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Abstract 

The goal of this degree thesis is to provide the necessary mechanisms 
to allow the music reuse. 

The main musical information retrieval methods nowadays are based 
on text retrieval techniques applied to the music metadata, such as the author, 
title or musical kind. However, this degree thesis establishes the theoretic and 
practical bases to allow the music retrieval based on the own musical content, 
extending the possible scenarios where this kind of information retrieval can be 
applied in. 

On the other hand, the retrieval process is based on the RSHP 
information representation model and on the CAKE retrieval framework. Thus, 
this degree thesis also intends to demonstrate the versatility and extension 
capacity of the RHSP model, applicable to whatever the information domain. 

Resumen 

El objetivo de este proyecto fin de carrera es proporcionar los 
mecanismos necesarios para hacer posible la reutilización de música. 

Los principales métodos de recuperación de información musical de 
hoy en día se basan en técnicas de recuperación de texto aplicadas a 
metadatos de la música, como por ejemplo el autor, título o género musical. 
Sin embargo, este proyecto fin de carrera sienta las bases teóricas y prácticas 
para permitir la recuperación de música basada en el propio contenido musical, 
ampliando los posibles escenarios de este tipo de recuperación de información. 

Por otro lado, el proceso de recuperación se basa en el modelo de 
representación de información RSHP y en el framework de recuperación CAKE. 
Así, este proyecto fin de carrera pretende también demostrar la versatilidad y 
capacidad de ampliación del modelo RSHP, aplicable a cualquier dominio de 
información. 

Un resumen completo y en español del proyecto se encuentra en la 
Parte XII de este documento. 
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1 Purpose of the Document 

The aim of this document is the Final Degree Project whose 
development is established in the Study Plan for Computing Engineering 
according to the B.O.E. 07.11.00 as a mandatory requirement, once its defense 
is accomplished, to have the right to the Computing Engineer Title. 
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2 Acronyms and Abbreviations 

This section provides the definitions of all terms, acronyms and 
abbreviations, or refers to other documents where the definitions can be 
found. 

2.1 Acronyms 

AAAI American Association for Artificial Intelligence 
ASCII American Standard Code for Information Interchange 

BLAST Basic Local Search Alignment Tool 
B.O.E. From the Spanish “Boletín Oficial del Estado”, Official State 

Bulletin 
BSSC Board for Software Standardization and Control 
CAKE Computer-Aided Knowledge Engineering 

DIN From the German “Deutsches Institut für Normung”, German 
Institute for Standardization 

DLL Dynamic Link Library 
DNA Deoxyribonucleic Acid 
DOM Document Object Model 
DSS Document Status Sheet 
ESA European Space Agency 

IE Information Element 
IEC International Electrotechnical Commission 

ISMIR International Symposium on Music Information Retrieval 
ISO International Organization for Standardization 
LFO Low Frequency Oscillation 
MIDI Musical Instrument Digital Interface 
MIKE Music Indexer based on the CAKE Engine 
MMA MIDI Manufacturers Association  

MPEG Moving Picture Experts Group 
SMDL Standard Music Description Language 
SMF Standard MIDI File 

SMPTE Society of Motion Picture and Television Engineers 
SQL Structured Query Language 
UML Unified Modeling Language 

UR User Requirement 
VCA Voltage-Controlled Amplifier 
VCF Voltage-Controlled Filter 

WMA Windows Media Audio 
XMI XML Metadata Interchange 
XML Extensible Markup Language 

2.2 Abbreviations 

Contig Contiguous 
Hex Hexadecimal 
LXor Logical XOR 
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MP3 MPEG-1 Audio Layer 3 
Pty Property 

QbyE Query by Example 
RHSP Relationship 
VAT Value Added Tax 
WAV Waveform audio format 
XOR Exclusive Or 
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3 References 

This section provides a complete list of all the applicable and 
reference documents, identified by title, author and date if applicable. 

3.1 Main References 

The list bellow contains all the main references used as main 
information sources for the current project:  

• [Herrera, 1995a] Herrera E., Teoría Musical y Armonía Moderna vols. I 
and II, Antoni Bosch Editor, 1995. 

• [Stone] Stone, J. E., Music, MIDI and Synthesizers, University of Illinois 
at Urbana-Champaign, http://jedi.ks.uiuc.edu/~johns/links/music/. 

• [Borj] The MIDI Specification 
http://www.borg.com/~jglatt/tech/midispec.htm. 

• [Knott, 2000] Knott G. D., Interpolating Cubic Splines, Birkhäuser, 
2000. 

• [de Boor, 1978] de Boor C., A Practical Guide to Splines, Springer-
Verlag, 1978. 

• [Llorens, 2003] Llorens J., Morato J. and Génova G., RSHP: an 
Information Representation Model based on Relationships, Special 
Book on Soft Computing, Berlin, 2003. 

• [Llorens, 2002] Llorens J., Fuentes J. M. and Morato J., A Retrieval 
Framework for XMI Information. 

• [Kilian, 2004] Kilian J., Inferring Score Level Musical Information from 
Low Level Musical Data, PhD thesis, 2004. 

• [ISO, 1986] International Organization for Standardization, Guidelines 
for the Establishment and Development of Monolingual Thesauri, 2nd 
edition, 11-15 UDC 025.48.ISO2788, Geneva, 1986.  

• [Byrd, 2001] Byrd D. and Crawford T., Problems of Music Information 
Retrieval in the Real World, Information Processing and Management. 

• [Sharka, 2004] Sharka I., Frederico G. and El Saddik A., Music Indexing 
and Retrieval, Proceedings of the IEEE International Conference on 
Virtual Environments, Human-Computer Interfaces and Measurement 
Systems, Boston, MD, USA, 2004.  



Modeling and Indexing Musical Files to allow Music Reuse 
Prologue References 

 page 6 

• [Doraisamy, 2001] Doraisamy S. and Rüger S. M., An Approach Towards 
a Polyphonic Music Retrieval System, Proceedings of the 2nd 
International Symposium on Music Information Retrieval (ISMIR 2001), 
pp. 187-193, Indiana University, Bloomington, USA, 2001. 

• [Doraisamy, 2004] Doraisamy S. and Rüger S. M., A Polyphonic Music 
Retrieval System Using N-Grams, Proceedings of the 5th International 
Symposium on Music Information Retrieval (ISMIR 2004), Audiovisual 
Institute-Universitat Pompeu Fabra, Barcelona, Spain, 2004. 

• [Hoos, 2001] Hoos H. H., Renz K. and Görg M., GUIDO/MIR – An 
Experimental Musical Information Retrieval System based on GUIDO 
Music Notation, Proceedings of the 2nd International Symposium on 
Music Information Retrieval (ISMIR 2001), pp. 41-50, Indiana University, 
Bloomington, USA, 2001. 

• [Dovey, 2001] Dovey M. J., A technique for “regular expression” style 
searching in polyphonic music, Proceedings of the 2nd International 
Symposium on Music Information Retrieval (ISMIR 2001), pp. 179-185, 
Indiana University, Bloomington, USA, 2001. 

• [Lebel, 2006] Lebel D., Voice Separation Summary, Computer Music 
Seminar 2 (MUMT-611), Schulich School of Music, 2006. 

• [Hoos, 2002] Hoos H. H. and Kilian J., Voice Separation – A Local 
Optimization Approach, Proceedings of the 3rd International 
Conference on Music Information Retrieval (ISMIR 2002), pp. 39-46, 
Institut de Recherche et  Coordination Acoustique/Musique (IRCAM), 
Paris, France, 2002. 

• [Kirlin, 2005] Kirlin P. B. and Utgoff P. E., VoiSe: Learning to segregate 
voices in explicit and implicit polyphony, Proceedings of the Sixth 
International Conference on Music Information Retrieval, pp. 552-557, 
Queen Mary, University of London, 2005. 

• [Chew, 2005] Chew E. and Wu X., Separating Voices in Polyphonic 
Music: A Contig Mapping Approach, Proceedings of the International 
Symposium on Computer Music Modeling and Retrieval, pp. 1-20, 
Berlin, Germany, 2005. 

• [Cambouropoulos, 2000] Cambouropoulos E., From MIDI to Traditional 
Musical Notation, Proceedings of the AAAI Workshop on Artificial 
Intelligence and Music, Austin, Texas, USA, 2000. 

• [Camboutopoulos] Cambouropoulos E., Crochemore M., Iliopoulos C., 
Mohamed M. and Sagot MF., A Pattern Extraction Algorithm for 
Abstract Melodic Representations that Allow Partial Overlapping of 
Intervalic Categories,  

• [Paiement] Paiement JF., Eck D. and Bengio S., A Probabilistic Model 
for Chord Progressions, Proceedings of the International Symposium on 
Computer Music Modeling and Retrieval 
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• [Orio] Orio N. and Neve G., Experiments on Segmentation Techniques 
for Music Documents Indexing, Proceedings of the International 
Symposium on Computer Music Modeling and Retrieval 

• [Yu] Yu Y., Watanabe C. and Joe K., Towards a Fast and Efficient 
Match Algorithm for Content-based Music Retrieval on Acoustic Data, 
Proceedings of the International Symposium on Computer Music 
Modeling and Retrieval 

• [Nagel, 2005] Nagel C., Evjen B. et al., Professional C# 2005, Wrox 
Press, 2005.  

• [Barwell, 2002] Barwell F., Case R. et al., Professional VB .net 2nd 
edition, Wrox Press, 2002. 

• ESA software engineering standards. 

3.2 Additional References 

The list below contains all the additional references where some 
relevant information can be found about several topics treated in the 
document: 

• [Wikipedia, EN] The Free Encyclopedia, http://en.wikipedia.org. 

• [DIN] German Institute for Standardization http://www.din.de. 

• [SMPTE] Society of Motion Picture and Television Engineers 
http://www.smpte.org.  

• [MMA] MIDI Manufacturers Association http://www.midi.org. 

• [Rona, 1987] Rona J., The MIDI Companion: The Ins, Outs and 
Throughs, Hal Leonard Publishing Corporation, 1987. 

• [Baeza, 1999] Baeza R. and Ribeiro B., Modern Information Retrieval, 
Addison Wesley, 1999. 

• [OMG, a] Object Management Group, Unified Modeling Language 
(UML), http://www.uml.org/.  

• [OMG, b] Object Management Group, XML and XMI Resource Page, 
http://www.omg.org/technology/xml/.  

• [W3C] World Wide Web Consortium, Extensible Markup Language (XML) 
http://www.w3.org/XML/.  

• [Nano] NanoSounds, http://nanosounds.tripod.com.  

• [ICOS] La Web de los Juegos Locos, http://www.losicos.com. 
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• [Microsoft] Microsoft, Microsoft .net Technology, 
http://www.microsoft.com/net/.  

• [dTinf] The Reuse Company, http://www.reusecompany.com. 

• [ISO/IEC] International Organization for Standardization and 
International Electrotechnical Commission, Standard Music Description 
Language, ISO/IEC DIS 10743, 1995 

• [Recordare] Recordare LLC, MusicXML Definition, 
http://www.musicxml.org/xml.html. 

• [Toub] Stephen Toub, .NET, MSDN Magazine and other Adventures in 
Life, http://blogs.msdn.com/toub/.  

• [GotDotNet] GotDotNet, MIDI for .NET v2.0.4, 
http://www.gotdotnet.com/Community/UserSamples/Details.aspx?Sa
mpleGuid=89CDE290-5580-40BF-90D2-5754B2E8137C. 
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4 Overview of the Document 

The document is divided into 12 main sections that are organized in 
parts: 

I. Prologue. This part includes a list of acronyms and abbreviations 
used along the document, as well as the applicable bibliography. 

II. Musical Theory. This section explains in detail the main music 
theory aspects that are going to be considered for the system. 

III. The MIDI Specification. This time, the MIDI standard is documented 
so that its main capabilities and features are explained. 

IV. Standard MIDI Files 1.0. This part of the document explains how 
MIDI files are, their structure and their relationship with the MIDI 
standard. 

V. The RSHP Model and the CAKE Engine. In this part the RSHP 
information representation metamodel and the CAKE Engine are 
explained in detail since they are the pillars of the system. 

VI. Definition of the User Requirements. This section contains the user 
requirements explained in detail. 

VII. General Requirements Analysis and First Solutions. After section VI 
ends, this one directly faces all the constraints stated and offers a 
detailed analysis of them so that a first approximation to their 
solution is offered. 

VIII. The Mathematical Approach. The basis of MIKE is a strong 
mathematical model build upon the interpolation bases. This model 
is explained and detailed in this part of the document with all the 
details about its improvement. 

IX. Translation to the RSHP Metamodel and the CAKE Engine. Since the 
project must comply with this metamodel and the engine explained 
in the Part V, this one is in charge of explaining how to translate to 
RSHP the mathematical model presented in Part VIII. 

X. Implementation Details. This part contains a detailed explanation 
about how the model is actually implemented and outlines some 
suitable future work. 

XI. Epilogue. This almost last part is in charge of presenting the 
conclusions of the project as well as defining some future work 
that might be applied to MIKE in order to improve it or simply make 
it more suitable. Indeed, we will see that some extra work is 
mandatory. Moreover, this part contains the budget of the project. 
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XII. Source Code. This part contains the source code of the system, 
which is implemented under the Microsoft .net technology in the 
C# language. 

XIII. Resumen en Español. This is a mandatory part for the report since 
it is all in the English language. This part contains a brief about the 
whole project in the Spanish language. 

 



 

 

Part II:  
Musical Theory
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1 Musical Notation 

The musical notation is a system to write music [Wikipedia, EN]. 
Nowadays, this notation is based on a five-line staff with symbols for each 
note, duration, pitch, clef and whatever related to the music piece 
represented. However, this has not been the unique notation used along the 
time. 

1.1 Origins 

There are some evidences showing that there was any kind of music 
representation practiced by the Egyptians and others in the Orient in the third 
millennium BC. 

From the sixth century BC to the fourth AC there was another notation 
used in the Ancient Greece and there still exist some pieces of compositions 
with this notation surviving nowadays. An important example of this notation is 
the Seikilos Epitaph which uses some symbols placed above letters. An example 
of these symbols is depicted below in Figure 1.1. 

 
Figure 1.1 Fragment of the Seikilos Epitaph 

Knowledge related to this Ancient Greek notation was lost with the fall 
of the Roman Empire. Then, in the seventh century music theorist Isidore of 
Seville pointed that it is not possible to notate music. However, in some 
Gregorian Monasteries, a new notation became to born in the ninth century and 
was characterized by its symbols, also called neumes. The earliest notation of 
this kind is the Musica Disciplina of Aurelian of Réôme about year 850. Figure 
1.2 shows an example of this notation. 

 
Figure 1.2 Fragment of the Musica Disciplina 
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There were another notations coming from the Iberian Peninsula 
known as Visigothic neumes, but unfortunately its few surviving fragments have 
not been deciphered yet. 

Other notations date from China and Japan at the tenth century. In 
other places, such as India, music was notated by using characters for sounds. 
On the other hand, in Europe it was tried to create a purely symbolic notation 
which does not seem to exist anywhere else. 

