to the mea-

surement of test collection reliability. In the next section we
review past work following data-based approaches and the
reliability indicators used. We then review the use of GT
and discuss the motivation for this work. In Section 3 we
show how the initial data used in GT studies has a very large
effect on the results, discussing minimum sample sizes and
interval estimators. Section 4 reports a study to provide an
empirical mapping between GT-based indicators of reliabil-
ity and the well known data-based ones. Next we discuss the
reliability of several TREC collections based on the results
from previous sections, presenting conclusions in Section 6.

2. INDICATORS OF RELIABILITY
Several indicators of test collection reliability have been

proposed in the literature. This section reviews traditional
indicators found in the early data-based studies and the GT-
based indicators more recently proposed.

2.1 Data-based Indicators
Given a query set Q and a similar set Q′ of the same size,

we can define the following data-based reliability indicators:

• Kendall correlation (τ), compares the order in
which systems are ranked according to Q and Q′, re-
gardless of the magnitude of the differences ∆λAB. It
ranges from 1 (same rankings) to -1 (reversed rank-
ings), counting the number of system pairs that are
swapped between the two rankings. For Q to be reli-
able, τ must therefore tend to 1.

• AP correlation (τAP ), adds a top-heaviness compo-
nent to Kendall τ , such that swaps between systems
towards the top of the rankings are more penalized
than swaps towards the bottom [23].

• Power ratio (β), is the fraction of pairwise system
differences that result statistically significant accord-
ing to query set Q. If the difference ∆λQ,AB between
two systems is deemed as statistically significant, it
serves as further evidence that the true difference ∆λAB

has the same sign. For Q to be reliable, β must there-
fore tend to 100%. In this paper we compute standard
2-tailed t-tests at the 0.05 level [19].

• Minor Conflict ratio (α
−
), is the fraction of statis-

tically significant differences with Q that have a sign
swap with Q′ but are not statistically significant there.
α− is therefore the fraction of uncertain conclusions
when measuring statistical significance, so for Q to be
reliable α− must therefore tend to 0%.

• Major Conflict ratio (α+), is the fraction of statis-
tically significant differences with Q that are also sig-
nificant with Q′ but have a sign swap. α+ is therefore
the fraction of incorrect conclusions when measuring
statistical significance, so for Q to be reliable α+ must
therefore tend to 0% as well.

• Absolute Sensitivity (δa), is the minimum absolute

difference ∆λQ,AB that need be observed between any
two systems such that the differences with Q′ have
the same sign at least 95% of the times. For Q to
be reliable, δa must therefore tend to 0, meaning that
even small differences can be trusted.

• Relative Sensitivity (δr), is the minimum relative

difference ∆λQ,AB/max
(

λQ,A, λQ,B

)

that need be ob-
served with Q such that the differences with Q′ have
the same sign at least 95% of the times. For Q to be
reliable, δr must therefore tend to 0% too.

• Root Mean Squared Error (ε), measures the dif-
ference between the absolute scores with Q and with
Q′. Thus, for Q to be reliable ε must tend to 0 too.

One of the first reliability studies was conducted in 1998
by Voorhees [20], who analyzed the effect of having differ-
ent assessors provide relevance judgments. Employing a
methodology based on randomization, she concluded that
the absolute scores could suffer wide variations between as-
sessors, but that the ranking of systems was seldom altered,
establishing τ = 0.9 as the de facto minimum on ranking
similarity. She also studied swap rates as a function of ∆λ
and suggested a minimum of 25 queries to have a somewhat
stable ranking. Also in 1998, Zobel [24] studied the effect of
pool depth on absolute system scores, extrapolating trends
to larger pool depths. He also compared different statistical
procedures in terms of power and conflict ratios.

Buckley and Voorhees [8] compared in 2000 the reliability
of various effectiveness measures by mapping effectiveness
differences to error rates. Extrapolating to 50 queries, they
concluded that ∆λ ≥ 0.05 produced less than 1.5% sys-
tem swaps when computing Average Precision (AP), while



other measures such as Precision at cutoff 10 (P@10) pro-
duced 3.6% of swaps. In 2002, Voorhees and Buckley [22]
extended their work with other collections and methods, but
again extrapolating trends. They concluded that with 50
queries the sensitivity of AP was δa = 0.05, while increasing
the query set size to 100 would yield δa = 0.03. They also
reported large differences across collections and effectiveness
measures. Lin and Hauptmann [13] showed that the empiri-
cal model used by Voorhees and Buckley can be derived the-
oretically, and that the three factors affecting reliability are
query set size, mean effectiveness scores, and variability of
scores. Sanderson and Zobel [17] also revisited this work by
computing relative sensitivity and incorporating statistical
procedures to account for score variability. They concluded
δr = 10% with AP if coupled with statistical significance,
and δr = 25% if not. They observed very similar relative
sensitivity between AP and P@10, arguing the use of more
queries with fewer judgments as previous work suggested
that much of the score variability is due to queries [4].
In 2007 Sakai [15] used similar methods to compare the

reliability of several effectiveness measures, though he did
not extrapolate to larger query sets. He computed τ cor-
relations, absolute sensitivity δa and a variation of δr, and
observed that these indicators were not very correlated with
statistical significance, arguing the importance of consider-
ing score variability rather than just means. Voorhees revis-
ited in 2009 [21] the use of statistical procedures with the
TREC Robust 2004 collection, computing reliability indi-
cators with an unprecedented set of 100 queries, therefore
avoiding the need to extrapolate to the usual size 50. When
using AP, she observed power β = 47% and conflict ratios
α− = 2.7% and α+ = 0.04%. She showed again that P@10
is less reliable than AP also in these terms; and that nDCG
showed higher reliability (agreeing with Sakai [15]). She also
found that minor conflicts were usually coupled with large
relative differences, thus suggesting that researchers employ
several large collections to draw general conclusions.

