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ABSTRACT

This short paper describes our five submissions to the 2012
edition of the MIREX Symbolic Melodic Similarity task.
All five submissions rely on a geometric model that repre-
sents melodies as spline curves in the pitch-time plane. The
similarity between two melodies is then computed with a
sequence alignment algorithm between sequences of spline
spans: the more similar the shape of the curves, the more
similar the melodies they represent.

As in MIREX 2010 and 2011, our systems ranked first for
all effectiveness measures used. However, this year there
was only one competing system, so we employ this report
mainly to describe and compare results within our systems.

1. INTRODUCTION

For the 2012 edition of the MIREX Symbolic Similarity
task we submitted five systems. ULMS1-ShapeH is the ex-
act same system that obtained the best results in the MIREX
2010 [6] and 2011 editions [8] (JU4-Shape and UL1-Shape
back then, respectively). We submitted it again to evaluate
it with a different set of queries and to serve as a baseline
to measure possible improvements in our other algorithms.

Systems ULMS2-ShapelL and ULMS3-ShapeG are mod-
ified versions of ShapeH that use a different sequence align-
ment algorithm. In particular, they use a local and a global
alignment algorithm, respectively. These are very common
choices in the literature, so we submitted these versions to
compare these alignment options with the hybrid approach
we have followed so far in ShapeH.

ULMS4-ShapeTime is the same system as ShapeH, ex-
cept that the top-k retrieved results are re-ranked using
ULMSS5-Time, which is the same as the UL3-Time system
submitted last year and that was shown to be especially
good at ranking results.

In MIREX 2010 and 2011 all our systems ranked first
[2,3]. In this MIREX 2012 edition the five systems again
ranked at the very top, though we note that this year there
was only one competing submission [4].
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Figure 1. Melody as a curve in the pitch-time plane.

2. GEOMETRIC MELODY REPRESENTATION

Melodies are represented as curves in the pitch-time plane,
arranging notes according to their pitch height and onset
time. For the pitch dimension we use a directed inter-
val representation, while for the time dimension we use
the onset ratio between successive notes. We then calcu-
late the interpolating curve passing through the notes (see
Figure 1). From that point on, only the curves are used to
compute the similarity between melodies [7].

We use Uniform B-Splines to interpolate through the
notes [1], which gives us a parametric polynomial piece-
wise function for the spline: one function for the pitch di-
mension and another one for the time dimension. Their
first derivatives measure how much the melodies change at
any point. This representation is transposition invariant, as
two transposed melodies have the same first derivative (see
Figure 2). It is also time-scale invariant, as we use duration
ratios within spline spans instead of actual durations.

A melody is thus represented as a sequence of spline
spans, each of which can be considered the same as an
n-gram. Given two arbitrary melodies, we compare them
with a sequence alignment algorithm, which computes the
differences between two spans based on their geometry.

3. SYSTEM DESCRIPTIONS
3.1 ShapeH, ShapeL and ShapeG

In these systems we completely ignore the time dimension
and use spans 3-notes long, which result in splines defined
by polynomials of degree 2. These are then differentiated,
so we actually use polynomials of degree 1 to represent
melodies. In addition, we implemented a heuristic very
similar to the classical idf (Inverse Document Frequency)



System | Penalizes the beginning Penalizes the end
ShapeH yes no
ShapelL no no
ShapeG yes yes

Table 1. Rough differences between the hybrid, local and
global alignment approaches.

in Text Information Retrieval: the more frequent a spline
span is in the document collection, the less important it is
for the comparison of two melodies. Thus, the similarity
between two spline spans is computed as follows:

e Insertion:

s(—,n) =—(1 = f(n)).
e Deletion:

s(n,—) = —(1 = f(n)).
e Match:

s(n,n) =1— f(n).

where f(n) indicates the frequency of the spline span n in
the document collection. For the substitution score we fol-
low a naive rationale: if two spans have roughly the same
shape they are considered the same, no matter how similar
they actually are. For example, the polynomials ¢2 4 4 and
0.5t% + 3t — 1 are considered equal because they are both
monotonically increasing. To this end, we only look at the
direction of the splines at the beginning and at the end of
the spans:

e If the two curves have the same derivative signs at
the end and at the beginning of the span, the penal-
ization is the smallest.

e If the two curves have opposite derivative signs at
the end and at the beginning of the span, the penal-
ization is the largest.

e If the two curves have the same derivative sign at one
end of the span but not at the other, the penalization
is averaged.

Because these splines are defined by polynomials of de-
gree 2, they can change their direction just once within the
span, so looking at the end points is enough.