1.2 Enhancement Process 

The earliest music notation was encoded using cuneiform scripts in 
Mesopotamia, dating at the middle of the second millennium BC. There were 
used several notations from then until the modern one, originated in the 
Catholic Church. Some of these notations used the neume system but, although 
this system was capable to express considerable music complexity, it did 
express neither the time nor the pitch. Therefore, it was impossible to 
interpret the piece for someone who have never listened the song. 

To treat the issue of the pitch, it was introduced a staff consisting only 
in one single horizontal line, and it was evolving to a four-line system where 
each pitch had a different height in the staff. This lined system is still used 
with many variations for different instruments. For instance, there is a notation 
with six lines used to represent notes in a guitar. Nowadays, it is used a five-
line staff which was first adopted in France and became widely used in the 
sixteenth century. 

As mentioned above, the neume system was unable to express the 
duration of each note. Therefore, by the tenth century arose a new system for 
representing up to four note lengths. These lengths were relative to the 
neighboring notes and not absolute. However, it was not until the fourteenth 
century when a system like the present one became to use fixed note lengths 
and to split pieces into parts. That way, it was clear, for several staffs, which 
parts must be played at the same time. Finally, nowadays regular measures 
took place by the seventeenth century. 

Nowadays there are several musical notation systems widely used 
around the globe. There are some ones that use letters, numbers or both them 
and express the note length with a single number. Others use a wide variety of 
symbols and even express notes in a staff similar to the instrument with which 
the piece should be played. 
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2 Terminology 

The representation of musical sounds is made with many different 
symbols. Some of them define the vertical concept (i.e. the height) and some 
others the horizontal concept (i.e. the duration). 

2.1 Vertical 

2.1.1 The Pentagram 

The staff used nowadays consists on five horizontal and parallel lines 
as show in Figure 2.1. This staff is called pentagram and depending on the 
pitch, each note will be placed in a different height between these lines. 

 
Figure 2.1 The pentagram 

2.1.2 Clefs 

There are some symbols used to define every note written into the 
pentagram. These symbols are called clefs and there are mainly two: the ‘sol’ 
and the ‘fa’ one in fourth, which are depicted in Figure 2.2 and Figure 2.3 
respectively.

 
Figure 2.2 The Sol clef 

 
Figure 2.3 The Fa clef 

2.1.3 Notes 

Notes are represented by symbols written over the spaces or between 
the pentagram lines as they appear in Figure 2.4. Thus, each musical sound is 
determined by a note. 

 
Figure 2.4 Note writing 

Some musical sounds can not be represented because of their height, 
so some additional lines are used. These notes are written with some short and 
parallel lines equidistant to those of the pentagram, either above or below, as 
it is depicted in Figure 2.5. 
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Figure 2.5 Notes with additional lines 

2.1.4 The Great Pentagram 

Notes placed in the pentagram are seven and are called in the 
International and the Cipher notation as indicated in Table 2.1: 

International 
notation Cipher notation 

DO C 
RE D 
MI E 
FA F 
SOL G 
LA A 
SI B 

Table 2.1 Note names  

The great pentagram is the union of two pentagrams: the highest in Sol 
clef and the lowest in Fa clef. Notes are written in both pentagrams as shown 
in Figure 2.6: 

 
Figure 2.6 The seven notes in the great pentagram 

2.2 Horizontal 

2.2.1 Figures 

Whatever a sound, its duration is determined by the figure of the note 
it is represented with. There are mainly six figures for representing sound 
durations: the semibreve, the minim, the crotchet, the quaver, the semiquaver 
and the demisemiquaver. They are shown in Table 2.2. 
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Name Figure Duration 

Semibreve  Taken as unit 

Minim 
 

Half a semibreve 

Crotchet  Half a minim 

Quaver  Half a crotchet 

Semiquaver  Half a quaver 

Demisemiquaver 
 

Half a semiquaver 

Table 2.2 Note figures and durations 

There are some other figures, such as the breve, the 
hemidemisemiquaver or the quasihemidemisemiquaver, that are not actually 
used either in modern or popular music. 

2.2.2 Rests or Pauses 

Some times, there arises the need of representing interruptions in 
staffs. Actually, these interruptions are sound lacks, and there are also several 
figures to represent several rest durations, which are show in Table 2.3:  

Note equivalence Figure 

Semibreve rest  

Minim rest  

Crotchet rest  

Quaver rest  

Semiquaver rest  

Demisemiquaver rest  

Table 2.3 Rest figures and durations 

2.2.3 Note and Figure Writing 

Notes placed over the lines must be crossed by them, and those that 
are paced between two lines must be touching them. 

Every note but semibreves are written with a stem that must be placed 
on the right hand side when the stem is upwards and on the left hand side 
when the stem is downwards. Usually, stems are written upwards when the 
note is placed below the third line of the pentagram and downwards when it is 
placed over the third line or above. 
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Flags used for quavers or figures with lower duration are always at the 
right of the stem, at its extreme and with opposite direction. It is shown in 
Figure 2.7. 

 
Figure 2.7 Stem and flag writing 

When two or more notes which would normally have flags (quaver 
notes or shorter) appear successively, the flags may be replaced by beams, as 
shown below in Figure 2.8. 

 
Figure 2.8 Beamed notes 
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3 The Bar 

The bar is the time unit on which a musical piece is split. There are 
several symbols and notations related to bars that are explained from now on. 

3.1 Barlines 

Barlines are represented with a perpendicular line that joins the first 
and the fifth pentagram lines. These lines are used to represent several bar 
characteristics, such as the end of a piece, a repetition and so on. 

3.1.1 Single Barline 

Single barlines are used to show the end of a bar and the beginning of 
the following one, as is depicted in Figure 3.1. 

 
Figure 3.1 Barlines 

3.1.2 Double Barline 

The double barline consists on two perpendicular lines, being the 
second one thicker than the first one. This kind of barline indicates the end of 
the song, as shown in Figure 3.2. 

 
Figure 3.2 The ending double barline 

There is also another kind of double barline in which both barlines 
have the same thickness. This barline is used to indicate the end of one part of 
the song and the beginning of another. It is depicted in Figure 3.3. 

 
Figure 3.3 The dividing double bar 

3.2 Bar Beats 

Every bar is divided into periods of time of the same duration known as 
beats. Thus, the beat is the basic time unit of a music piece. 
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3.2.1 The Time Signature 

A time signature consists in two numbers, one placed above the other 
immediately after the clef. Its goal is to define the bar. The upper number 
indicates how many beats a bar has, and the lower number indicates the value 
of each of those bars related to the unit: the semibreve. The most common 
time signatures are depicted in Figure 3.4. 

 
Figure 3.4 The most common time signatures 

As show in the third staff, there are some issues about beat and bar 
composition. It is not as easy as two simple numbers, so next section will clarify 
it in detail. 

3.3 Simple and Compound Bars 

There are two kinds of bar: simple and compound. They distinguish one 
of each other mainly by the number of simple figures their beats are composed 
by. Simple bar beats are composed by one simple figure, and compound bar 
beats are composed by three simple figures.  

3.3.1  Simple Bar 

A simple bar has beats formed by one simple figure. Sometimes, it is 
said that the beat is actually formed by two figures, but here we will consider 
only one for simplicity. 
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The one in Figure 3.5 is a 2/4 bar. Therefore, each bar is formed by 
two beats, and each beat is formed by a crotchet, since it is the fourth part of 
a semibreve. Note that these beats can be considered as formed by two 
quavers. 

 
Figure 3.5 2/4 bar composition 

Figure 3.6 depicts a 3/4 bar, so that there are 3 beats per bar, each 
one formed by one crotchet. 

 
Figure 3.6 3/4 bar composition 

The one in Figure 3.7, a 4/4 bar, is the most commonly used 
nowadays. It is composed by 4 beats, each one formed by a crotchet again. 

 
Figure 3.7 4/4 bar composition 

The last one, in Figure 2.2, is a 2/2 bar, which is composed by 2 beats, 
each one formed by a minim. Note that bars can also be considered as formed 
by two crotchets. 

 
Figure 3.8 2/2 bar composition 

Comparing the first bar in Figure 3.7 and the second one in Figure 3.8, 
a 4/4 bar can be considered as 2/2 and vice versa. However, in Section 3.4 the 
difference will be seen. 

3.3.2 Compound Bars 

A compound bar has beats formed by three simple figures. Sometimes, 
it is said that the beat is actually formed by one prolonged figure; however, we 
will consider three simple figures for simplicity. Section 4.2 gives an 
explanation of what a prolonged note means. 
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For instance, the one in Figure 3.9 is a 6/8 bar. Each bar is actually 
formed by 2 beats, so let us consider the upper number as 2. Now, we can see 
that beats can not be divided into one or two simple figures, but into 3 
quavers. Therefore, there are 3 figures whose value is the eighth part of a 
semibreve (a quaver). 

So at the end we have 2 beats formed by 3 figures whose value is 1/8. 
It is actually 6/8. The figure is said to be a prolonged crotchet (one crotchet 
and a half). 

 
Figure 3.9 6/8 bar composition 

In a 9/8 bar, as the one in Figure 3.10, there are 3 beats, each of one 
composed by 3 quavers or one prolonged crotchet. 

 
Figure 3.10 9/8 bar composition 

The next one in Figure 3.11 is a 12/8 bar, which is formed by 4 beats 
of 3 quavers each. 

 
Figure 3.11 12/8 bar composition 

Finally, Figure 3.12 shows a 6/4 bar which composed by 3 beats, each 
one formed by 3 crotchets. Here, beats can also be considered as composed by 
a prolonged minim. 

 
Figure 3.12 6/4 bar composition 

3.3.3 Bar Relationship 

Focusing on the number of beats per bar, there are mainly three 
categories: binary bars, ternary bars and quaternary bars. Also, there can be 
established a correspondence among simple and compound bars according to 
the number of beats as follows in Table 3.1: 
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Simple Bar Compound Bar Number of Beats 
2/4 6/8 2 
3/4 9/8 3 
4/4 12/8 4 
2/2 6/4 2 

Table 3.1 Bar relationship 

Although there can be defined more time signatures, these ones above 
are the most common. 

3.4 Bar Parts 

Depending on the number of beats per bar, each of them is considered 
as strong, semi-strong or weak. 

Thus, parts of a 4 beats bar are: 

1st beat  strong  
2nd beat  weak 
3rd beat  semi-strong 
4th beat  weak 

In a 3 beats bar, each one is considered as: 

1st beat  strong  
2nd beat  weak 
3rd beat  weak 

And finally, in a 2 beats bar, each part is as follows: 

1st beat  strong  
2nd beat  weak 

3.5 The Fermata Symbol 

The fermata symbol is a semicircle with a dot inside. It is usually 
printed above, but occasionally below (upside down), a note or rest. Its 
intention is to interrupt or prolongate, on purpose, the current bar in the 
marked note. Since it is a voluntary anomaly, it is often used only in the last 
note of a piece, as occurs in Figure 3.13. 

 
Figure 3.13 The fermata symbol 
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3.6 Bars in Silence 

Whatever the time signature, if a bar is completely in silence it is 
indicated only with a semibreve rest. For instance, in a 3/4 time signature like 
the one in Figure 3.14, a semibreve rest can not fit a bar because its length is 
greater, but it is printed anyway for a whole silent bar. 

 
Figure 3.14 Bars in silence 

3.7 Incomplete Bars 

When the first bar of a piece starts with rests, they are usually 
omitted, so that only the first note figures appear in that first bar. A simple 
example is depicted in Figure 3.15. 

 
Figure 3.15 Incomplete starting bars 

3.8 The Tempo 

An important symbol in every musical piece is the tempo, which is in 
charge of establishing how many crotchets are played in a minute. Thus, if a 
tempo mark establishes a tempo of 120, the duration of a crotched would be 
500 milliseconds and the duration of a quaver would be 250 milliseconds and so 
on. 

The tempo appears at the beginning of a piece, even though it might 
change somewhere along the piece. 

 
Figure 3.16 The tempo 
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4 Ties and Rhythm Dots 

These symbols are basically used to prolongate the duration of the 
note that they are attached to. However, it is not that easy since there are 
some writing rules that must be followed. 

4.1 The Tie 

Ties are printed as a curved line joining two or more notes with the 
same sound (i.e. the same height). Its purpose is to add the value of the figures 
it is joining. Thus, the following notes in Figure 4.1 

 
Figure 4.1 Tied notes (part I) 

are equivalent to those in Figure 4.2. 

 
Figure 4.2 Tied notes (part II) 

Note that ties are placed below the notes if their stems are written 
downwards and above the notes if any of them has stems upwards. Also, ties 
can join any figure; even though in the figures only appear tied crotchets. 

4.2 The Rhythm Dot 

When a dot is situated immediately after a note, its function is to 
prolongate the note value. There are two kinds of rhythm dot: single and 
double. 

4.2.1 Single Rhythm Dot 

A single rhythm dot prolongates the note value in a half of its original 
value. For instance, a crotchet with a rhythm dot is equivalent to three 
quavers. 

Thus, both bars in Figure 4.3 are equivalent: 

 
Figure 4.3 The rhythm dot 
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4.2.2 Double Rhythm Dot 

A double rhythm dot prolongates the note value in a half and a quarter 
of its original value. For instance, a minim with a double rhythm dot is 
equivalent to three crotchets and a quaver. 

Thus, both bars in Figure 4.4 are equivalent: 

 
Figure 4.4 The double rhythm dot 

4.3 Writing Rules 

In current music and jazz, the predominant bar is 4/4, and there are 
some rules to follow for this kind of bar: 

• No value can begin in the first half of the bar and prolongate until 
the second half if it is not by using the tie. Thus, in Figure 4.5 the 
first bar must be written as the second one: 

 
Figure 4.5 First writing rule 

However, there are four exceptions to the rule: 

o A semibreve placed in the first beat, as in Figure 4.6: 

 
Figure 4.6 First exception to the first writing rule 

o A minim with a rhythm dot placed in the first beat, as occurs 
in Figure 4.7: 

 
Figure 4.7 Second exception to the first writing rule 

o A minim placed in the second beat, as in Figure 4.8: 
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Figure 4.8 Third exception to the first writing rule 

o A minim with a rhythm dot placed in the second beat, as 
occurs in Figure 4.9: 

 
Figure 4.9 Fourth exception to the first writing rule 

• Quavers that do not share the same beat can not be beamed. 
However, it can be done with four quavers sharing the first and the 
second beat or the third and the fourth ones, has happens in Figure 
4.10. 

 
Figure 4.10 Second writing rule 
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5 Alterations 

There are some symbols used to alter either the vertical or the 
horizontal value of a figure or a set of them. This section explains these 
alterations. 

5.1 The Tuplet 

This symbol is used above or below several notes to group them. The 
value of the whole group without tuplet must be equal to three figures of the 
same duration. After having put the tuplet, the value of the group becomes as 
only two figures of the same class. This is depicted in Figure 5.1. 

 
Figure 5.1 Tuplet equivalences 

A tuplet is usually composed by a group of three notes, even though 
two notes is the minimum. Of course, each part of a tuplet can be divided has 
happens in Figure 5.2: 

 
Figure 5.2 Tupled notes 

5.2 Accidentals 

The goal of these symbols, presented in Table 5.1, is to modify the 
height of the note before of which they are situated. 