2.2 GT-based Indicators
Bodoff and Li [6] proposed Generalizability Theory [7, 18]

as an alternative to measure test collection reliability that
directly addresses variability of scores rather than just the
mean as was common before. GT has two stages: a Gener-
alizability study (G-study) to estimate variance components
based on previous data, and a Decision study (D-study) that
subsequently computes reliability indicators for a different
experimental design. We consider a fully crossed design and
decompose variability of scores into three components: vari-
ance due to actual differences among systems (σ2

s), vari-
ance due to differences in difficulty among queries (σ2

q), and
variance due to the system-query interaction effect whereby
some systems are particularly good (or bad) for some queries
(σ2

s:q). The variance due to other effects, such as assessors,
is in our case confounded with the interaction effect.
Using Analysis of Variance (ANOVA) procedures, these

variance components can be estimated from previous data:

σ̂2
s:q = σ̂2

e = EMresidual (1)

σ̂2
s =

EMs − σ̂2
e

nq

(2)

σ̂2
q =

EMq − σ̂2
e

ns

(3)

where EMν is the expected Mean Square of component ν,
and ns and nq are the number of systems and queries [7, 18].
These estimates can be used to compute the proportion of
total variance that is due to each of the effects, such as how
much of it is due to actual differences between systems.

In the D-study, we can use the variance estimates from
the G-study to compute the reliability of a larger query set.
To this end, two reliability indicators are usually employed:

• Generalizability Coefficient (Eρ2), is the ratio of
system variance to itself plus relative error variance:

Eρ2
(

n′
q

)

=
σ2
s

σ2
s +

σ2
e

n′
q

(4)

and it provides a measure of the stability of relative
differences between systems ∆λ. By extension, it mea-
sures the reliability of the ranking. For a collection to
be reliable, Eρ2 must therefore tend to 1.

• Index of Dependability (Φ), is the ratio of system
variance to itself plus absolute error variance:

Φ
(

n′
q

)

=
σ2
s

σ2
s +

σ2
q
+σ2

e

n′
q

(5)

and it provides a measure of the stability of absolute
effectiveness scores λ. For a collection to be reliable,
Φ must therefore tend to 1 as well.

The main advantage of these indicators is that they allow
us to estimate the reliability of an arbitrary query set size n′

q,
so there is no need to follow the traditional methodologies
based on random what if scenarios and extrapolation. From
equations (4) and (5) it can be seen that the reliability of the
collection increases as n′

q increases, because the estimates of
query difficulty (i.e. average system performance per query)
are more precise. These indicators were used by Kanoulas
and Aslam [12] to derive the gain and discount functions of
nDCG that yield optimal reliability when n′

q is constant.
With simple algebraic manipulation, we can calculate the

minimum number of queries needed to reach some level of
relative or absolute stability π:

n′
Eρ2 (π) =

⌈

π · σ2
e

σ2
s (1− π)

⌉

(6)

n′
Φ (π) =

⌈

π
(

σ2
q + σ2

e

)

σ2
s (1− π)

⌉

(7)

which can be used to estimate how many more queries we
need to add to our collection for it to be reliable. The main
use of this approach can be found in the TREC Million
Query Track [2, 1], which set out to study whether many
queries with a few judgments yield more reliable results than
a few queries with many judgments. The conclusion was that
n′
q ≈ 80 queries are sufficient for a reliable ranking, while

n′
q ≈ 130 are needed for reliable absolute scores.

2.3 Motivation
The two problems of GT can be clearly spotted at this

point. First, equations (1) to (3) show that we do not com-
pute the true σ2

ν variance components, but just estimates

σ̂2
ν based on some previous data. If we use a different, yet

similar set of systems or queries to estimate these variance
components, the resulting Eρ̂2 and Φ̂ scores might be very
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Figure 1: Variability in Eρ̂2 (top) and Φ̂ (bottom) scores as a function of the initial number of queries (left)
and number of systems (right) used in the G-study to estimate variance components.

different. In a revised paper, Bodoff [5, §4.6] briefly dis-
cussed this issue and argued that differences are marginal.
However, he reports the results when randomly selecting
only one system per research group instead of all of them,
and only one trial of such experiment. We argue that this
situation is not representative because the full set of systems
and the reduced set after removing runs by the same groups
are actually very similar to begin with, so it is expected that
reliability scores do not change much. Also, only one such
randomly reduced set is compared, so there is really no ev-
idence to support that claim. Likewise, he further suggests
that as few as five queries or systems are often enough to
provide stable estimates of the variance components in the
G-study [5, §3.1]. We further analyze this issue in Section 3.
Second, equations (6) and (7) allow us to estimate the

minimum number of queries n′
q to reach some stability level

π, but the greater question is: how much is stable enough?