3.1.1 Sequence Alignment

The only difference between these systems is in the se-
quence alignment algorithm they use. Let H be the dy-
namic programming table filled by the algorithm to com-
pare sequences a and b. Shapel employs a local alignment
approach, where the score corresponding to an arbitrary
cell is computed as:

0
H(Z — ].,j — 1) + s(ai,bj)
H(i—1,7) + s(ai, —)
H(i,j —1) +s(=,b;)

H(i,j) = max

and the bottom-right cell corresponds to the similarity be-
tween the two sequences. On the other hand, ShapeG em-
ploys a global alignment approach, where the score of an
arbitrary cell is computed as:
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Figure 2. Transposition invariance with the derivatives.

Time Time

Figure 3. Time normalization in system Time. The span in
the left side is transformed into the span in the right side.

H(Z — ].,J — 1) +s(ai,bj)
H(l - 17j) +S(aia_)
H(i,j —1) +s(=, b))

H(i,7) = max

In the ShapeH system we employ a variant of the global
alignment approach, where the similarity between the two
sequences corresponds to the maximum score in the table,
regardless of its position. Very roughly speaking, the main
difference between the three systems is that Shapel does
not penalize differences at the beginning of the sequences,
while ShapeG and ShapeH do; and ShapeL and ShapeH
allow differences at the end of the sequences, but ShapeG
does not (see Table 1). With this hybrid approach we there-
fore assume that human listeners pay attention to the begin-
ning of the melodies, but not to the end.

3.2 Time

This system uses spans 4-notes long, which result in spline
spans defined with polynomials of degree 3. These are then
differentiated, so we actually use polynomials of degree 2
to represent melodies. The similarity function between two
spline spans does take the time dimension into account:

e Insertion:

s(—,n) = —dz’ﬁp(n, o(n)) — Akt - diff ,(n, &(n)).
e Deletion:

s(n, —) = —diff ,(n, ¢(n)) — Aky - diff ,(n, p(n)).
e Substitution:

s(n,m) = —diff ,(n,m) — Ak - diff ,(n, m).
e Match:

s(n,n) = 2pu, + 2Xkypy = 20, (1 + k).

where diff ,(n,m) and diff ,(n, m) measure the area be-
tween the first derivatives of the two spans’ pitch and time
functions; ¢(n) is a function returning a span like n but
with no change in pitch, so that —diff ,(n, ¢(n)) actually
compares n with the x axis. The constants p,, and p; are
the mean scores returned by the diff,, and diff, functions
over a random sample of 100,000 pairs of spline spans



drawn from the Essen Collection (u, = 2.1838 and
we = 0.4772) [7]; kx = 0.5 is a constant that weights
the time dissimilarity with respect to the pitch dissimilar-
ity; and A = p,/py is a constant that normalizes time
dissimilarity scores with respect to the pitch dissimilarity
scores. This normalization is used because time dissimi-
larity scores use to be between 5 and 7 times smaller than
pitch dissimilarity scores, so that weighting by k; alone can
be deceiving [7].

This system is transposition invariant as well. Also,
span durations are normalized to length 1, so it is also time-
scale invariant. For example, the first note in the left-most
span in Figure 3 is kept in position 0, the second note is ac-
tually moved to the right up to position 1/2, the third note
is moved up to position 3/4, and the fourth note is moved
to the end (position 1). This system is thus transposition
and time-scale invariant.

3.3 ShapeTime

This system is an extension of ShapeH. Last year, we saw
that the Time system performed very well for the rank-
aware measures (e.g. AD R), while the Shape system per-
formed better for the rank-unaware measures (e.g. F'ine).
Therefore, we decided to submit the ShapeTime variant
this year, which basically runs ShapeH and then re-ranks
the top-k documents according to Time.

4. RE-RANKING

The sequence alignment algorithms may return the same
similarity score for different documents, so a re-ranking
process is run to solve ties. For every document in a tie, the
corresponding sequence alignment algorithm is run again,
but with an absolute pitch representation instead. There-
fore, all transposition-equivalent documents that ranked
equally are re-arranged with this process, ranking first those
less transposed from the query. Note that the re-ranking
process in ShapeTime is different (see Section 3.3).

S. RESULTS

Table 2 shows and excerpt of the official MIREX 2012 re-
sults [4], with the overall scores for the systems described
here ! . The bottom row shows the median rank for each
system. In general, the ShapeTime system does indeed
outperform the others; and ShapeH does return again more
relevant material than Time, but then fails at ranking it
properly. In addition, we see that the hybrid alignment ap-
proach clearly outperforms the local and global versions.

5.1 Sequence Alignment

As shown in Table 2, the hybrid alignment approach clearly
outperforms the local and global alternatives for all effec-
tiveness measures. In fact, the relative performance is al-
ways the same: the global algorithm outperforms the local

I'The scores here do not exactly match the official scores in the
MIREX site because we normalize between 0 and 1 to make discussion
easier and comparable with previous years.