Name Figure Meaning 
Sharp  Increase the height in a semitone 

Flat  Decrease the pitch in a semitone 

Double Sharp  Increase the height in a tone 

Double Flat  Decrease the height in a tone 

Natural  Keep the note to its natural sound 

Table 5.1 The accidentals 

Sections 7 and 8 will give further information about tones and 
intervals. 
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Accidentals must be placed at the same line or space which the note is 
placed at and immediately before them. Some examples are shown in Figure 
5.3. 

 
Figure 5.3 The accidentals 

A really important point is that an accidental affects not only to the 
following note, but also to any note else of the same height until the end of the 
bar. That is why, in Figure 5.4, the second to last note is marked with a natural 
accidental symbol: to avoid the sharp two notes before. 

 
Figure 5.4 Accidental effect within a bar (part I) 

Now, let us consider the bar in Figure 5.5 bar: 

 
Figure 5.5 Accidental effect within a bar (part II) 

The second note is a DO, but as it is marked with a sharp, it is actually 
DO#. Therefore, the fourth note is also DO#, since it has the same height and is 
within the same bar. However, the sixth note is a natural DO, since it has the 
same name but not the same height (i.e. is lower). 

Even though, as said above, the sixth note is a natural DO, a natural 
accidental symbol is usually placed before to clarify this fact. Figure 5.6 
depicts this deed. 

 
Figure 5.6 Accidental effect within a bar (part III) 

5.2.2 Enharmonic Notes 

Two notes are called enharmonic when they have different names but 
the same sound. In Figure 5.7 below: DO# and REb, DOb and SI and also MI# and 
FA. 
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Figure 5.7 Enharmonic notes 
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6 Replay Symbols 

In the current notation used nowadays there are some figures that can 
be used to mark some parts of a musical piece to be replayed in many manners. 
Basically, these figures are barlines and symbols placed above them. 

6.1 Replay Barlines 

The most common format used to indicate a repetition is to place 
replay barlines between the initial and the final bar to replay. These barlines 
are formed by two lines and a pair of dots. These two dots must be inside the 
replayed bars, and the outer line must be thicker than the inner one. In Figure 
6.1, bars 3 and 4 must be played twice, so the final arrangement is: 1, 2, 3, 4, 
3, 4 and 5. 

  
Figure 6.1 Replay barlines (part I) 

When bars to be replayed are the first ones, the starting replay barline 
is omitted, keeping the second one to mark the last bar to repeat. Therefore, 
Figure 6.2 indicates that the beginning of the piece must be repeated. 

 
Figure 6.2 Replay barlines (part II) 

6.1.2 Iteration Labels 

Close to the second barline, there can be some labels marking several 
bars. These labels indicate that the marked bars must be played only in the 
iteration they indicate with a number. 

 
Figure 6.3 Iteration labels 

In Figure 6.3 above, bars 3 and 4 must be played only in the first 
iteration. Therefore, the final sequence is: 1, 2, 3, 4, 1, 2 and 5. 
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6.2 Navigation Marks 

Besides the replay barlines, there also several symbols used to indicate 
what bars must be replayed along the piece. These symbols can, of course, be 
combined to indicate complex repetitions 

6.2.1 Dal Segno and Coda 

The Dal Segno symbol in Figure 6.4 is used for representing the 
beginning of a repetition. It is usually used with the Coda symbol in Figure 6.6 
to go back to the beginning of the repetition from different bars. 

 
Figure 6.4 The Dal Segno figure 

 
Figure 6.5 The Coda figure 

Although there can be used several textual combinations with Dal 
Segno and Coda, the most common are the following: 

• D. $ al Coda: indicates that the piece must be replayed from the bar 
marked with the Dal Segno figure and then go to the one marked 
with the Coda figure. 

• D. $ al fine: indicates that the piece must be replayed from the bar 
marked with the Dal Segno figure and then continue until the end of 
the piece. 

 
Figure 6.6 Navigation markers 
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In Figure 6.6 above there appear several of the previous replay figures. 
First of all, bar 1 is played, followed by bars 2 and 3. Since there is a replay 
barline, bar number 2 is played again, but not bar 3. Note that there is an 
iteration label. Instead of from bar 3, the music continues from bar 4. Next 
ones are bars 5, 6, 7 and 8. There appears a textual figure for coming back to 
Dal Segno and to continue from Coda. Therefore, the piece continues with bars 
2, 4, 5 and 6. Here appears a textual figure indicating that in this bar the piece 
jumps to Coda in the third iteration of the repetition (which is actually the 
current one). Thus, after bar 6 the piece continues with bar 9 and later on it 
enters in a four iterations loop with bars 10 and 11 as is indicated with the 
textual figure above the end replay barline. Finally, bar 12 is played, finishing 
the whole piece in that point. 

6.2.2 Da Capo 

Sometimes, it is needed to come back to the beginning of the piece. 
For that purpose, it is used the Da Capo figure, which is only a textual label 
above the barline with letters D.C. 
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7 Tonality 

The tonality of a musical piece defines a set of sounds whose behavior 
is ruled by a main sound called dominant. 

A tonality is based upon seven sounds called degrees and that 
correspond to the seven note names. These degrees are named using roman 
numbers, ranging from I to VII, being the first one the dominant note. 

Whatever the tonality, it can have several modes; but mainly two: 

• Major mode 

• Minor mode 

About the degrees, they are split into two sets: 

• Tonal degrees (I, IV and V) that define the actual tonality. 

• Modal degrees (II, III, VI and VII) that define the mode of the 
tonality. 

7.1 The Base Model 

In the occidental music it has been taken as basis the tone in major 
mode. Therefore, given a tonality it should be understood that it is in its major 
mode if nothing opposite is specified. 

The major mode is obtained by arranging degrees so that there is a 
semitone between the III and the IV and between the VII and the VIII (note that 
degree VIII is the I one an octave higher) and a tone between the rest of the 
consecutive degrees. 

The basis model takes DO as the first degree of the tonality, and hence 
as the dominant note. 

7.1.1 Major Scale 

The major scale is divided into two halves called tetrachords that are 
formed by four notes each, having a semitone between the III and the IV degree 
of each tetrachord and being separated by a tone. 

 
Figure 7.1 Major scale in DO 
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Whatever the note, it can be build a major scale from it by writing a 
tetrachord and from there add another tetrachord at a distance of a tone. For 
example, figure 7.2 shows a major scale in MI. 

 
Figure 7.2 Major scale in MI 

Section 8 will give more information about intervals between notes so 
that it will be clear why there is the need of writing accidentals in the figure 
above. 

7.2 The Key Signature 

In order to obtain a major scale from a note different than DO, there 
arises the need of adding accidentals to some degrees. This set of accidentals 
needed to build a certain major scale is called the key signature. 

The key signature is placed just after the clef and its effect is 
continuous until the end of the piece or a new key signature is defined. For 
instance, Figure 7.3 shows the key signature of the tonality MI. 

 
Figure 7.3 Key signature for MI 

The placement of the accidentals that compose a key signature is 
determined by the cycle of fifths. 

7.2.1 Cycle of Fifths 

The cycle of fifths is obtained by placing notes at the same distance 
one to the previous until there appear the eleven possible notes, such as is 
done in Figure 7.4. 

 
Figure 7.4 Cycle of fifths 

Beginning in DO, its major scale needs no accidental, so the key 
signature for DO does not have any accidental. The next note in the cycle is 
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SOL and its major tonality needs the note FA#, so the key signature for SOL has 
an accidental. The third note in the cycle is RE, which needs the FA# and DO#. 
Thus, the key signature for RE has two accidentals. Basically, each note of the 
cycle will need every accidental of the previous note plus one more. 

The placement of each key signature in the pentagram is as follows in 
Figure 7.5: 

 
Figure 7.5 Key signatures (part I) 

7.2.2 Cycle of Fourths 

Taking the cycle of fifths and traversing it in reverse order it can be 
obtained the cycle of Fourths, which key signatures are shown in Figure 7.6. 
The key signature for DO remains with no accidentals. The second note, FA, 
needs a SI flat; and the third one, SIb, will need SIb and MIb. 

 
Figure 7.6 Key signatures (part II) 

Non-natural notes have two possible key signatures, one with sharps 
and another one with flats. The sum of every accidental of enharmonic tones 
will always be twelve, and it will be taken the one with fewer accidentals. In 
the case of FA# and SOLb both them has six accidentals, so either can be 
chosen. 



Modeling and Indexing Musical Files to allow Music Reuse 
Musical Theory Intervals 

 page 36 

8 Intervals 

An interval is the height distance between two musical sounds. In 
occidental music, the smallest distance between two notes is the semitone. 
Among the natural notes, distances of a semitone can be found between MI and 
FA and also between SI and DO. The distance equivalent to two semitones is 
called tone, and is found between the rest of natural notes. Figure 8.1 shows 
these intervals. 

 
Figure 8.1 Intervals among the natural notes 

Intervals can be divided into melodic or harmonic, as Figure 8.2 shows: 

• Melodic intervals if one sound is played after the other. 

• Harmonic interval if both notes are played simultaneously. 

 
Figure 8.2 Melodic and harmonic intervals 

8.2 Interval Classification 

Intervals are measured according to the number of degrees they 
contain, counting from the lower degree to the higher, both included. Intervals 
formed between the first degree and the rest ones in a major scale are 
enumerated in Table 8.1. 

Degree Interval Height Abbreviation 
II major second 1 tone M2 
III major third 2 tones M3 
IV perfect fourth 2 tones and 1 semitone P4 
V perfect fifth 3 tones and 1 semitone P5 
VI major sixth 4 tones and 1 semitone M6 
VII major seventh 5 tones and 1 semitone M7 

Table 8.1 Intervals in the major scale 

On the other hand, intervals can be measured between any two notes. 
Taking the lower one as if it was the first grade of the tonality and the upper 
note the other grade, the table below can be used to name the interval 
according to Table 8.1 and the possible alteration in the upper note’s pitch. 
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-1 tone -1 semitone Basis 
interval +1 semitone +1 tone 

diminished minor mayor augmented double 
augmented 

double 
diminished diminished minor mayor augmented 

double 
diminished diminished perfect augmented double 

augmented 

Table 8.2 Relationships among intervals 

Thus, if we consider the intervals in Figure 8.3, in the left hand side 
we would consider a tonality of C where the upper note is F, so that the 
interval is a perfect fourth. On the right hand side, the tonality would be B, 
and the upper is F so that it would be the fifth grade (a perfect fifth interval) 
with one semitone less. Therefore, this interval would be a diminished fifth. 

 
Figure 8.3 Relationships among intervals 
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9 The Major Mode 

According to the major tonality, a major mode is made up with the 
seven notes of the tonality which are called diatonic notes (with the 
corresponding alterations depending on the tonality). Moreover, there are 
another five sounds that correspond to the ten chromatic notes due to the 
enharmony. For instance, the following Figure depicts the notes that make up 
the major mode for the tonality of D. 

 
Figure 9.1 Diatonic and chromatic notes 

9.1 Triad Chords 

When three consecutive diatonic notes of a mode are played 
simultaneously by means of two harmonic intervals, the whole is called a triad 
chord. Thus, the seven triad chords in the major mode of D are: 

 
Figure 9.2 Triad chords 

Each of these chords is formed starting at a certain grade of the scale. 
In the tonality of D, the second triad chord starts in E (which is called the root 
note of the chord). Then the second note has an interval of a third with E 
(which is a G) and then another third which is called the fifth of the chord 
(which is a B in this case). Therefore, the second chord of the major mode in D 
is made up by E, G and B. 

The triad chords can be classified in three groups according to the 
intervals that the third and the fifth notes of the chord make with the root. 
These three groups are called major, minor and diminished: 

Root Third Fifth Group 
grades I, IV and V mayor third perfect fifth mayor chord 
grades II, III and VI minor third perfect fifth minor chord 

grade VII minor third diminished 
fifth diminished chord 

Table 9.1 Relationships among intervals 
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It is important to note that a certain chord is not exclusive of a single 
mayor scale. Indeed, it will be in three different scales. For instance, Figure 
9.3 depicts how the major chord of C is the first one in the tonality of C, the 
forth one in the tonality of G and the fifth one in the tonality of F. 

 
Figure 9.3 Triad cords in different tonalities 

On the other hand, the chord made up from the seventh grade is 
exclusive of a single mayor scale. 

9.2 Seventh Chords 

If triad chords are made up by three consecutive notes, seventh notes 
are made up by four consecutive notes. This set of chords is made basically 
from the triad chords by adding the seventh interval. Thus, we have six seventh 
chords for each tonality: 

Name Notes 
mayor seventh 1, 3, 5, 7 
minor seventh 1, ¨3, 5, ¨7 

minor seventh diminished fifth 1, ¨3, ¨5, ¨7 
dominant 1, 3, 5, ¨7 

dominant augmented fifth 1, 3, ©5, ¨7 
diminished seventh 1, ¨3, ¨5, ¨¨7 

Table 9.2 Seventh chords 

9.3 Other Chords 

Besides the triad and seventh chords there are other possible chords 
that are not usually utilized. They are mainly the sixth chords (by adding a 
sixth interval to the triad chord), ninth, eleventh, thirteenth, quartal and 
quintal. Moreover, we can also make chords with chromatic notes, and they are 
called altered chords. 

Therefore, a certain performance might have a lot of different chord 
types. In addition, one can play a chord that is not located in these standard 
forms, and it might be good for a certain place of the song, thought. Thus, one 
might have whatever the chord made up by whatever the notes. 

 



 

 

Part III:  
The MIDI Specification



Modeling and Indexing Musical Files to allow Music Reuse 
The MIDI Specification Introduction to MIDI 

 page 41 

1 Introduction to MIDI 

There are some common things that all musical instruments do, being 
the first one to make a sound under the control of some musician, so that the 
instrument starts making a sound whenever the musician wants to. For 
instance, he or she might push down a piano key, or fret and pick a guitar 
string. This action of starting a sound can be called ‘Note On’. 

On the other hand, most instruments also allow stopping the sound at 
any time. For instance, the musician can release the piano key or release his or 
her finger from the guitar fret. This action can be called ‘Note Off’. 

Moreover, most instruments can play distinct octaves. For instance, a 
piano has 88 keys so that there can be played more than 7 octaves. And even 
more: many instruments can also play notes at different volumes. 

The MIDI standard is born to standardize and normalize all these 
possibilities for digital score music.  
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2 Messages 

The MIDI protocol is made up of messages consisting of 8-bit bytes. 
Actually, many message types are defined in the MIDI specification. Even 
though a message can have unlimited number of bytes, every MIDI message is 
currently formed with up to 3 bytes. The first byte of the message is called the 
Status byte, and is important because it is the only one with bit number 7 set, 
being easy to detect when a message begins just by looking at this bit. 
Therefore, a message has two kinds of byte: 

• Data byte, ranging from 0x00 to 0x7F. 

• Status byte, ranging from 0x80 to 0xFF. 