Bodoff [5] mentions that in most Social Science applications
a stability coefficient of 0.8 is acceptable, but there is no
similar standard for Engineering applications. Kanoulas and
Aslam [12] set Φ = 0.95 as the target in their experiments,
but this choice is arbitrary. In their analysis of the Mil-
lion Query Track 2007 [2] and 2008 [1], Allan et al. [1] and
Carterette et al. [9, 10] also set Eρ2 = 0.95 as the tar-
get. They mention in a footnote that in their experiments
Eρ2 = 0.95 approximately corresponded to τ = 0.9, but
details are omitted. We study this issue in Section 4 by
empirically mapping GT-based indicators onto data-based
indicators that are easier to understand and use in practice.

3. VARIABILITY OF GT INDICATORS
To measure the effect of the number of queries and number

of systems used in the G-study to estimate variance compo-
nents, we use data from 43 TREC collections covering 12
tasks across 10 tracks, from TREC 3 to TREC 2011 (see
Table 1). As in previous studies [22, 17, 6, 21], we remove

the bottom 25% of systems so that our results are not ob-
scured by possibly buggy implementations. For each collec-
tion, we randomly selected nq = 5 queries and computed
the variance components using the full set of systems. We
then calculated Eρ2 and Φ for the full query set size, and the
required number of queries to reach 0.95 stability. This was
repeated with increments in nq of 5 queries, up the maxi-
mum permitted by the collection or 100. For each query set
size, we ran 200 random trials, each of which can be con-
sidered as the possible data available for a G-study when
analyzing a test collection design. The same process was
followed by varying the initial number of systems ns and
using the full set of queries instead.

Figure 1 shows the variability in G-study results1. For
each collection and initial number of queries used, the y-axis
plots the length of the span covering 95% of the Eρ̂2 and Φ̂
observations in the 200 random trials. The right hand side
plots show the same span lengths, but for different number of
systems used in the G-study. As expected, the queries have
a larger effect. Most importantly, we see that the average
span length with just 5 queries is about 0.5 across collec-
tions. That is, the stability estimates could be as low as 0.3
or as high 0.8, for example, just depending on the particular
set of queries we use in the G-study. In fact, estimates of
the minimum number of queries required can vary in orders
of magnitude if not using enough data. For example, with
as many as 30 initial queries and all 184 systems from the
Microblog 2011 collection, GT may suggest from 63 to 133
queries to reach Eρ2 = 0.95. Similarly, from 40 initial sys-
tems and all 34 queries from the Medical 2011 collection, GT
may suggest from 109 to 566 queries. In general, at least 50
queries and 50 systems seem necessary for 95% of estimates
to be within a 0.1 span. This means that GT may be trusted
to measure the reliability of an existing collection, but that

1Given the amount of datapoints displayed in this paper, we
recommend to access the full-color version available online.



(

Lζ − 1

nq

,
Uζ − 1

nq

)

,where (8)

Lζ =
Ms

MeFα:dfs,dfe

Uζ =
Ms

MeF1−α:dfs,dfe

(

nsLΛ

nsLΛ + nq

,
nsUΛ

nsUΛ + nq

)

,where (9)

LΛ =
M2

s − Fα:dfs,∞MsMe + (Fα:dfs,∞ − Fα:dfs,dfe)Fα,dfs,dfeM
2
e

(ns − 1)Fα:dfs,∞MsMe + Fα:dfs,dfqMsMq

UΛ =
M2

s − F1−α:dfs,∞MsMe + (F1−α:dfs,∞ − F1−α:dfs,dfe)F1−α,dfs,dfeM
2
e

(ns − 1)F1−α:dfs,∞MsMe + F1−α:dfs,dfqMsMq

researchers should be cautious when planning a collection
based on the results of a handful of systems and queries.
These results clearly evidence the need for a measure of

confidence on GT indicators. Bodoff [5] suggests the use of
confidence intervals to account for this variability, but only
computes them for the variance components in the G-study.
Confidence intervals for the ultimately more useful D-study
can be worked out from various variance ratios (see equa-
tions (8) and (9)2). Feldt [11] derived exact 100(1− 2α)%
confidence intervals for the ratio ζ = σ2

s/σ
2
e under the as-

sumption of normally distributed scores. The confidence
interval on Eρ2(n′

q) is computed using the endpoints in (8):

Eρ2
(

n′
q

)

=
n′
qζ

1 + n′
qζ

(10)

Arteaga et al. [3] derived approximate 100(1 − 2α)% confi-
dence intervals for the ratio Λ = σ2

s/
(

σ2
s + σ2

q + σ2
e

)

, again
assuming a normal distribution of scores. The confidence
interval on Φ

(

n′
q

)

is computed using the endpoints in (9):

Φ
(

n′
q

)

=
n′
qΛ

1 +
(

n′
q − 1

)

Λ
(11)

Brennan [7, §6] discusses different methods to compute
confidence intervals in both G-studies and D-studies, show-
ing that the above intervals work reasonably well even when
the normality assumption is violated. The right hand side
of Table 1 reports the point and 95% interval estimates of
the stability of the 43 TREC collections we consider in this
paper. These intervals provide a more suitable estimate of
test collection reliability because they account for variabil-
ity in the G-study. For example, researchers could use these
intervals to infer the required number of queries to reach the
lower endpoint of the interval instead of the point estimate:

n′
Eρ2 (π) =

⌈

π

ζ (1− π)