ShapeH ShapelL ShapeG
ADR | 0.609 0483 (-21%) 0.542 (-11%)
NRGB | 0534 0428 (-20%) 0.471 (-12%)
AP | 0532 0273 (-49%) 0.418 (-21%)
PND | 0524 0327 (-38%) 0.446 (-15%)
Fine | 0.629  0.496 (-21%) 0.546 (-13%)
PSum | 0.680 0.467 (-31%) 0.582 (-14%)
WCSum | 0.629  0.391(-38%) 0.532 (-15%)
SDSum | 0.603  0.353 (-41%) 0.508 (-16%)
Greater0 | 0.833  0.693 (-17%) 0.730 (-12%)
Greaterl | 0527  0.240 (-54%) 0.433 (-18%)

Table 3. Differences in performance between the hybrid
and the local and global sequence alignment algorithms.

version, and both are significantly outperformed by the hy-
brid alternative. As Table 3 shows, the relative difference
is about 15% with ShapeG and around 30% with ShapelL.

5.2 Time-based Re-Ranking

As shown in Table 2, ShapeH retrieves slightly more rele-
vant material than Time and, as expected, pretty much the
same as ShapeTime. We note that the rank-unaware scores
are not exactly the same between ShapeH and ShapeTime
because the latter also re-ranks those documents beyond
the top-k that are tied with the k-th document, which can
ultimately lead to a slight change in what documents are
actually retrieved in the top-k. Most importantly, we see
that re-ranking with the Time algorithm does indeed im-
prove results acrross measures, especially when taking the
ranking into account. For instance, there is an improve-
ment of 8% in N RGB and as much as 10% in ADR.

6. CONCLUSIONS

We have submitted five systems to the 2012 edition of the
MIREX Symbolic Melodic Similarity task. Our systems
again ranked at the top, but there was only one more com-
peting team this year [4]. Nonetheless, we observed two
improvements as expected. On the one hand, we obtained
better performance when using a hybrid sequence align-
ment algorithm as opposed to the local and global versions
traditionally employed. On the other hand, we obtained
better performance when re-ranking the top-k results using
the time dimension, as opposed to just the pitch dimension.
With the results of this new edition, our approach of
melodic similarity through shape similarity seems to work
very well across collections. In fact, these systems have
obtained the best results reported to date for the MIREX
2005 [7], 2010 [2], 2011 [3] and 2012 [4] test collections.
After three editions evaluating the ShapeH algorithm
(2010, 2011 and 2012), we make an observation regard-
ing the evaluation framework. In terms of ADR and AP
scores, the results obtained have been 0.371, 0.651 and
0.609; and 0.349, 0.626 and 0.532, respectively [2—4]. That
is, there have been very large differences across years, show-
ing a clear reliability problem in the current evaluation
framework [9]. We can not calculate confidence intervals



ShapeH ShapeL  ShapeG  ShapeTime Time
ADR | 0.609 (3) 0483(5) 0.542@) 0.671(1) 0.657(2)
NRGB | 0.534((3) 0.428(5) 0471 (4) 0579(1) 0.567(2)
AP | 0.532(2) 0.273(5) 0418(4) 0541(1) 0.487(3)
PND | 0.524(1) 0327(5) 0446(4) 0516(22) 0487(3)
Fine | 0.629 (2) 0.496(5) 0.546(4) 0.635(1) 0.626 (3)
PSum | 0.680(2) 0.467(5) 0.582@4) 0.685(1) 0.663 (3)
WCSum | 0.629(2) 0391(5) 0.532@) 0.636(1) 0.609 (3)
SDSum | 0.603(2) 0.353(5) 0.508(@4) 0.611(1) 0.582(3)
Greater0 | 0.833* (1) 0.693(5) 0.730(4) 0.833* (1) 0.827 (3)
Greaterl | 0.527(2) 0.240(5) 0433(4) 0.537()  0.500 (3)

Median rank 2 5 4 1 3

Table 2. MIREX 2012 overall results for our five systems, normalized to the range O to 1. Ranks per effectiveness measure

are in parentheses. * for ties.

on those average scores because neither the raw system
outputs nor the per-query scores are available [5], but such
large differences across years (up to 75% in AD R and 80%
in AP), clearly show that 30 queries are just too few to
have reliable estimates of true performance. In fact, in the
current framework only 6 queries are used, with four ar-
tificial changes that then count to 30 queries. Therefore,
we can actually consider the evaluation as using only 6
queries. In previous work we showed that the number of
queries used in the Audio Music Similarity task can be
greatly reduced [9], and in fact it has dropped from 100
to 50 in the MIREX 2012 campaign. The evidence sug-
gests that the Symbolic Melodic Similarity task is using
too few queries, so we propose to use some of the leftover
manpower from AMS to evaluate more queries in further
editions of the SMS task.
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