Moreover, Status bytes can be broadcasted on any of the 16 MIDI 
channels, and this is the reason why they are called Voice messages. For these 
Status bytes, the 8-bit byte is split into 2 nibbles, so that a Status Byte of 0x92 
is split into a 0x9 for the higher nibble and a 0x2 for the lower one. The higher 
nibble tells what type of MIDI message is beginning, and can have one of those 
values show in Table 2.1: 

Value Meaning 
0x8 Note Off 
0x9 Note On 
0xA Aftertouch 
0xB Control Change 
0xC Program Change 
0xD Channel Pressure 
0xE Pitch Wheel 

Table 2.1 MIDI message types 

In the previous example of 0x92, Table 2.1 says that it is a ‘Note On’ 
message. The lower nibble tells which channel the message is applicable to. 
Since there are 16 possible channels in MIDI, 4 bits are needed to map them, so 
the lower nibble is used for that. Thus, the message 0x92 is a ‘Note On’ 
message applicable to channel number 2. 

It is important to note that the lower nibble counts from 0 to 15. This 
means that for the MIDI protocol the first channel is number 0 rather than 
number 1. However, in most musical software channels are numbered from 1 to 
16 since most people begins to count from 1. Therefore, the channel number 
for a musician would be the one in the Status byte plus 1, so the example 0x92 
actually refers to channel 3. 

Status bytes ranging from 0xF0 to 0xFF are for messages that do not 
belong to any particular channel but to all of them. These Status bytes are used 
to carry information of interest to every MIDI channel, such as synchronizing. 
These Status bytes are also split into two categories: 

• System Common messages, ranging from 0xF0 to 0xF7. 
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• System Real-Time messages, ranging from 0xF8 to 0xFF. 

Actually, some Status bytes are not used in the MIDI Specification 
[MMA], so if a MIDI device receives them it must just ignore them. For example, 
Status bytes 0xF4, 0xF5, 0xF9 and 0xFD are not used. 
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3 Voice Messages 

Voice Messages are those that contain the actual performance in a MIDI 
stream. They are used to play notes or stop them, as well as indicate some 
variations in the sound such as volume, pitch and many other things. This kind 
of messages can be broadcasted on any of the 16 MIDI channels containing this 
type of information about the actual performance by using one among the 
seven message types listed in Table 2.1 and explained from now on. 

3.1 Note Off 

This message indicates that a particular note must be released, so that 
it must stop sounding. However, some patches might have a long VCA release 
time, needing therefore to slowly fade it out. In addition, some devices might 
have a Hold Pedal controller being on, and then the note release is postponed 
until the Hold Pedal is released, although this is done by the actual device. 

As seen in Section 2, Status bytes for Note Off messages range from 
0x80 to 0x8F, where the lower nibble specifies the MIDI channel. 

The Note Off message contains two additional data bytes. The first one 
indicates the note number the message refers to. In the MIDI Specification 
there are 128 possible notes, numbered from 0x00 to 0x7F having the Middle C 
a value of 0x3C.  

The second data byte is the velocity, also ranging from 0x00 to 0x7F. 
This parameter tells how quickly the note must be released (being 0x7F the 
fastest). It is up to the MIDI device how it uses the velocity parameter, besides 
some of them always send a value of 0x40 since they are not able to implement 
velocity features. 

3.2 Note On 

This message indicates that a particular sound must be played, so that 
it must start sounding. Once again, some devices might have a long VCA attack 
time that needs to slowly fade the sound in. 

As seen in Section 2, Status bytes for Note Off messages range from 
0x90 to 0x9F, where the lower nibble specifies the MIDI channel. 

The Note Off message contains two additional data bytes. The first one 
indicates the note number the message refers to, having the same possible 
values as in the Note Off message. 

The second data byte is the velocity, also ranging from 0x00 to 0x7F. 
This parameter tells with how much force the note must be played (being 0x7F 
the most force). It is up to the MIDI device how it uses the velocity parameter, 
besides some of them always send a value of 0x40 since they are not able to 
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perform velocity features. Actually, this parameter is used to tailor the VCA 
attack time or level, and therefore the overall volume of the note. 

When a Note On message carries a value of 0 in the velocity parameter 
it is actually understood as a Note Off message, since it specifies no volume for 
the note. Thus, a MIDI device that recognizes Note On messages must be able 
to recognize both Note Off and Note On messages with velocity parameter set 
to 0. 

In theory, every Note On message should be followed at any point by a 
Note Off message, even if the note’s sound fades out due to some VCA 
envelope decay and stops sounding before the Note Off message arrives. In case 
another Note On message is given for a note and a channel that are already 
sounding, it is up to the device to layer another voice for the same pitch or to 
cut off the previous one in other to begin with the new one. 

3.3 Aftertouch 

Many electronic keyboards have some kind of pressure sensing circuitry 
that can detect how stronger is the pressure the musician applies to the key. 
Thus, the musician can vary this pressure even though the key is still held 
down. To exploit this behavior, the device typically generates many such 
Aftertouch messages while the pressure is varying. Therefore, upon receiving 
an Aftertouch message, devices vary note’s VCA or VCF envelope sustain level 
or control LFO amount applied to the note’s sound, which is the recommended 
effect. 

As seen in Section 2, Status bytes for Aftertouch messages range from 
0xA0 to 0xAF, where the lower nibble specifies the MIDI channel. 

The Aftertouch message contains two additional bytes. The first one is 
used once again to indicate the note the effect must be applied to, being the 
same 128 possibilities as above. The second byte is the pressure amount, 
ranging from 0x00 to 0x7F, being this last the most pressure. 

3.4 Controller 

This kind of messages set a particular controller’s value. There are 128 
possible controllers in a MIDI device, ranging from 0x00 to 0x7F as usual. 
However, some of these controller numbers are predefined to be assigned to a 
particular hardware control in a device, such as the Modulation Wheel, which 
has controller number 1. Nevertheless, some others can be arbitrary assigned 
to any kind of custom controller. 

As well as Table 2.1 shows, Status bytes for Controller messages range 
from 0xB0 to 0xBF, where the lower nibble specifies the MIDI channel. 

After the Status byte in a Controller message, there can be found two 
additional Data bytes. The first one is used to indicate which controller the 
message refers to, whilst the second one specifies the value to be used to 
update the controller, ranging again from 0x00 up to 0x7F. 
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3.5 Program Change 

These messages are used to change to a particular Program (i. e. 
instrument) within a certain MIDI channel. Most sound modules have several 
instrumental sounds, such as piano, guitar, trumpet, etc. so that this message 
can be used to select a program among that ones to obtain a different sound 
whenever that module interprets a Note On message. Once again, there are up 
to 128 possible program numbers within a sound module. 

However, there are some MIDI devices that do not support several 
program numbers, such as a Reverb unit. In this case, these messages can be 
used to swap among different reverb presets. In any other case, messages can 
be simply ignored. 

As was stated in Section 2, Status bytes for Program Change messages 
range from 0xC0 to 0xCF, being the lower nibble the MIDI channel. 

Just one Data byte follows in a Program Change message: the number 
of program to change to, ranging from 0x00 to 0x7F as usual.  

3.6 Channel Pressure 

Actually, this kind of message means the same as an Aftertouch 
message does: specify pressure variations over notes that are sounding. An 
Aftertouch message gives pressure value just for one note, so that if two notes 
are being played and the first one receives more pressure than the second one, 
there will be sent an high aftertouch value for the first one and another 
message with a lower value for the second one. 

However, a Channel Pressure message averages out pressure values for 
the whole set of notes that are being played. That is to say that only one value 
is given for the whole set, without an individual control over each key. This is a 
less powerful feature than aftertouch, but much cheaper to implement. 

Usually, Aftertouch and Channel Pressure messages are not sent 
simultaneously. If a device implements Aftertouch messages there is no need 
for Channel Pressure values, since the others give even more information. 
Anyway, a certain device can implement both features if needed. 

Values for Channel Pressure Status bytes range from 0xD0 to 0xDF as 
Table 2.1 says. In this case, the lower nibble is once again the MIDI channel the 
message refers to. 

Just one Data byte follows in a Channel Pressure message, and it 
indicates the amount of pressure applied to the whole set of notes sounding, 
ranging again from 0x00 to 0x7F, being this last the most pressure. 

3.7 Pitch Wheel 

Pitch Wheel messages are used to slide a note’s pitch up or down a 
certain amount. The resolution used for that slide is a fraction of a half-step 
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called cent. This feature is most common in string instruments such as a guitar, 
where a string can be bended after having been picked, even thought this 
particular message refers to a tremolo bar which bends the whole bridge and 
hence the 6 strings. Moreover, some keyboard instruments can simulate this 
behavior with a wheel, turning it up and down. 

This kind of messages has Status bytes ranging from 0xE0 to 0xEF as 
Table 2.1 shows, being the lower nibble the number of MIDI channel. 

Two Data bytes appear in these messages, which have to be joined in 
order to obtain a 14 bits value which is the one that indicates the amount to be 
slid. Note that the first bit of each Data byte is useless since it is always set to 
0. Thus, the first byte contains the lower 7 bits of the whole 14 bits value, 
whilst the second one contains the higher 7 bytes of the final value. Figure 2.1 
depicts the process.  

Status1 Lower0 Higher0

Higher Lower

7 bits

14 bits

7 bits

Value

Chunk

 
Figure 3.1 Pitch Wheel value obtaining 

With 14 bits, the range is established from 0x0000 to 0x3FFF, where 
higher values transpose the pitch up and lower ones transpose the pitch down, 
being value 0x2000 the one meaning that the Pitch Wheel is centered and 
therefore not transposed. 

The Pitch Wheel range can usually be adjusted in MIDI devices. For 
instance, a value of 0x3000 might transpose the pitch up a whole step, whereas 
in another device it might transpose it up just half a step. However, the 
General MIDI Specification recommends using the entire range of possible 
values for a transposition of -2 or +2 whole steps.  



Modeling and Indexing Musical Files to allow Music Reuse 
The MIDI Specification Other Messages 

 page 48 

4 Other Messages 

According to the MIDI specification, there are several more types of 
message that flow from and to a MIDI device. However, these messages are 
worthless for our purposes since most of them are just system and control 
messages used to make all the devices work together. 

Thus, only voice messages are going to be considered for MIKE. In 
particular, only NoteOn and NoteOff messages are taken into account since 
they are the only ones that carry information just about when notes are played 
and stopped. The others carry information about how these notes are actually 
played. 

In addition, most of the messages defined in the MIDI standard are not 
allowed in the SMF specification, so it would just be useless to talk about them. 

 

 



 

 

Part IV:  
Standard MIDI Files 1.0
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1 Introduction 

MIDI is an industry standard that defines each musical note in an 
electronic musical instrument, precisely and concisely, allowing these 
instruments and computers to exchange musical data. Note that MIDI does not 
actually transmit audio, but simply digital data about music. Besides some 
others, the MIDI standard defines the specification for MIDI files, which is 
formally known as SMF. 

In its version 1.0, MIDI files can contain one or more MIDI streams, with 
time information for each event. The specification supports several musical 
entities among the ones shown in Part III of the document, such as sequence, 
tracks, time and key signatures, etc. Also, some additional information such as 
track names can be stored in MIDI files.  

This version defines files in an 8-bit binary data stream, but data can 
also be stored in binary files, taking nibbles as units, compressed to 7-bit units 
for efficient MIDI transmission, converted to Hex ASCII or translated to a 
printable text file. 

From now on, it will be covered only the 8-bit stream version. 
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2 File Block Structure 

MIDI files are made up of chunks. As depicts Figure 2.1, each of these 
chunks has a 4 character field and a 32-bit number, which is actually the 
number of data bytes in the chunk, expressed in Motorola Big Endian format. 
This simple structure allows future new chunks to be introduced in the stream, 
so that they must be just ignored by a program written before the chunk was 
introduced. Therefore, a SMF reader program should expect rare chunks to 
appear in a stream. 

Type Length Data

Length bytes4 bytes4 bytes

 
Figure 2.1 SMF chunk format 

SMF 1.0 defines two kinds of chunk: header chunk and track chunk. A 
header chunk provides some information about the whole MIDI file whereas a 
track chunk contains a sequential stream of MIDI data that can contain 
information for up to 16 MIDI channels.  

Therefore, a MIDI file always starts with a header chunk, followed by 
one or more track chunks, following the structure in Figure 2.2. 

MThd Length Header Data

MTrk Length 1 Track 1 Data

MTrk Length 2 Track 2 Data
 

Figure 2.2 SMF block structure 
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3 Header Chunk 

This part specifies some basic information about the data in the file. 
The data section of the chunk contains three 16-bit words, so that the whole 
chunk follows the syntax in Figure 3.1. 

MThd 6 Format

2 bytes4 bytes4 bytes

# Tracks Division

2 bytes 2 bytes

 
Figure 3.1 Header chunk syntax 

As described in Section 2, the chunk starts with the type ‘MThd’ and 
the number 6 in 32-bit format (occupying for bytes). Afterwards, there are 
three additional values: format, number of tracks and division, which are going 
to be described in the following sections. 

3.2 Format 

This 16-bit word describes the whole organization of the file. A value 
of 0 specifies that the file contains only one single track with up to 16 MIDI 
channels. A value of 1 specifies that the file contains one or more simultaneous 
tracks assuming that all them starts at time 0, perhaps each one on a single 
channel. All these tracks, together, are considered a sequence or pattern. A 
value of 2 means that there are one or more sequentially independent single-
track patterns. 

Format 0 is the most common one to interchange data. Some programs 
use MIDI files as input just to apply some effect to a single track, such as 
mixers, sound effect boxes. Therefore it is desirable to be able to produce such 
a format, even thought Format 1 can be easily converted to some files in 
Format 1. Moreover, Format 1 can be considered in a vertical one-dimensional 
form, as a collection of tracks. 

MIDI files can express tempo and time signatures, to easily transfer 
tempo maps from one device to another. For a Format 0 file the tempo is 
scattered through the track so that the map reader must ignore events. In 
Format 1 the tempo map must be stored as the first track, starting at 0.04.  

Every MIDI file should specify tempo and time signature. If a certain 
file does not do so, time signature is assumed to be 4/4 and tempo to be 120 
beats per minute. In Format 0 these meta-events must appear at the beginning 
of the track, and in Format 1 they must appear at the beginning of the first 
track. For Format 2 each track must contain at least initial time signature and 
tempo information. 
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3.3 Number of Tracks 

This value tells how many tracks are contained within the file. 
Therefore, it says how many Track chunks are expected afterwards. Of course, 
a Format value of 0 requires a Number of Tracks value of 1. 

3.4 Division 

The last value in the Header chunk contains the division of a crotchet 
note represented by delta-times in the file. However, if the value is negative, 
it stores the division of a second represented by delta-times in the file, so that 
events occur in actual time rather than in metrical time. 

The upper byte is one among -24, -25, -29 and -30 according to the 
four standard SMPTE and MIDI time code formats [SMPTE], representing the 
number of frames per second. The second byte is the resolution within a frame, 
being typical values 4 (MIDI time code resolution), 8, 10, 80 (bit resolution) or 
100. Thus, if it is specified 25 frames per second and a resolution of 40, the 
overall resolution of the performance is 1 millisecond. 
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4 Track Chunk 

After the Header Chunk there appear as many Track Chunks as defined 
in the header’s number of tracks, so that there is a chunk per track. The chunk 
is identified by ‘Mtrk’ and it contains an amount of data that vary depending on 
the track. 