⌉

(12)

n′
Φ (π) =

⌈

π (1− Λ)

Λ (1− π)

⌉

(13)

4. INTERPRETING GT INDICATORS
To empirically derive a mapping between GT-based and

data-based reliability indicators, we again used the 43 TREC
collections in Table 1. For each collection we proceeded
as follows. Two random and disjoint query subsets of size
nq = 10 were selected from the full set of queries; let these
subsets be Q and Q′. The full set of systems was evaluated
with both query subsets, and all data-based reliability indi-
cators in Section 2.1 were computed, along with the two GT-
based indicators according to Q and Q′. This was repeated

2Fϕ:df1,df2 is the quantile function of the F distribution with
df1 and df2 degrees of freedom. In our fully crossed design,
dfs = ns − 1, dfq = nq − 1, and dfe = (ns − 1)(nq − 1).

with increments in nq of 10 queries, up to the maximum
permitted by the collection. For query subset size we ran
50 random trials, each trial providing us with 32 datapoints
(Eρ̂2 and Φ̂ according to Q and to Q′, mapped to τ̂ ,τ̂AP , β̂,

α̂−, α̂+, δ̂a, δ̂r and ε̂). Theoretically though, Eρ2 is better
related to τ , τAP , β, α−, α+ and δa because it measures the
stability of relative differences, while Φ is better related to
δr and ε because it measures the stability of absolute scores.
We thus mapped only these combinations.

Figure 2 shows the mappings. For each collection we fitted
a model with all available datapoints. However, we dropped
points for which Eρ̂2 < 0.8 and Φ̂ < 0.5 so that the trends
were not affected by mappings with such small stability to
be even practical. These thresholds were chosen based on
the observed stability of the 43 TREC collections; about
85% of them show larger stability scores (see Table 1). This
resulted in over 28,000 points for each plot. In the top three
plots (τ , τAP and β) we fitted the model y = xa, where a is
the parameter to fit. This resulted in the desired theoretical
behavior that limx→1 y = 1 and limx→0 y = 0, that is, when
all variability is due to system differences τ should be 1
because the ranking cannot be altered, and if all variance is
due to queries then τ should be 0 because the rankings are
completely random. Similarly, in the bottom four plots we
fitted the model y = (1 − x)a, such that limx→1 y = 0 and
limx→0 y = 1, that is, ε should for example be 0 if there is
no variability due to queries.

As the first plot shows, all 43 collections do actually need
Eρ2 > 0.95 to reach τ = 0.9. In general, Eρ2 = 0.95 cor-
responds to τ ≈ 0.85, and on average Eρ2 ≈ 0.97 is needed
across collections to reach τ = 0.9. The two clear exceptions
are found in the Million Query Track. The 2008 collection
is the one that reaches the target τ = 0.9 with the lowest
stability (Eρ2 ≈ 0.93), while the 2007 collection needs the
largest (Eρ2 ≈ 0.98). Note that these were the two collec-
tions for which the Eρ2 = 0.95 → τ = 0.9 correspondence
was established [1, 9, 10]. It should be noted here that these
fits have an exponential-like shape, meaning that it is hard
to achieve a mid level of τ , but once Eρ2 is large enough
small improvements in stability translate into large improve-
ments in τ . However, the relation between n′

q and Eρ2 has a
logarithmic-like shape, meaning that it is increasingly more
expensive to improve Eρ2 to begin with. Thus, it should be
considered the required effort for slight improvements in τ .

The second plot shows quite high τAP scores at these lev-
els of relative stability, but generally below τ . This suggests
that the swaps in the rankings are still happening between
systems at the top of the rankings [23]. The third plot shows
that at these stability levels it is expected to observe statis-
tical significance in about 80% of system comparisons. In
the middle right plot we can see that the proportion of con-
flicting results is generally below the α = 0.05 significance
level when Eρ2 ≥ 0.9.
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Figure 2: Mapping from GT-based to data-based reliability indicators on a per-collection basis.

Researchers interested in the particular mapping for one
of these collections may use the estimates in Table 1 and
the plots in Figure 2 to get a better understanding of the
evaluation results and draw more informed conclusions. To
assess the reliability of future collections and guide in their
development process, we fitted a single model using all avail-
able data instead of one model per collection. Figure 3
shows these fits, along with 95% and 90% prediction inter-
vals that theoretically cover 95% and 90% of all future ob-
servations. In terms of sensitivity, the middle left plots show
that δa ≈ 0.03 for Eρ2 ≈ 0.9, which is about 60% of what
Voorhees and Buckley reported for the Ad Hoc tracks [22];
although the intervals cover their values well. In the bottom

left plot we see that δr ≈ 20% for Φ ≈ 0.75, generally agree-
ing with Sanderson and Zobel [17]. As to statistical signifi-
cance, we replicated Voorhees’s [21] study with random sets
of 50 queries from the Ad Hoc 7-8 topics and Robust 2004
systems. The average relative stability is Eρ̂2 ∈ [0.81, 0.88],
which corresponds to β ∈ [37%, 54%], α− ∈ [3.9%, 7.8%]
and α+ ∈ [0.38%, 1.3%]. These are again larger than she
reported, but the intervals cover her values well.