Mtrk Length Data

Length bytes4 bytes4 bytes

 
Figure 4.1 Track chunk syntax 

As well as in a MIDI flow, a track contains events ordered by time. 
Once again, this delta time contains the amount of time that should pass 
between the previous event and the current one. Thus, the first event is 
assumed to have a delta time 0. 

A track chunk contains the same messages as a MIDI flow besides some 
others that contain specific information about the performance such as the 
time or key signatures. 

There are System Exclusive messages that come also from the MIDI 
standard messages that can be applied in a SMF file with the event status F0. 
Another kind of messages are the so called Metaevents, which have a status 
byte of FF. Note that this status indicates in the MIDI standard a reset message 
that, on the other hand, would not make any sense in a SMF file. Therefore, 
the status byte FF is used to indicate a metaevent. 

4.2 Metaevents 

Besides the voice messages, a SMF file might have other events as seen 
before. These events can carry information about the sequence number for a 
certain track, some textual information placed at some point in time, copyright 
information, the track name, instrument name for each track (that can be 
changed with a Program Change message), the lyrics of the piece, marks that 
act as replay symbols (rarely used), devices and port names and so on. 

In addition, there are some other metaevents that are totally useful 
for the system since they indicate the tempo, time and key signature. The first 
one indicates the number of microseconds per crotchet note. The time 
signature message contains both the numerator and denominator of the actual 
signature, whilst the key signature consists on the number of sharps or flats 
that the signature contains. 

However, these last 3 messages are not mandatory in a SMF file. Thus, 
a default value is assigned in case any of them does not appear. These default 
values are 120 beats per minute, a 4/4 time signature and a major C key. 

 



 

 

Part V:  
The RSHP Model and the CAKE 

Engine
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1 Artifacts Classification and Retrieval 

The RSHP model implies a general framework for classifying and 
retrieving any kind of artifacts, so that it can be applied to whatever 
information management process. 

This framework is divided into four components that are described in 
the following sections: 

• The artifact information representation model rα 

• An artifact indexing process I(α) 

• A classification process C(iα) 

• The artifact retrieval process R(iq) 

1.1 Artifact Information Representation Model rα 

A representation model rα is the actual definition of how every artifact 
must be stored in a computer system. These describing elements are called 
descriptors and are usually keywords or natural language words. In a graphicall 
representation like the one in Figure 1.1, every artifact α has a representation 
in the information-representation map. 

i1 i2

i3

i4i7 i5

i6

 
Figure 1.1 Graphical representation of artifacts 

1.2 Artifact Indexing Process I(α) 

The indexing process describes the way a new artifact α is placed into 
the representation map by generating an artifact index iα 

 r I( ) iα α∀α ∃ α =  [1.1] 

where iα is the computer-based description of α within the representation map. 
This process is called indexing and is represented in Figure 1.2. 
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i1 i2

i3

i4i7 i5

i6

iI( )

 
Figure 1.2 Artifact indexing 

1.3 Classification Process C(iα) 

This process assigns a class or classes to iα. A class basically groups all 
the artifact representations ii considered similar. Even though this functionality 
is usually not implemented, it makes easier the retrieval process if it is based 
on the previously made classification. 

i1 i2

i3

i4i7 i5

i6

i

 
Figure 1.3 Artifact classification 

1.4 Artifact Retrieval Process R(iq) 

With this process it can be determined which artifact representations 
are relevant to a query. Therefore, given a query q the retrieval process 
returns artifacts which present some similarity with the query q, which is also 
treated as an artifact iq. 

i1 i2

i3

i4i7 i5

i6 iq

I(q)q R(iq)
i3
i4

 
Figure 1.4 Artifact retrieval process 
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2 The RSHP Information Representation 
Model 

This section introduces the RSHP information representation model 
that is used by the CAKE engine and therefore will be used to carry on with the 
project objective. 

2.1 Motivations Behind RSHP 

In order to allow information reuse it is necessary to find an 
information representation model capable to cope with any kind of artifact 
types. The RSHP model can be used as such representation model since it faces 
the main problems that the rest of representation models can not solve totally: 

• Term-based models are good for textual artifacts but do not work 
properly with structured artifacts such as software object model. 
Moreover, two main problems arise from the usage of these models: 
selection and classification can not be automated. 

• Element-data models work fine for data retrieval such as source 
code, but not so well for the rest of artifact types. 

• Database and Software-design models are becoming standard 
representation paradigms for software artifacts and maybe for some 
other modeling kinds. However, the use of these models is almost 
impossible for textual artifacts. 

• Behavioral models are good for dynamic artifacts but not for static 
artifacts out of that scope. 

• Formal methods are designed for the kind of information they are 
intended to model and there is no generalized formal representation 
model yet. 

• Knowledge-based models have not been defined to represent 
artifacts content and thus there is no general model for artifact 
classification. 

2.2 Inside RSHP 

The main idea behind RSHP is the fact that information is, in essence, 
related facts. Therefore, it is considered mandatory to focus on relationships as 
the most important asset. Relational data modeling, object oriented models, 
processes and even UML itself can be modeled as elements linked by 
relationships. Text information can also be represented as relationships 
between terms since it actually uses the sentence structure as base.  
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Thus, the RSHP information representation model is based on this 
principle [Llorens, 2003]: “In order to represent information, the main 
description element to be found within an artifact should be the relationship. 
This relationship is in charge of linking information elements”. Thus, the 
atomic information components are information elements that will be linked by 
relationships. These elements are defined by concepts that are represented by 
a normalized term and can also be treated as artifacts. 

Therefore, the representation of whatever artifact is as simple as 

 { }1 2 ni f(RSHP ), f(RSHP ), ..., f(RSHP )α =  [2.1] 

where 

 
{

}RSHP type
1 2 n

RSHP IE describing the dynamics of the relationship,

IE , IE , ..., IE

=
 [2.2] 

Properties are introduced into the model to allow metadata modeling, 
and also Information Elements to allow an artifact to contain other artifacts by 
using them as descriptors. Thus, the general model is: 

 

{

}

1 2 n

1 2 m

1 2 p

, I( ) i f(RSHP ), f(RSHP ), ..., f(RSHP ),
f(Pty ), f(Pty ), ..., f(Pty ),

f(IE ), f(IE ), ..., f(IE )

α∀α α = =

 [2.3] 

having 

 { }1 2 nPty IE describing the tag of the property, IE , IE , ..., IE=  [2.4] 

 { }Artifact typeIE Term term describing artifact= < >  [2.5] 

Also, f(RSHP) is whatever function that receives the Information 
Elements that form the relationship, applying the same to f(Pty) and f(IE). 
Therefore, the textual artifact “Computers are machines and they have 
processor” and considering f(RSHP)=RSHP, the artifact might be represented as: 

 { }1 2i RSHP , RSHPα =  [2.6] 

where 

 
{ }
{ }

Hierarchy
1

Aggregation
2

RSHP to be, computer, machine

RSHP to have, computer, processor

=

=
 [2.7] 
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3 The RSHP Metamodel 

Figure 3.1 depicts the RSHP information representation metamodel by 
means of a UML class diagram. 

RSHPSemantics
Name
DefaultPonderation
Reflexive
Loops
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Symetric

NormalizedGrammatical
RotateConcept

«Enumeration»
ArtifactKind

«Enumeration»
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Language
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Kind
Domain

DynamicTerm

InformationElement
Position

Artifact
Name
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Description
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Indexed
Language

Property
Relationship
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PerfectTense
Domain
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Perfect
Pasive
Question
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Order
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*

0..1

grammatical

1

*

concept* 0..1

owned element

0..1

*

kind* 1

relationship

1

*

metadata

1

*

metaproperty

1

*

tag

*

1

value

*

1..*

dynamic action

*

0..1

static concepts

*

2...*

{LXor} {LXor}

{LXor}

 
Figure 3.1 RSHP metamodel 

The following subsections will give a brief about the main elements in 
the RSHP metamodel. 

3.2 Artifact 

In the RSHP metamodel artifacts are defined as Information 
Containers. According to the metamodel, artifacts might contain relationships 
as well as metaproperties and metadata; even though only relationships are 
considered as the descriptors of the artifact’s representation. Figure 3.2 
depicts relationships, metadata and metaproperties as artifact components. 
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Artifact
Name
Kind
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PhysicalName
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Figure 3.2 Artifact contents (part I) 

Despite an artifact is defined for relationships, it can also be 
represented by means of single terms through Information Elements. Moreover, 
an artifact might aggregate other sub-artifacts thanks to a simple 
generalization. 

Term
Language
NormalizedTerm
ScopeNote
Kind
Domain

InformationElement
Position

Artifact
Name
Kind
Description
PhysicalLocation
PhysicalName
Indexed
Language

concept* 0..1

owned element

0..1

*

 
Figure 3.3 Artifact contents (part II) 

3.3 Term 

In Section 2 was introduced a controlled vocabulary that Information 
Elements must use, and this vocabulary is actually composed by Terms. 
According to the restrictions of the RSHP model, an implicit 1 to 1 relationship 
among a concept and its representation term must be considered. Thus, every 
single noun, keyword, artifact, etc., must be modelled with terms, so that a 
given term is the normalized representation of a unique concept. 

In addition, two different kinds of terms are considered: 
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• Dynamic actions as the actual meaning of relationships. 

• Static concepts as the elements linked by relationships and dynamic 
actions. 

3.4 Relationship 

As seen in Section 2, relationships are intended to be the descriptors 
of all types of artifacts’ information. Whatever the relationship, it is defined by 
some occurrences of concepts called Information Elements. 

Relationships can be or not symmetric, so that these concepts may 
have a determined order. In addition, a relationship can have an information 
element naming its dynamic action.  

Finally, a RSHP links Information Elements by means of fuzzy 
measurements, assigning a quantifiable worth to the relationship. Moreover, 
indexing and retrieval algorithms for RSHP are very dependant on the 
relationship kinds they work with in the artifacts, so every found relationship 
must be typed. This is accomplished with RSHPSemantics, even though some 
properties in the Relationship class are used when modeling textual 
information. 

RSHPSemantics
Name
DefaultPonderation
Reflexive
Loops
Transitive
Symetric

InformationElement
Position

Relationship
Negative
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Perfect
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*

0..1
static concepts

*

2...*

{LXor}

 
Figure 3.4 Relationships structure and semantics 

3.4.1 RSHPSemantics 

This class is used to model relationships information. The three 
properties of a mathematical equivalence relationship can be used: reflexivity, 
symmetry and transitivity, as well as loops and default weighting for query 
propagation and domain generation. Thus, RSHPSemantics handles two aspects: 

• It qualifies existing relationships in the model. 
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• It qualifies the dynamic terms to allow indexers identify relationship 
types. 

3.5 Information Element 

An Information Element is the minimal information unit when it does 
not aggregate other IEs. According to the RSHP metamodel in Figure 3.1 an 
Information Element can be either a term within an artifact (at an optional 
position) or an artifact itself. In addition, an IE can be part of a relationship or 
a property. As Figure 3.5 depicts, an Information Element is simply the 
occurrence of a concept labelled with a certain Term. 

Term
Language
NormalizedTerm
ScopeNote
Kind
Domain

InformationElement
Position

concept* 0..1

 
Figure 3.5 Information Elements 

3.6 Property 

In previous versions of the RSHP metamodel, only relationships were 
used for modelling, and artifact’s metadata were represented by a particular 
metadata relationship. However, in the version used for this final project these 
relationships are separated because they have obvious different semantics. 

Every property has one IE naming the tag and one or more IE’s as 
actual values. 

InformationElement
Position

Property

tag

*

1

value

*

1..*

{LXor}

 
Figure 3.6 Properties structure 
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4 The CAKE Engine 

The CAKE Engine is basically a retrieval framework that uses the RSHP 
Information Representation Model as main tool [Llorens, 2002]. Even though it 
was born to cope with Software Reuse based on XMI documents [OMG, b], it 
might be used for whatever domain thanks to the use of the RSHP model. 

It has been demonstrated as a good choice for Software reuse, as well 
as for textual information and even spreadsheets. Now, the main goal of the 
current final project is to check whether it can be used or not for music reuse. 

The following sections will give a brief about the CAKE Engine by 
means of Software Reuse and XMI artifacts, so that their indexing and retrieval 
processes can be clearly understood since they are the most important tools for 
the RSHP artifacts reuse. 
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5 XMI Indexing 

In order to index XMI files three processes are required: 

• Parse the XMI file and gather its information. 

• Transform that information into UML information [OMG, a]. 

• Translate the UML representation to the database model. 

5.1 XMI Parser 

Since XMI is a well defined standard, a XMI parser can check whether 
the file is well formed or not. In such a case, two steps must be performed 
later: 

• Identify every UML model elements in the document, first looking for 
those ones that are not derived from the UML Relationship meta-
class. 

• Identify every relationship among the model elements. 

5.2 Information Storage in Memory 

The information gathered with the XMI parser is introduced into an 
information structure that represents the UML metamodel, so that two main 
goals are achieved: 

• Offer the possibility to graphically visualize the information by 
means of graphs. 

• Prepare it to be stored in persistent systems in the third phase. 

5.3 Information Storage in a Database 

Once the XMI documents have been parsed and their information 
extracted and represented with the UML metamodel, it must be stored into a 
database to provide persistence and a common access for the retrieval process. 
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6 XMI Retrieval 

Thanks to the XMI indexing process, UML documents are stored and 
classified into the repository. Now the framework must provide an accurate 
retrieval that allows the reutilization of UML software artifacts. 

6.1 UML Query Creation 

One of the most important differences that RSHP introduces is that the 
user interface must be radically different than the existing ones, say, 
graphical. Moreover, using the QbyE paradigm as the ground technique for 
creating UML techniques allows the framework to provide a concrete solution 
to the concept-term mapping problem. Therefore, when formulating a UML 
query the user must select the names of the artifacts from a controlled 
vocabulary so that: 

• People involved in different projects share the same vocabulary. 

• Better results will be obtained as the queries better represent the 
semantics wanted to define. 

6.2 UML Query Formulation and Resolution 

Considering the information depicted in the class diagram in Figure 6.1 

Computer
SerialNumber
Start( )

Processor
Name: String

1 1..*

 
Figure 6.1 A target document to retrieve 

to be retrieved, it can be represented by means of RSHP in the following way: 

 { }Association
1 class classRSHP "no name", Computer , Pr ocessor= < > < >  [6.1] 

where RSHP1 is an association relationship, and <Computer>class and 
<Processor>class are sub-artifacts typed as UML classes. Thus, the representation 
of the <Computer>class sub-artifact is as follows: 

 
{ }
{ }

1 attribute

2 method

IE SerialNumber
IE Start

= < >

= < >
 [6.2] 

and the representation of the <Processor>class sub-artifact is: 

 { }1 attributeIE Name= < >  [6.3] 

Finally, the <Name>attribute has additional information, so it is also 
represented as a sub-artifact: 
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 { }Pr operty Qualification
1RSHP "no name", Data Type, Integer=  [6.4] 

According to the representation model above, the retrieval framework 
must provide two different retrieval capabilities: 

• Query inclusion. 