Overall, these models produce a decent fit on the data,
and they fill the gap between data-based methodologies and
Generalizability Theory. They provide a valuable tool to
rapidly assess and easily understand the reliability of a test
collection design.
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Figure 3: General mapping from GT-based to data-based reliability indicators, with 95% (dark grey) and
90% (light grey) prediction intervals.

5. DISCUSSION
The last columns in Table 1 report point and 95% inter-

val estimates of the stability of the 43 TREC collections we
considered. Collections in the same group correspond to the
same tasks, providing a historical perspective on the reliabil-
ity of the collections used so far since 1994 and for a variety
of tasks. For example, the average relative stability in the
Ad Hoc collections was Eρ2 ∈ [0.86, 0.93], which according
to Figure 3 corresponds to τ ∈ [0.65, 0.81]. For the Web Ad
Hoc collections we find Eρ2 ∈ [0.8, 0.93], which would corre-
spond to τ ∈ [0.53, 0.81]. There are large differences within
some tasks, such as Web Distillation, Genomics, Terabyte

and Enterprise. This is further evidence of the variability in
D-study results due to the data used in the G-study. Except
for a few particular cases though, the computation of con-
fidence intervals smooths the problem. Across collections
the averages are Eρ2 = 0.88 and Φ = 0.74, with some tasks
having very low scores. According to Figure 3 the expected
τ correlation is 0.69 with variations from 0.49 to 0.95, that
is, much lower than desired.

Figure 4 plots the historical trend of test collection relia-
bility. The left plot shows that relative stability has varied in
the (0.8,1) interval for the most part, but most importantly
it suggests that the stability of collections has decreased very



Track Documents Query Set Measure ns nq Eρ̂2(nq) Φ̂(nq)
Ad Hoc 3 Disks 1 & 2 151-200 AP 40 50 0.933 0.893-0.963 0.786 0.661-0.88
Ad Hoc 4 Disks 2 & 3 201-250 AP 33 49 0.907 0.847-0.952 0.79 0.658-0.89
Ad Hoc 5 Disks 2 & 4 251-300 AP 94 50 0.856 0.804-0.9 0.62 0.488-0.732
Ad Hoc 6 Disks 4 & 5 301-350 ∗ AP 74 50 0.898 0.855-0.933 0.806 0.714-0.875
Ad Hoc 7 Disks 4 & 5 351-400 ∗ AP 103 50 0.919 0.891-0.943 0.799 0.71-0.864
Ad Hoc 8 Disks 4 & 5 401-450 ∗ AP 129 50 0.908 0.88-0.932 0.701 0.59-0.787

WebAdHoc 8 WT2g 401-450 ∗ AP 44 50 0.929 0.89-0.96 0.83 0.728-0.904
WebAdHoc 9 WT10g 451-500 AP 104 50 0.876 0.833-0.912 0.76 0.662-0.835

WebAdHoc 2001 WT10g 501-550 AP 97 50 0.862 0.813-0.904 0.711 0.598-0.801
WebAdHoc 2009 ClueWeb09 “W1-W50” ∗ AP (MTC) 71 50 0.81 0.729-0.876 0.619 0.473-0.744
WebAdHoc 2010 ClueWeb09 “W51-W100” ∗ AP 56 48 0.829 0.746-0.895 0.662 0.513-0.787
WebAdHoc 2011 ClueWeb09 “W101-W150” ∗ AP 37 50 0.804 0.685-0.895 0.702 0.537-0.835

WebDistillation 2002 .GOV 551-600 AP 71 49 0.901 0.858-0.935 0.84 0.762-0.898
WebDistillation 2003 .GOV TD1-TD50 AP 93 50 0.45 0.249-0.619 0.315 0.144-0.492
WebDistillation 2004 .GOV “WT04” AP 74 75 0.89 0.844-0.927 0.747 0.643-0.832
WebDiversity 2009 ClueWeb09 “W1-W50” ∗ α-nDCG@20 48 50 0.903 0.852-0.943 0.847 0.759-0.911
WebDiversity 2010 ClueWeb09 “W51-W100” ∗ α-nDCG@20 32 50 0.882 0.803-0.94 0.804 0.676-0.899
WebDiversity 2011 ClueWeb09 “W101-W150” ∗ α-nDCG@20 25 50 0.844 0.725-0.929 0.719 0.535-0.865

Novelty 2002 Disks 4 & 5 50 from 300-450 ∗ F 42 49 0.919 0.873-0.955 0.792 0.671-0.883
Novelty 2003 AQUAINT N1-N50 F 55 50 0.966 0.949-0.979 0.944 0.91-0.967
Novelty 2004 AQUAINT N51-N100 F 60 50 0.801 0.708-0.876 0.181 0.1-0.301

GenomicsAdHoc 2003 MEDLINE “G1-G50” AP 49 50 0.94 0.909-0.965 0.87 0.792-0.925
GenomicsAdHoc 2004 MEDLINE “G51-G100” AP 43 50 0.903 0.848-0.945 0.768 0.64-0.868
GenomicsAdHoc 2005 MEDLINE “G101-150” AP 62 49 0.77 0.664-0.855 0.422 0.269-0.586

Robust 2003 Disks 4 & 5 50 from 301-450 & 601-650 ∗ AP 78 100 0.846 0.784-0.897 0.509 0.384-0.636
Robust 2004 Disks 4 & 5 301-450 & 601-700 ∗ AP 110 249 0.95 0.934-0.964 0.824 0.768-0.872
Robust 2005 AQUAINT 50 from 301-700 ∗ AP 74 50 0.864 0.807-0.911 0.693 0.564-0.797

Terabyte 2004 GOV2 701-750 ∗ bpref 70 49 0.953 0.933-0.97 0.877 0.809-0.924
Terabyte 2005 GOV2 751-800 ∗ bpref 58 50 0.875 0.815-0.923 0.648 0.501-0.774
Terabyte 2006 GOV2 801-850 ∗ bpref 80 50 0.762 0.668-0.841 0.427 0.283-0.575

TerabyteAll 2006 GOV2 701-850 ∗ bpref 61 149 0.94 0.913-0.962 0.719 0.617-0.812
EnterpriseExpert 2005 W3C EX01-EX50 AP 37 50 0.916 0.864-0.955 0.824 0.713-0.905
EnterpriseExpert 2006 W3C EX51-EX105 AP 91 49 0.965 0.952-0.976 0.939 0.909-0.96
EnterpriseExpert 2007 CERC CE001-CE050 AP 55 50 0.884 0.827-0.929 0.785 0.674-0.87
EnterpriseExpert 2008 CERC CE051-CE127 AP 42 55 0.565 0.315-0.757 0.28 0.11-0.498

1MQ 2007 GOV2 “MQ1-MQ10000” AP (MTC) 29 1692 0.999 0.999-1 0.998 0.997-0.999
1MQ 2008 GOV2 “MQ10001-MQ20000” AP (MTC) 25 784 0.998 0.996-0.999 0.988 0.979-0.995
1MQ 2009 ClueWeb09 “MQ20001-MQ60000” AP (MTC) 35 542 0.96 0.936-0.979 0.908 0.854-0.951
1MQ 2007 GOV2 “MQ1-MQ10000” statAP 29 1153 0.992 0.986-0.996 0.982 0.97-0.991
1MQ 2008 GOV2 “MQ10001-MQ20000” statAP 25 564 0.978 0.962-0.99 0.969 0.946-0.986
1MQ 2009 ClueWeb09 “MQ20001-MQ60000” statAP 35 475 0.96 0.935-0.979 0.929 0.886-0.963

Medical 2011 NLP “M101-M135” bpref 127 34 0.774 0.704-0.835 0.497 0.348-0.628
Microblog 2011 Tweets2011 MB1-MB50 P@30 184 49 0.92 0.899-0.938 0.818 0.747-0.869

Table 1: Summary of all 43 TREC collections analyzed. Query sets with ∗ are used in more than one
collection. Query numbers in quotes are not official, but arbitrarily named for this paper. The last two
columns report the point and 95% interval estimates of the GT-based reliability indicators.

slightly with the years. The clear exceptions are again the
Million Query Track collections, which specifically aimed at
increasing the number of queries. Within each task it ap-
pears that stability tended to decrease as the tasks got older
despite that query set sizes were normally unaltered. The
second plot shows that this decrease in stability could be
due to system variance getting smaller with the years. That
is, systems perform more similarly as the tasks get older,
indicating that retrieval techniques are generally improved.
The right plot shows that query difficulty also varied within
tasks. Sudden peaks may be explained by changes in the
document set or in the task definition. The general trend
suggests that queries are getting more alike with the years,
further contributing to the decrease in reliability.
Bodoff [5, §5] discusses the incorporation of the document

set as another facet in Generalizability Theory, much like
queries and systems, to measure variability due to docu-
ments [14]. He argues that it does not make sense in gen-
eral, because we do no assign performance scores for indi-

vidual documents but for sets of documents (e.g. the first k
retrieved when computing P@k). In our case we could com-
pare different editions of the same task but with different
document sets to get a (weak) clue of the variability due to
documents. For example, the Ad Hoc task of the Web Track
shows quite different stability scores in the first three edi-
tions (WT2g and WT10g collections) compared to the last
three editions (ClueWeb09), given that they all used the
standard query set size of 50. Similarly, the Expert Search
task in the Enterprise Track shows very different stability
levels when using the W3C collection or the CERC collec-
tion. We must bear in mind though that these differences
might actually be due to the systems and queries used, which
varied from year to year.

From the confidence intervals in Table 1, we used the mod-
els fitted in Section 4 to provide in Table 2 the estimated
data-based reliability scores for all 43 collections. It is evi-
dent that expected τ correlations are well below the desired
0.9 in most cases. In that line, some collections are clearly



Track τ̂ τ̂AP β̂ (%) α̂− (%) α̂+ (%) δ̂a δ̂r (%) ǫ̂ n̂′
Eρ2

(.95) n̂′
Φ(.95)