• Query similarity. 

6.2.1 Query Inclusion 

With this query type they can be searched models that fully include 
the query, element by element and relationship by relationship. Since all the 
artifacts indexed are stored in a database according to the indexing process in 
Section 5, a single (and very complex) SQL SELECT statement might be used, 
with many WHERE clauses including joins and sub-SELECT clauses for every 
artifact. 

6.2.2 Query Similarity 

This kind of query is based on a similarity function between an artifact 
a  and a  query q  that must be calculated for every artifact in the repository, 
considering then the performance as an important topic. Considering that UML 
models are being compared, this measure implies to compare two diagrams and 
gives a value for how similar they are. 

For this purpose, two main aspects are considered: 

• Model Topology. 

• Model Semantics. 

Thus, the similarity function between an artifact a  and a query q  is: 

 Similarity T T S SF (a,q) K ·F (a,q) K ·F (a,q)= +  [6.5] 

where FT(a, q) measures the similarity among two models based on the 
relationships they have, while FS(a, q) compares the type of the relationships 
they have in common. On the other hand, KT and KS are constants for fine 
tuning the whole function. 

6.3 Topology Measurements 

The FT(a, q) function from [6.5] gives values according to the 
relationship types found in the artifact and in the query. For this purpose is 
used a vector space model with one dimension per relationship type, so that 
the vector space has as many dimensions as relationship types. 
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Two vectors representing the artifact and the query are created in 
such a vector space, each of them including for every dimension the number of 
relationships found of the corresponding type as Figure 6.2 depicts: 

RSHP2

RSHP1

RSHPn

qt

at

d

 
Figure 6.2 Vector space model for topology measurement 

where n  is the total number of different relationship types and: 

 

(

) ( )
(

) ( )

t 1

2

n t1 t2 tn

t 1

2

n t1 t2 tn

a Number of RSHPs in Artifact,
Number of RSHPs in Artifact,
...,
Number of RSHPs in Artifact a , a , ..., a

q Number of RSHPs in Query,
Number of RSHPs in Query,
...,
Number of RSHPs in Query q , q , ..., q

=

=

=

=

 [6.6] 

The similarity among these two vectors is measured bye means of the 
Euclidean distance. In addition, in order to ponder the case where one model 
fully includes the other, the FT(a, q) function is moderated by a sign-based 
variable, say s , that takes its value from the following: 

 i ti tisign : sign(a q )= −  [6.7] 

and  

 

n

i
1

(positive sign )
s

n
=
∑

 [6.8] 

Therefore, the topology function is formulated as: 

 2 2 2
T t1 t1 t2 t2 tn tn inclusionF (a,q) (a q ) (a q ) ... (a q ) ·C= − + − + + −  [6.9] 

where 

 ( )( )( )2
inclusion inclusion i i iC 1 K · 3k 1 s 4k s k⎡ ⎤= − + − +⎣ ⎦  [6.10] 
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having: 

• inclusion0 K 1≤ ≤  where a value of 0 means that no inclusion effect is 
taken into account. 

• i0 k 1≤ ≤  with the following meaning: 

o i Tk 0 F (a,q) 0 only if a q= → = ⊂  

o = → = ⊂ ∨ ⊂i Tk 1 F (a,q) 0 if a q q a  

6.4 Semantics Measurement 

The semantics distance FS(a, q) among an artifact and a query is 
measured considering two aspects: 

• The common concepts. 

• The common RSHPs. 

Therefore, the semantics function is as follows: 

 S IEs IEs RSHPs RSHPsF (a,q) K ·F (a,q) K ·F (a,q)= +  [6.11] 

where KIEs and KRSHPs are constants for fine tuning and FIEs(a, q) is: 

 IEs
Number of IEs from Query in ArtifactF (a,q)

Number of IEs from Query
=  [6.12] 

in case the query has less IEs that the artifact, otherwise the function is 
calculated as 

 IEs
Number of IEs from Artifact in QueryF (a,q)

Number of IEs from Artifact
=  [6.13] 

FRSHPs(a, q) measures the distance between all the artifact’s RSHPs and 
all the query’s RSHPs by comparing the distance of every single RSHP from one 
document (the one with less RSHPs) with all the RSHPs from the other one, one 
by one using a function ΔRSHP(RSHP1, RSHP2) and selecting the combination with 
the minimum distance. Therefore, and assuming ≤a q : 
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{{
{ }

{ } }}

RSHPs o

o

i i 1 i1 n in

1 n

ij ik ij ik

n n

k RSHP i ki RSHP i oi
i 1 i 1

F (a,q) c
c C

C : c c (r ,s ),...,(r ,s )

a r ,...,r

j,k 1,...,n : s ,s q s s

c C : (r ,s ) (r ,s )
= =

=

∈ ∧

= =

= ∧

∀ ∈ ∈ ∧ ≠ ∧

∀ ∈ Δ ≥ Δ∑ ∑

 [6.14] 

Once every possible distance is calculated, it is selected the minimum 
possible value for all the combinations. For instance, in Figure 6.3 function 
FRSHPs(a, q) might be formed by pairs RSHPa1-RSHPq2 and RSHPa2-RSHPq1 with a 
distance value of 0.2 or by pairs RSHPa1-RSHPq1 and RSHPa2-RSHPq2 with a 
distance value of 0.15. 

RSHPa1

RSHPa2

RSHPq1

RSHPq2

RSHPq3

0.05

0.2

0.10

0.20.4

 
Figure 6.3 RSHP difference map 

Therefore, the semantic distance between two RSHPs is calculated 
with the function ΔRSHP(RSHP1, RSHP2), which takes two aspects into account: 

• The total distance between all the IEs in both RSHPs. 

• The difference of both RSHPs according to their dynamic concept 
(action) by means of an IE. 

Thus, the function is defined as follows: 

 
( )

{ }
RSHP 1 2 RSHPIEs RSHPIEs 1 2 Action Action 1 2

i k k i i i

(RSHP ,RSHP ) K ·F IEs ,IEs K · (A ,A )
IEs : IE | IE RSHP A Action(RSHP)

Δ = + Δ

= ∈ ∧ =
 [6.15] 

Function FRSHPIEs(IEs1, IEs2) gives the difference between two sets of 
Information Elements by comparing every single IE from one set (the one with 
less elements) with every IE from the other set by means of a function  
ΔIE(IE1, IE2), selecting later the combination with the minimum distance. 
Therefore, and assuming ≤1 2IEs IEs : 
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{{
{ }
{ } }}

n

RSHPIEs 1 2 IE i oi
i 1

o

i i 1 i1 n in

1 1 n

ij ik 2 ij ik

n n

k IE i ki IE i oi
i 1 i 1

F (IEs ,IEs ) (r ,s )

c C

C : c c (r ,s ),...,(r ,s )

IEs r ,...,r

j,k 1,...,n : s ,s IEs s s

c C : (r ,s ) (r ,s )

=

= =

= Δ

∈ ∧

= =

= ∧

∀ ∈ ∈ ∧ ≠ ∧

∀ ∈ Δ ≥ Δ

∑

∑ ∑

 [6.16] 

In order to compare both sets, two aspects are considered to control 
the roles that IEs play in both RSHPs: 

• The order of every IE in the relationship. 

• The symmetry of every RSHP. 

In order to moderate the possibility when two RSHPs are different even 
when they have the same Action and the same IEs but in different order, a 
Kpunish constant punishes the distance between two IEs when they are not in the 
same side of their asymmetric relationships: 

 IE 1 2 punish(IE ,IE )·(1 K )Δ +  [6.17] 

The value of this function in charge of comparing two IEs works as 
follows: 

 

1 2

syn i j

n
i jIE 1 2

n
syn i j

n
punish i j

0 IE IE
K IE Equi(IE ) i j

n IE Pr op (IE ) i j n is minimal(IE ,IE )
K n Equi(IE ) Pr op (IE ) i j

K Equi(IE ) Pr op (IE ) i j

=⎧
⎪ ∈ ≠⎪
⎪ ∩ ≠ ∅ ≠ ∧Δ = ⎨
⎪ + ∩ ≠ ∅ ≠⎪
⎪ ∩ = ∅ ≠⎩

 [6.18] 

where: 

• n is an integer representing the propagation level in a ISO2788 net. 

• N is the maximum propagation level so thatn N≤ . 

• Equi(Ei) is the set of synonyms of IEi. 

• Propn(IEi) is the set of related IEs for propagation level n. For 
instance, upon the net depicted in Figure 6.4 might be applied 
Prop1(Workstation)={Computer, IBM-PC} as well as 
Prop3(Laptop)={IBM-PC}. 
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Computer

Laptop Workstation

IBM-PC
 

Figure 6.4 Propagation in the ISO2788 net 

• syn0 K 1≤ ≤  where a value of 0 means that synonyms are treated as 

IEs, while a value of 1 means that synonyms are slightly punished: 
Kpunish=3N. 

On the other hand, the function Action 1 2(A ,A )Δ  from [6.15] measures 
the difference among two RSHPs according to their action: 

 IE 1 2 1 2
Action 1 2

punish 1 2

(IE ,IE ) RSHP RSHP
(A ,A ) K RSHP RSHP

Δ =⎧
Δ = ⎨ ≠⎩

 [6.19] 
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1 Introduction 

This Section provides an overview of the User Requirements Definition 
phase and the scope of the system to develop. 

1.1 Purpose 

The main purpose for this phase of the project is to establish and 
detail all the features the final user expects from the system. Previous parts of 
this document have given a background about the musical domain and the CAKE 
environment. Thus, the User Requirements Definition phase will group all them 
to show the actual needs and the problems and risks that might arise from 
them. 

This part of the report is addressed to those readers that want to know 
what the system is about and the requirements it must comply to, avoiding 
much technical stuff and focusing only on the actual needs. 

1.2 Scope 

The main goal of the current project is to develop a system that allows 
music reuse and, hence, some other capabilities derived from it such as musical 
comparisons in a quantitative way. 

The system functionality can be divided into three man parts: 

• Index musical MIDI files according to their contents, discarding if 
needed some useless information. 

• Retrieve MIDI files similar to another one given as a query by means 
of similarity or inclusion. 

• Present the results of the retrieval according to the specific needs of 
the actual user. 

The first two parts shape the core of the project, while the third one 
can change depending on the actual user needs. 
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2 General Description 

This section describes the general factors that affect the system and 
its requirements, making them easies to understand. 

2.1 System Perspective 

First of all, it is important to note that the CAKE Engine introduced in 
Part V of the document must be used along with the RSHP Information 
Representation Model. This requirement establishes an operational 
environment that the system must comply with. 

Since it is mandatory to use the CAKE Engine, a model for musical 
information must be developed according to the RSHP specification. Moreover, 
the system must be included in the CAKE Studio software by implementing 
some required extensions. 

2.2 User Characteristics 

The main users of the system will be musicians or, at least, people who 
has some musical background. 

However, lastly it seems to be necessary some training on the MIKE 
internal process since some feedback from the user would be necessary in the 
process. As we will see in the Part X of the document, the voice separation 
process needs some information from the user about how good are the 
intermediate separations so that the system can adjust some penalization 
constants. 

Therefore, this background might be necessary. On the other hand, 
this interaction with the user is not needed in the current state of the system, 
but will be necessary later on in final versions though. 
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3 General Requirements 

This section enumerates the general constraints that affect the 
development of the system, from the technical constraints to those derived 
from the actual musical domain. 

3.1 CAKE Studio 3.0.0 

The main constraint for the system is that it must run under the CAKE 
Studio 3.0.0 [dTinf] and, therefore, under Microsoft .net technology 
[Microsoft]. In particular, a Manager for the CAKE Studio must be created in 
order to cope with musical files indexing and retrieval and it must run under 
the .net Framework 1.1 4322 sp 1. 

Moreover, the CAKE Engine and therefore the RSHP Information 
Representation Model must be used as a result of the CAKE Studio usage as 
stated before. 

3.2 File Format 

The basic way to retrieve musical information is to provide to the CAKE 
Studio an artifact to use as query. However, this artifact must be actually a file 
of the same type that those that were already indexed previously. The CAKE 
Studio allows more than one file format per indexer, so a decision must be 
taken about the supported file formats.  

3.3 Vertical Constraints 

By vertical constraints are considered those that affect to the height of 
the notes, tonalities, grades, key signatures and so on. 

3.3.1 Octave Equivalence 

Figure 3.1 depicts a melody written in the fourth octave first and then 
in the fifth one. They represent the same performance but played in different 
octaves. 

 
Figure 3.1 Octave equivalence 

Anyway they are the same, so the system must ignore the octave issue 
since it lacks of importance. Actually, each instrument has a different number 
of possible octaves, so it makes no sense to compare them as a whole. 
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3.3.2 Grade Equality 

Figure 3.2 shows part of the main riff of the song Layla, from Derek 
and the Dominoes, in its original key signature of major F. As it depicts, the riff 
starts with the third grade of the tonality, followed by the fifth one, the sixth 
and so on. 

 
Figure 3.2 Grade equality (part I) 

If it is considered now the riff in Figure 3.3, it can be seen that the 
same performance is represented. Third grade of the tonality starts, followed 
by the fifth one, the sixth and so on. 

 
Figure 3.3 Grade equality (part II) 

However, in this case the song is in the key signature of major Bb (7 
semitones down). Therefore, even thought the grade progression is maintained, 
the resulting notes are totally different. It is pretty clear that the riffs are the 
same, so the system must find out similarity among them. 

3.3.3 Note Equality 

Figure 3.4 shows exactly the same performance that Figure 3.2 does. 
This means that exactly the same notes make it up: A followed by C, D and so 
on. 

 
Figure 3.4 Note equality 

However, in this case the riff is in the tonality of major C, so the 
grades will be different. In Figure 3.2 grades are III followed by V, VI and so on. 
Nevertheless, in Figure 3.4 they are VI followed by I, II and so on. Since both 
riffs are exactly the same, the system must find out again the similarity among 
them. 
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3.3.4 Chord Recognition 

Another desired feature for the system is the ability to recognize 
chords or part of a performance. Moreover, the best solution to the chord 
recognition would be the ability to recognize not only a certain chord as a 
whole, but also part of it. For instance, in a triad chord (made up by the root, 
the third and the fifth) one might only recognize two notes (typically the root 
and the fifth). However, one might recognize another two or simply just the 
root note of the chord. 

Actually, a typical technique to recognize chords is to start playing 
them just with the root note and then, progressively, figure out the other ones 
and add them to the chords. 

Therefore, the system should be able to recognize chords wholly and 
partially. Of course, two identical chords should have a semantic distance of 
cero whilst a chord and another one that is part of the first one should give a 
distance between 0 and 1, but close to 0 at some extent depending on how 
many notes are included. 

3.4 Horizontal Constraints 

By horizontal constraints are considered those that affect to the length 
of the notes, time signatures, bars, etc. 