Ad Hoc 3 0.725-0.898 0.637-0.86 58-83 0.6-3.2 0.02-0.28 0.01-0.03 6-25 0.001-0.029 37-114 130-487
Ad Hoc 4 0.622-0.87 0.515-0.823 45-79 0.9-5.6 0.03-0.72 0.01-0.06 6-25 0.001-0.03 47-169 116-484
Ad Hoc 5 0.537-0.741 0.418-0.657 35-60 2.9-8.2 0.23-1.38 0.03-0.08 18-42 0.013-0.112 106-233 348-999
Ad Hoc 6 0.641-0.821 0.537-0.758 47-72 1.6-5.2 0.08-0.62 0.02-0.05 7-20 0.001-0.017 69-161 136-381
Ad Hoc 7 0.72-0.846 0.631-0.791 58-76 1.2-3.3 0.05-0.29 0.01-0.03 8-20 0.001-0.017 58-117 150-389
Ad Hoc 8 0.695-0.819 0.6-0.756 54-72 1.6-3.9 0.08-0.38 0.02-0.04 13-31 0.006-0.054 69-130 257-662

WebAdHoc 8 0.718-0.89 0.629-0.849 57-82 0.7-3.4 0.02-0.3 0.01-0.03 5-18 0-0.014 40-118 102-355
WebAdHoc 9 0.595-0.77 0.484-0.694 42-65 2.4-6.4 0.17-0.9 0.02-0.06 10-24 0.003-0.028 92-190 189-484

WebAdHoc 2001 0.554-0.749 0.437-0.668 37-62 2.8-7.7 0.21-1.22 0.03-0.08 12-31 0.005-0.051 102-220 236-640
WebAdHoc 2009 0.406-0.686 0.283-0.59 22-53 4.1-13.5 0.41-3.24 0.04-0.13 17-44 0.011-0.122 135-354 327-1058
WebAdHoc 2010 0.434-0.729 0.311-0.643 25-59 3.1-12.2 0.27-2.73 0.03-0.12 13-39 0.006-0.095 107-311 247-868
WebAdHoc 2011 0.34-0.728 0.221-0.642 16-59 3.2-17 0.27-4.81 0.03-0.17 10-37 0.003-0.08 112-438 188-819

WebDistillation 2002 0.647-0.827 0.544-0.766 48-73 1.5-5 0.07-0.59 0.01-0.05 5-16 0.001-0.009 65-154 106-292
WebDistillation 2003 0.019-0.255 0.004-0.148 0-10 22.8-64.4 7.89-47.06 0.23-0.64 41-82 0.108-0.6 585-2862 980-5631
WebDistillation 2004 0.617-0.807 0.508-0.741 44-70 1.8-5.8 0.1-0.76 0.02-0.06 10-26 0.003-0.034 112-264 288-791
WebDiversity 2009 0.633-0.847 0.528-0.792 46-76 1.2-5.4 0.05-0.66 0.01-0.05 4-16 0-0.009 58-166 93-301
WebDiversity 2010 0.535-0.839 0.416-0.782 35-74 1.3-8.3 0.06-1.4 0.01-0.08 5-23 0.001-0.025 61-234 107-457
WebDiversity 2011 0.401-0.811 0.278-0.746 22-70 1.7-13.8 0.09-3.35 0.02-0.14 7-37 0.001-0.081 73-360 149-826

Novelty 2002 0.679-0.877 0.582-0.833 52-80 0.9-4.2 0.03-0.44 0.01-0.04 6-24 0.001-0.026 44-136 124-457
Novelty 2003 0.86-0.941 0.81-0.919 78-90 0.3-1.1 0-0.04 0-0.01 1-4 0-0 21-52 33-94
Novelty 2004 0.374-0.685 0.252-0.589 19-53 4.1-15.1 0.42-3.93 0.04-0.15 63-87 0.309-0.709 135-392 2203-8579

GenomicsAdHoc 2003 0.762-0.903 0.684-0.867 63-84 0.6-2.5 0.02-0.18 0.01-0.02 3-13 0-0.006 35-95 78-250
GenomicsAdHoc 2004 0.624-0.852 0.517-0.799 45-76 1.2-5.6 0.05-0.71 0.01-0.05 7-27 0.001-0.035 56-171 146-536
GenomicsAdHoc 2005 0.311-0.641 0.195-0.537 14-47 5.2-18.8 0.62-5.69 0.05-0.19 32-67 0.055-0.358 158-472 657-2528

Robust 2003 0.5-0.734 0.379-0.649 31-60 3.1-9.6 0.25-1.78 0.03-0.09 27-53 0.036-0.204 218-525 1087-3043
Robust 2004 0.823-0.902 0.761-0.865 72-84 0.6-1.6 0.02-0.08 0.01-0.02 7-15 0.001-0.008 175-336 693-1428
Robust 2005 0.544-0.766 0.426-0.689 36-64 2.5-8 0.17-1.32 0.02-0.08 13-34 0.005-0.066 94-227 242-733

Terabyte 2004 0.82-0.916 0.758-0.884 72-86 0.5-1.6 0.01-0.08 0-0.02 4-12 0-0.004 30-68 77-220
Terabyte 2005 0.558-0.795 0.442-0.725 38-68 2-7.5 0.12-1.19 0.02-0.07 15-41 0.008-0.103 80-217 279-947
Terabyte 2006 0.316-0.61 0.2-0.5 14-44 6-18.5 0.8-5.52 0.06-0.18 33-65 0.06-0.336 181-474 702-2406