3.4.1 Time Signature Equivalence 

Figure 3.5 depicts a simplified version for the start of op. 81 no. 10 
from S. Heller in major E with the original 2/4 time signature. This means that 
the piece is split into 4 bars of 2 beats each, being each beat equivalent to a 
crotchet. 

 
Figure 3.5 Time signature equivalence (part I) 

However, if a 4/4 time signature is considered, the piece would be 
split into 2 bars of 4 beats each, being each beat equivalent to a crotchet as 
well. 

 
Figure 3.6 Time signature equivalence (part II) 

Actually, as shows Part II, Section 3.4 the only difference among the 
two previous staffs is how hard each note must be played. However, in 
essence, both them are exactly the same, so the system must ignore somehow 
the time signatures in cases like this. 
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3.4.2 Tempo Equality 

Let us consider the staff in Figure 3.7. It depicts a simple melody with 
a tempo of 60 crotchets per minute and a key signature of 4/4. 

 
Figure 3.7 Tempo equality (part I) 

If the same melody is played at twice the speed (120 crotchets per 
minute) or half the speed (30 crotchets per minute) but maintaining the actual 
time, result in the two staffs depicted in Figure 3.8. 

 
Figure 3.8 Tempo equality (part II) 

In the first one, as the tempo is twice, every note has twice length as 
well. Likewise, the second one has half the tempo, so every note has half its 
length. It is clear that the three staffs are equal, but with different tempos, 
note lengths, time signatures or number of bars. Anyway, the system must 
consider them as exactly or almost equal. 

3.4.3 Figure Equality 

If the melody in Figure 3.6 is played slower or quicker by means of a 
tempo variation, the result would be like the two staffs in Figure 3.9. 

 
Figure 3.9 Figure equality 

This case is quite similar to the tempo perfect equality, but with a 
difference of actual time. Anyhow, the system must consider them as similar 
melodies or even the same one. 

3.4.4 Partial Similarity 

Sometimes, a melody is altered by changing only the duration of a 
note. For instance, if the melody in Figure 3.7 is changed by means of note 
length, a melody like the one in Figure 3.10 could be formed. 
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Figure 3.10 Partial similarity (part I) 

Both melodies are quite similar but not identical. Therefore, the 
system must consider them as similar but never equal. The same consideration 
should be made if notes length is altered along with the whole tempo, like 
Figure 3.11 depicts. 

 
Figure 3.11 Partial similarity (part II) 

3.4.5 Time Quantization 

Sometimes, MIDI files are recorded in such a way that there is no 
explicit information about the onset time and duration of each note, so that 
the only data available is the amount of milliseconds. 

The system should deal with these particular cases so that it would be 
nice to compare performances by score and real time. 

3.5 Voice Constraints 

Figure 3.12 depicts he original start of op. 81 no. 10 from S. Heller. As 
it can be seen, actually two voices make it up, colored in blue and green. The 
instrument that plays this performance is a piano, and as it uses to happen with 
many instruments (mainly keyboard instruments) there are two voices (one per 
hand). 

 
Figure 3.12 Simple voice distinction 

These melodies work together as a whole, but can also be treated 
individually. Indeed, if this performance is played with a melodic instrument 
(flute for instance), the musician will only be able to play one of them at the 
same time. Therefore, it would be necessary to compare the whole piece with 
only the blue melody or maybe only the green one. 
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Thus, the system must be able to treat voices separately but also 
together. Moreover, the voice distinction might be done not only for one staff 
with the Sol clef and another voice for the Fa clef. Indeed, as Figure 3.13 
depicts, several voices might be found on a single staff. 

 
Figure 3.13 Complex voice distinction 

Actually, a single staff can have up to 4 voices, even though the usual 
number is just one or two. Thus, usually the maximum number of voices is two 
per staff, so that two staffs make it up to 4 possible voices. However, 
whenever a single staff has two voices it is almost sure that the other one will 
have only one, so it can be stated a maximum number of 3 simultaneous voices 
at a time. 

Anyway, the final idea and desire is to distinguish voices and have the 
possibility of comparing only one, two, three or even four together at a time. 

 



 

 

Part VII:  
General Requirements 

Analysis and First Solutions
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1 Introduction 

The aim of this part of the document is to analyze the constraints 
given in the User Requirements Definition and offer a first approximation to 
their solution. 
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2 File Format 

Nowadays there are several file formats to store musical information, 
from WAV, MP3 or WMA to SMF, MusicXML [Recordare] or SMDL [ISO/IEC]. 
However, the main difference among the first three formats and the second 
three formats is that the first ones do not maintain the actual information 
about the performance’s staves. This makes necessary to the user to convert 
his or her query staffs to one of these binary file formats. 

Therefore, only file formats maintaining information about the actual 
staves must be considered. Moreover, it would be desirable to allow a widely 
accepted file format, whilst to allow more than one file format would also be 
great. 

MusicXML format might be considered as the best choice, since a 
parser development would be an easy to achieve task thanks to frameworks like 
Microsoft’s DOM. However, it has a particular drawback that makes it 
unfeasible: the huge amount of information that takes into account. In a 
MusicXML file are contained both actual musical information and layout 
information for displaying it. Since the main disadvantage of a XML format is 
that it might be unfeasible because of the amount of useless information it 
contains (markup data), and even if this format has useless data information 
(layout information), MusicXML is clearly discarded. 

In order to offer a more precise look at this problem, Listing 2.1 shows 
an example of a MusicXML file. 

<?xml version="1.1" encoding="UTF-8" standalone="no" ?> 
<!DOCTYPE score-partwise PUBLIC 
  "-//Recordare//DTD MusicXML 1.1 Partwise//EN" 
  "http://www.musicxml.org/dtds/partwise.dtd"> 
<score-partwise> 
  <part-list> 
    <score-part id="P1"> 
      <part-name>Music</part-name> 
    </score-part> 
  </part-list> 
  <part id="P1"> 
    <measure number="1"> 
      <attributes> 
        <divisions>1</divisions> 
        <key> 
          <fifths>0</fifths> 
        </key> 
        <time> 
          <beats>4</beats> 
          <beat-type>4</beat-type> 
        </time> 
        <clef> 
          <sign>G</sign> 
          <line>2</line> 
        </clef> 
      </attributes> 
      <note> 
        <pitch> 
          <step>C</step> 
          <octave>4</octave> 
        </pitch> 
        <duration>4</duration> 
        <type>whole</type> 
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      </note> 
    </measure> 
  </part> 
</score-partwise> 

Listing 2.1 MusicXML example 

This example consists only in a staff like the one in Figure 2.1, where 
appears just a C note in the 4th octave. As it can be seen on Listing 2.1, every 
time a note needs to be placed on the staff, a whole <note> element must be 
put into the MusicXML file along with its sub-elements, increasing the file size 
up to an unfeasible threshold. 

 
Figure 2.1 Music XML example 

On the other hand, SMF is a widely deployed standard since many years 
ago, and does not sin of having layout information. Every musical program will 
for sure allow working with SMF format, so it will be the chosen one for the 
system. The main drawback of SMF is that a parser construction will be harder 
to perform since it is a binary format. 

However, as the main advantage of being a standard since many years 
ago, it has a lot of frameworks, utilities, tools and whatever could be wished to 
handle SMF files. Indeed, Microsoft Windows itself has a DLL (winmm.dll) that 
offers all the needed functionality to play SMF files and use MIDI devices. 
Nevertheless, the system must be developed under the .net technology, so 
Interop services will be needed in case of using one of these functionalities. 

Nonetheless, Stephen Toub, from the Microsoft MSDN Magazine [Toub], 
has a framework built under C# and supported over the winmm.dll library that 
offers an easy way to handle SMF files, with a static information model to 
access the data. This framework is called MIDI lib and is currently on its version 
2.0.4 [GotDotNet]. 

Therefore, only SMF 1.0 files will be accepted with its two possible file 
extensions: .midi and .mid. 

2.1 The MIDI lib 2.0.4 

Once it has been decided to use the MIDI lib 2.04, the first and most 
important step is to understand the static information model it uses to handle 
SMF files, and it will be done by means of UML class diagrams. 

The first diagram in Figure 2.2 shows the main classes that define a 
SMF file: a MidiSequence containing several MidiTracks, which use a 
MidiEventCollection in order to store every MidiEvent whithin the track. 



Modeling and Indexing Musical Files to allow Music Reuse 
General Requirements Analysis and First Solutions File Format 

 page 86 

MidiSequence
format
division

MidiTrack MidiEventCollection
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deltaTime

MetaMidiEvent
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driven by1 1
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1

1..*

 
Figure 2.2 MIDI lib static information model (part I) 

Figure 2.3 depicts classes used to handle MIDI meta-events, basically 
by creating a particular class for every case and making it a child of 
MetaMidiEvent. 

MetaMidiEvent
metaEventID

EndOfTrack
KeySignature
key
tonality

«Enumeration»
Tonality

«Enumeration»
Key

MidiPort
port

SequenceNumber
number

Tempo
tempo

TextMetaMidiEvent
text

ChannelPrefix
prefix

Propietary
data

SMPTEOffset
hours
minutes
seconds
frames
fractionalFrames

TimeSignature
numerator
denominator
midiClocksPerClick
numberOfNotated32nds

UnknownMetaMidiEvent
data

 
Figure 2.3 MIDI lib static information model (part II) 

The most important meta-events here are the KeySignature (together 
with the Key and Tonality enumerations), Tempo and TimeSignature. However, 
the rest of classes might be used to store information about authors and so on, 
so that more precise information can be offered to the user in a retrieval 
process. 

Even deeper in meta-events, Figure 2.4 shows classes used to handle 
text MIDI meta-events, such as Copyright, lyrics, Instruments and so on. As well 
as with the previous elements in Figure 2.3, this information might be used to 
offer more precise information to the user. 
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TextMetaMidiEvent
text

Copyright CuePoint

DeviceName
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Lyric

Marker

ProgramNameSequenceTrackName

Text

 
Figure 2.4 MIDI lib static information model (part III) 

And finally, Figure 2.5 depicts every class needed to handle voice 
events. Moreover, several enumerations are added for having more accurate 
and precise information about each event. 

VoiceMidiEvent
category
channel

ChannelPressure
pressure

Controller
number
value

NoteVoiceMidiEvent
note

PitchWheel
upperBits
lowerBits

ProgramChange
number

AfterTouch
pressure

NoteOn
velocity

NoteOff
velocity «Enumeration»

Controllers

«Enumeration»
PitchWheelSteps

«Enumeration»
GeneralMidiPercussion

«Enumeration»
GeneralMidiInstruments

 
Figure 2.5 MIDI lib static information model (part IV) 

Moreover, the MIDI lib offers some additional classes that might be 
used to play and generate SMF files. Therefore, it would be possible to 
generate SMF data from a retrieval result in RSHP and then play it so that the 
user can compare results without the need of retrieving the whole MIDI file 
linked to the retrieved result. 

2.2 SMF Format 

Only SMF formats 0 and 1 are going to be considered since format 2 
allows asynchronous and sequentially independent tracks. Moreover, as Section 
2.2 explains in the document’s Part X, only files with a single staff will be 
allowed with its voices in different tracks. Therefore, to allow a file with 
format 2 does not make any sense. 
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3 Vertical Constraints 

In the User Requirements Definition were introduced some problems 
related to the height of each note. This section now analyzes these vertical 
problems and their possible solution. 

3.1 Octave Equivalence 

As stated in the Requirements Definition, octave numbers must be 
ignored as a whole, considering as equal two melodies with the same notes but 
in different octaves. Therefore, the octave number will be ignored in a first 
approach. 

3.2 Grade Equality 

It is really usual to make a different version of a given song or 
performance and, also usual, to make it changing the key signature. For 
instance, the original key signature of Knocking on Heavens Door from Bob 
Dylan is major G, as well as the version from Eric Clapton. However, the 
version from Gun’s n’ Roses is in minor G, and the one from Avril Lavigne is in 
major C. 

Therefore, actual notes can not be compared. Instead, the grades of 
the tonality can be compared to decide whether two songs are the same or not. 
Thus, actual notes are going to be discarded. 

Grades might be compared directly with the number of grade. 
However, it is not enough in cases like Figure 3.1 where the second note is the 
same and hence also the grade. But they are in different octaves, breaking thus 
the equality. 

 
Figure 3.1 Grade equality 

Therefore, the number of octave must be taken into account for the 
comparison even though in Section 3.1 it was decided to ignore them as a 
whole. Thus, some other technique must be used to avoid de Octave 
Equivalence problem since the comparison must be in a way like {V4, II5, VII4} 
against {V4, II4, VII4}, where XY means the Xth grade in the Yth octave. 

However, the key signature is not mandatory in a MIDI file as it was 
explained in Section 4.2 of document’s Part IV, so it must be figured out. 
Nevertheless, it is difficult to figure out the key signature of a song just from 
its notes, and in some cases it is even impossible due to ambiguity issues (see 
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the Note Equality problem), so another solution must be applied to the Grade 
Equality problem 

3.3 Note Equality 

At this point it is clear that octaves must be ignored as a whole but 
taken into account within a particular melody. Moreover, actual notes can not 
be compared, conceding place to the tonality grades. 

However, the Note Equality problem presented in the Requirements 
Definition does not allow the comparison only by means of scale grades. Thus, 
the only way to compare two melodies is to compare the intervals between 
notes. For instance, in the first bar on Figure 3.1 it would be said that there is 
an interval of +4 notes (from G4 to D5) and then another interval of -2 notes 
(from D5 to B4). On the right staff it would be said that there is an interval of -
3 notes (from G4 to D4) and then of +5 notes (from D4 to B4). 

The problem is that in some cases melodies have non-natural notes, so 
that the interval can not be evaluated as +3 or +4 notes, but maybe +3.5. 
Therefore, intervals must be measured by means of number of tones or even 
semitones like Figure 3.2 depicts. In addition, an interval of 1 note might be 2 
notes in depending on the tonality of the whole song. 

 
Figure 3.2 Interval measurement 

With this method, the Octave Equivalence problem is solved since both 
melodies will have the same intervals. The Grade Equality problem is also 
solved since the same progression of grades will have the same intervals 
between notes, independently of the tonality. Even more, the Note Equality 
problem is also solved since two melodies with the same notes will have the 
same intervals even though they have different key signatures. 

Thus, this method of comparing melodies by means of interval 
progression solves every vertical problem proposed in the User Requirements 
Definition. 

3.4 Chord Recognition 

The issue about the chord recognition and comparison will be treated 
in detail in the Part VIII of the document, where the mathematical model is 
explained. Trying to give a solution right now, without the needed 
mathematical background would be worthless. 
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4 Horizontal Constraints 

Some other constraints affect to the horizontal meaning of a 
composition. The Definition of the User Requirements stated some horizontal 
problems and constraints that the system must comply with, and they are 
analyzed and solved in the following sections. 

4.1 Time Signature Equivalence 

When Musical Theory was introduced, it was stated that the only 
actual difference among two different time signatures is how strong certain 
notes must be played. Therefore, time signatures will be simply ignored. 