TerabyteAll 2006 0.772-0.897 0.696-0.859 65-83 0.7-2.4 0.02-0.16 0.01-0.02 11-29 0.004-0.043 111-269 657-1761
EnterpriseExpert 2005 0.661-0.877 0.56-0.831 50-80 0.9-4.7 0.03-0.52 0.01-0.05 5-20 0-0.017 46-149 100-383
EnterpriseExpert 2006 0.868-0.932 0.821-0.907 79-89 0.3-1 0.01-0.03 0-0.01 2-4 0-0 24-48 39-93
EnterpriseExpert 2007 0.582-0.812 0.468-0.746 40-70 1.7-6.8 0.09-1 0.02-0.07 7-23 0.001-0.025 73-200 143-459
EnterpriseExpert 2008 0.037-0.453 0.01-0.33 0-26 11.4-56 2.41-37.02 0.11-0.56 41-86 0.104-0.683 335-2277 1053-8458

1MQ 2007 0.997-0.999 0.995-0.999 99-100 0-0 0-0 0-0 0-0 0-0 11-38 30-104
1MQ 2008 0.989-0.997 0.985-0.996 98-100 0-0 0-0 0-0 0-1 0-0 16-59 81-313
1MQ 2009 0.827-0.942 0.767-0.92 73-90 0.3-1.5 0-0.07 0-0.01 2-8 0-0.002 219-710 534-1756
1MQ 2007 0.962-0.989 0.947-0.984 94-98 0-0.1 0-0 0-0 0-1 0-0 88-304 196-685
1MQ 2008 0.896-0.972 0.858-0.961 83-95 0.1-0.7 0-0.02 0-0.01 0-2 0-0 107-421 156-616
1MQ 2009 0.826-0.941 0.765-0.919 73-90 0.3-1.5 0-0.08 0-0.01 1-6 0-0.001 194-628 352-1156

Medical 2011 0.368-0.598 0.246-0.486 19-42 6.3-15.5 0.88-4.08 0.06-0.15 28-57 0.039-0.246 129-273 383-1208
Microblog 2011 0.74-0.833 0.656-0.774 60-74 1.4-3 0.07-0.24 0.01-0.03 7-17 0.001-0.011 62-105 141-315

Table 2: Predicted reliability of all 43 TREC collections analyzed. All confidence intervals are based on the
fits from Figure 3 at the endpoints of the 95% confidence intervals computed with equations (10) and (11).

not reliable, such as the Web Distillation 2003, Genomics Ad
Hoc 2005, Terabyte 2006, Enterprise Expert Search 2008, or
the very recent Medical 2011 and Web Ad Hoc 2011. Re-
garding the expected RMS Error of absolute scores, we can
see that collections are somewhat stable, but with clear ex-
ceptions such as Web Distillation 2003, Novelty 2004 and
Enterprise Expert Search 2008.
The last two columns in Table 2 report intervals on the

number of queries, as per equations (12) and (13), required
to achieve 0.95 stability. In general the number of queries
needs to be at least doubled, and in many cases a few hun-
dred queries seem to be needed. This is particularly interest-
ing for the most recent collections, such as Web Ad Hoc 2010
and 2011, Medical 2011 and Microblog 2011, which stick to
the traditional size of 50 queries but need about 200. What
becomes clear from these figures is that the ideal size of a
collection depends greatly on the task it will be used for,
and thus it is not appropriate to fix some acceptable size
such as 50 or 100 throughout tasks. Each task has different
characteristics and should be analyzed accordingly.

6. CONCLUSIONS
In this paper we discussed the measurement of test col-

lection reliability from the perspective of traditional data-
based methodologies and of Generalizability Theory. GT
is regarded as a more appropriate, easy to use, and power-
ful method to assess reliability, but it has two drawbacks.
First, we showed that GT is very sensitive to the particular
sample of systems and queries used to estimate reliability of
a larger query set. We showed that about 50 systems and
50 queries are needed for robust estimates of collection re-
liability. Therefore, researchers should be cautious in using
GT when building new collections from scratch. To account
for all this variability we discussed a more robust approach
based on interval estimates of the stability indicators, which
helps in making more appropriate decisions regarding num-
ber of queries or different structure in the experimental de-
sign. Second, we empirically established a mapping between
GT-based and traditional data-based indicators to help in-
terpreting results from GT which, otherwise, do not have a
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Figure 4: Historical trend of relative stability (left), variability due to systems (middle) and to queries (right).

clear and easily understandable meaning. Based on these
results, we reviewed the reliability of 43 TREC test collec-
tions, evidencing that some of them are very little reliable.
We show that the traditional choice of 50 queries is clearly
not enough even for stable rankings, and in most cases a
couple hundred queries are needed. Our results also show
that the ideal query set size varies significantly across tasks,
suggesting that we avoid the use of some fixed size such as 50
or 100 and that we analyze tasks and collections separately.
There are two clear lines for future research. First, we

completely ignored the assessor facet in our study. It is ev-
ident that different assessors provide different results, so it
would be interesting to include them in the analysis. Sec-
ond, although we fitted the theoretically correct models, it
is clear that they can be improved (see for instance Power
and RMS Error in Figure 3). IR evaluation experiments
generally violate assumptions of GT, such as normality of
distributions and random sampling, so different models and
features to better fit the actual data should be investigated.
We created some scripts for the statistical software R that

can help researchers perform all these computations to easily
assess the reliability of custom test collection designs. They
can be downloaded from http://julian-urbano.info.
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