However, it might be good to know where a bar finishes in order to 
split the performance in several parts or artifacts, or simply to analyze 
melodies easily and figure out the riffs. Anyway, the use of the time signature 
will only affect to the preliminary analysis of the song and not anymore. 
Moreover, it is not mandatory to include a time signature in a MIDI file as 
Section 4.2 says in the Part IV of the document. Therefore, the system must not 
depend in a hundred percent on the time signature. 

4.2 Tempo Equality 

In a first approach to this problem, the only way to solve it is to 
consider actual time instead of musical time. For instance, in Figure 4.1 the 
first note can be considered to start at time 0 ms. Since a minute has 60 

crotchets, a single crotchet will last 
60s / min·1000ms / s 1000ms / crotchet

60crotchet / min
= . 

Thus, a quaver will last 500 ms. 

 
Figure 4.1 Tempo Equality 

Therefore, the second quaver will start at 500ms, the third one will 
start at 1000ms and the forth one at 1500ms. The fifth one will start at 2000ms 
and will last until 3000ms because it is a crotchet.  

Considering this measurement for the time, the Tempo Equality 
problem is easily solved, so it can be considered as enough so far. 
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4.3 Figure Equality 

In the previous section was proposed to use actual time instead of 
musical time since it solves the Tempo Equality problem. However, the Figure 
Equality problem needs exactly the opposite: consider musical time. 

It is really common to have the same melodies or even the same whole 
songs played by different musicians but with a change on the tempo value. It 
makes necessary to consider musical time. 

Therefore, two measurements are needed so far: actual time and 
musical time. It would be a good idea to consider both them and make like two 
different indexing processes, but this option will be discarded at the beginning 
because of performance issues. It is obvious that the retrieval process will need 
to compare twice the artifacts in this way. 

4.4 Partial Similarity 

With the Partial Similarity problem none of the previous solutions is 
valid. Actually, this problem is the addition of the two previous, so a different 
solution must be proposed. 

The solution might be to consider the musical piece as timeless, 
ignoring both actual and musical time. This means that every melody should be 
transformed so that its notes have the same length, for example a crotchet. 
The initial bar division will become useless, but it does not matter as long as 
the time signature keeps ignored. Therefore, the Layla riff in Figure 4.2 

 
Figure 4.2 Timeless model (part I) 

will be transformed to the staff in Figure 4.3 where note lengths, time 
signature, tempo and bars are ignored: 

 
Figure 4.3 Timeless model (part II) 

With this timeless model the Tempo Equality problem is solved since 
musical time is somehow ignored. The Figure Equality problem is also solved 
because every note will have the same length. And finally, even the Partial 
Similarity problem becomes solved. Anyway, this timeless model has an obvious 
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loss of information as it ignores the note length, so any other additional 
technique must be proposed to avoid this loss. 
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5 Voice Constraints 

The first step to solve the Voice Problem is to recognize voices. In a 
MIDI file with voices, no additional information is added in order to separate 
them, but there is just a bunch of notes ordered by time. Therefore, an 
algorithm must be developed for this first step. 

5.1 Approaches to the Voice Separation 

The main challenge when separating voices is to differentiate among 
chords and different voices when notes have same duration and onset time. 
Many algorithms have been proposed to achieve a solution for this problem 
given as input a stream of notes. In the following subsections, these approaches 
are described [Lebel, 2006]. 

5.1.1 Split Point Approach 

The simplest solution consists on splitting the range of all possible 
pitch values intro disjoint sets so that each set corresponds to a single voice. 
Although this algorithm is extremely simple, it does not assign necessarily the 
correct voice to each note since assumes a fixed number of voices and that 
voices do not share any pitch value. Moreover, this algorithm does not support 
chords. 

5.1.2 Rule-based Approach 

Another proposed solution is to take advantage of the voice-leading 
rules used by the actual composers, such as limiting the number of voices, 
prefer small intervals between successive notes or avoid overlapping voices. 
The problem with this approach is that the number of rules can increase 
unfeasibly and they might be not widely accepted. Moreover, some rules such 
as the fixed number of voices might be proper just for some parts of the 
performance, yielding to a erroneous result. 

5.1.3 Local Optimization Approach 

In this case, the proposed algorithm uses a heuristic algorithm. The 
idea is to apply the iterative process to the input stream, splitting it into small 
slices containing overlapping notes and then assigning these notes to a single 
voice by using a randomized local search that optimizes a cost function [Hoos, 
2002]. 

Even tough this solution does not find sometimes the correct voice 
separation, offers a reasonable one. In addition, the major advantage is that it 
recognizes chords properly, and this is a really valuable feature of the 
algorithm. 
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5.1.4 Contig Mapping Approach 

The main difference among this algorithm and the local optimization is 
that it aims to provide the correct separation rather than a proper one for 
transcription by running an algorithm similar to those used with DNA 
processing. As [Chew, 2005] describes, the input stream is segmented into 
collections of overlapping pieces and then adjacent contigs are connected by 
using a shortest distance method. 

5.1.5 Predicate Approach 

As the Contig Mapping approach does, the Predicate approach aims to 
find the correct separation for the performance’s voices. The algorithm is 
implemented with a learned decision tree to decide whether two notes are or 
not in the same voice, delegating in another algorithm the task of assigning 
notes to voices by considering many aspects concerning distance and rhythm. 
As explained in [Kirlin, 2005], the algorithm does not have a fixed number of 
voices. However, and has many learned algorithms sin of, it never produces 
error-free results. 

5.2 The Kilian-Hoos Algorithm 

So far, no algorithm has been proposed for the Voice Separation 
problem producing a perfect result. Thus, the Local Optimization approach has 
been chosen since it correctly detects chords, and this is a really valuable 
feature since songs are made up by them and to acquire a decent set of songs 
free of chords is almost impossible. 

5.2.1 Preliminaries 

The input to the algorithm is given as a list of notes sorted by onset 
time. Note number i-th in the list is represented by a vector mi=(oi, di, pi), 
where oi, di, and pi are, respectively, the onset time, the duration and the 
note’s pitch. These properties are also acceded by onset(mi), duration(mi) and 
pitch(mi). Moreover, two integers, vi and ci, are also linked to a note mi in 
order to denote the voice and chord that the note is currently associated with. 
Likewise, these properties are also acceded by voice(mi) and chord(mi). In 
addition, a function is utilized to indicate the end point of a note mi. 

 i i ioffset(m ) onset(m ) duration(m )= +  [5.1] 

Moreover, some relations among notes are defined: 

 
i j i j

i j i j

m m : onset(m ) onset(m )
m m : onset(m ) onset(m )

≤ = ≤

= = =
 [5.2] 

Furthermore, a function overlap(mi, mj) tells whether notes mi and mj 
overlap in time: 
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i j i j i

j i j

overlap(m ,m ) : onset(m ) onset(m ) offset(m )
onset(m ) onset(m ) offset(m )

= ≤ ≤ ∨

≤ ≤
 [5.3] 

By means of these definitions, the input of the algorithm is formally 
written as: 

 ( ) { }1 l i i 1M m ,...,m i 1,...,l 1 : m m += ∀ ∈ − ≤  [5.4] 

In the output voice separation, two notes with the same onset time 
can only be in different voices or be in the same one but grouped within a 
chord: 

 ( )
i j i j

i j i j

m m voice(m ) voice(m )

voice(m ) voice(m ) chord(m ) chord(m )

= ⇒ ≠ ∨

= ∧ =
 [5.5] 

For this algorithm, in case the input is quantized, chords are restricted 
only to notes with the same onset time. If input is not quantized overlapping 
notes with different onset times should be allowed to form a chord. Thus, in 
the original implementation, chords with small overlaps or other inaccuracies 
are eliminated in a preprocessing phase.  

5.2.2 Input Splitting 

The first step in the algorithm is to split the input M into slices yi of 
consecutive overlapping notes (mk, ..., mk+p) so that there is an overlap among 
any pair of notes within each slice and that between two consecutive slices, 
say yi and yi+1, there are at least two notes that do not overlap, as Figure 5.1 
depicts. Therefore, every note in yi but the one with the smallest offset time 
may overlap with notes in yi+1. 

time

pitch

y1 y2

y3

 
Figure 5.1 Partitioning a piece into slices 

Formally, the splitting of M is defined as the set B containing indexes 
of notes in M that become the first notes of the slices y1, …, yn: 

 

{ }{

{ }( )
{ }( )}

1 n i

1 n

i i 1 q r

i 1 i i 1 q s

B : b ,...,b i 1,...,n : b
b 1 b l

q,r b ,...,b 1 : overlap(m ,m )

s b q b ,...,b 1 : overlap(m ,m
+

+ +

= ∀ ∈ ∈ ∧

= ∧ ≤ ∧

∀ ∈ − ∧

¬∃ ≥ ∀ ∈ −

`

 [5.6] 
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Thus, and based on B, the definition of the set of slices yi is as follows: 

 ( ) { }i i 11 n i b b 1Y : y ,...,y y m ,...,m
+ −= =  [5.7] 

and splits the input M into slices as formula [5.5] describes. 

 
2 2 3 n

1 n2

1 b 1 b b 1 b l

y yy

M (m ,...,m ,m ,...,m ,...,m ,...,m )− −=
��	�
 ��	�
���	��


 [5.8] 

From now on, the voice separation for a slice 
i i 1i b b 1y (m ,...,m )

+ −=  is 

denoted by S(yi), and even just Si for simplicity. The vector Si is made up by the 
voice and chord that the q-th note of slice yi belongs to: 

 { } ( )i ii i1 ip iq b q 1 b q 1S (s ,...,s ) q 1,...,p : s voice(m ),chord(m )+ − + −= ∀ ∈ =  [5.9] 

In Addition, the set of all possible combinations of S(yi) for a slice yi is 
denoted by *

iS . Thus, any full voice separation S for the input is made up by 
separations of slices yi so that S=(S1, …, Sn), where the set of all possible 
combinations for S and a given input M is S*. 

For a given slice yi, the number of possible combinations (size of set 
*
iS ) depends on the number of notes |yi| and on the maximum number of 

voices in the desired output, say nVoices. In particular, when any subset of yi 
can be combined into a chord, there are at least i|y |nVoices  possible voice 
separations. Therefore, the number of possible separations for M is exponential 
in |M|. This means that the algorithm might be unfeasible for most of the 
inputs. Therefore, a heuristic function is used in an iterative process that 
constructs the voice separation based on a stochastic local search that 
optimizes the partition. 

The idea behind the algorithm is to construct a voice separation for M 
based on local optimized separations for each slice. This optimization is based 
on a cost function C assessing the quality of a separation Si given the previous 
separations (S1,…,Si-1). 

Listing 5.1 shows the outline of the algorithm for an unquantized 
input. In case the input is quantized, the last two steps might be avoided. 

procedure voiceSeparation(M, k) 
  input: 
    sorted list of notes M 
    maximal number of voices k 
  output: 
    voice separation S 
begin 
  segment M into slices y1, ..., yn 
  S := (); 
  for i := 1 to n do 
    Si := separateSlice(yi, S) 
    S := S + Si 
    eliminate overlaps within voices of S 
    regularize chords where required 
  end 
end 
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Listing 5.1 Outline of the Kilian-Hoos algorithm for unquantized input data 

5.2.3 The Cost Function 

The cost function assessing the quality of a voice separation in slice Si 
with previous separation 1 i 1S ,...S −  is the weighted sum of several features: 

 
i pitch pitch i gap gap i

chord chord i overlap overlap i

C(S ,S) K C (S ,S) K C (S ,S)
K C (S ) K C (S ,S)

= + +

+ +
 [5.10] 

where Cpitch penalizes large pitch intervals between successive notes, Cgap 
penalizes large gaps (rests) between successive notes, Cchord penalizes large 
pitch distances between the highest and the lowest note and Coverlap penalizes 
overlap between successive notes in the same voice. On the other hand, Kpitch, 
Kgap, Kchord and Koverlap are constants to fine tuning the result by giving different 
weights to each feature. 

Pitch Distance Penalty Cpitch 

The pitch distance penalty increases with each interval between two 
successive notes in the same voice, giving to the first one a fixed penalty for 
starting a new voice. In some cases, like with melodies with short sequences of 
large pitch intervals, a lookback mechanism can be used to calculate the pitch 
interval not only with the last one, but with the last l notes on the voice. 

In order to compare the pitch interval between a note mj and a pitch pl 
a function cPitch(mj, pl) is defined so that it returns pitch(mj) in case mj does 
not belong to a chord, and the pitch of the note within the chord closest in 
pitch to pl otherwise. 

 

j j

c c j
j l

k j j

k l c l

pitch(m ) chord(m )
pitch(m ) m chord(m )

cPitch(m ,p )
m chord(m ) chord(m )

pitch(m ) p pitch(m ) p

¬∃⎧
⎪

∈⎪= ⎨
¬∃ ∈ ∃⎪

⎪ − < −⎩

[5.11] 

Thus, if no lookback is used, the pitch distance among a voice v and a 
pitch value pl is: 

 ( )l lcPitch(v,p ) cPitch lOnset(v),p=  [5.12] 

where lOnset(v) is the note within v with the latest onset time: 

 latest i i latestlOnset(v) m v m v : onset(m ) onset(m )= ∈ ∀ ∈ ≤  [5.13] 

Otherwise, if lookback is used, the algorithm in Listing 5.2 is used to 
calculate the pitch distance value. 

function cPitch(v, l, pj) 
  input: 
    voice index v 
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    lookback size l 
    pitch pj of note j 
  output: 
    average pitch p of voice v for comparison to pj 
begin 
  prevNote := prev(lOnset(v), pj) 
  p := cPitch(lOnset(v), pj) 
  i := l 
  while i ≤ l do 
    p := 0.8 · p + 0.2 · cPitch(prevNote, pj) 
    prevNote := prev(prevNote, pj) 
    i := i + 1 
  end 
  return p 
end 

Listing 5.2 Pitch calculation for voice v with pitchlookback > 0 

On that algorithm, function prev(mj, pl) returns the note directly 
preceding mj within the same voice and not belonging to the same chord as mj. 
In case the preceding figure is a chord, it will be returned the note within the 
chord that is closest in pitch to pl. Constant values 0.8 and 0.2 were empirically 
found by the authors as the best ones. 

 

p j p j

k j p

p k j

c j j c

c jj l

k c

k l c l

k j k

m voice(m ) onset(m ) onset(m )
m voice(m ) chord(m )

onset(m ) onset(m ) onset(m )
m voice(m ) m chord(m )

onset(m ) onset(m )prev(m ,p )
m chord(m )

pitch(m ) p pitch(m ) p
m voice(m ) m

∈ < ∧

¬∃ ∈ ¬∃

< <

∈ ∉ ∧

< ∧=

¬∃ ∈

− < − ∧

¬∃ ∈ ∉

c

c

c k j

chord(m )

chord(m )
onset(m ) onset(m ) onset(m )

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪ ∃⎪
⎪

∧⎪
⎪ < <⎩

[5.14] 

Therefore, the pitch distance penalty Cpitch for a voice v is calculated 
as shown in Listing 5.3: 

function Cpitch(Si, S, v) 
  input: 
    slice separation Si 
    separation S for previous slices 
    voice index v 
  output: 
    pitch distance pvD 
begin 
  mp := first note in yi // m de b de i 
  prevNote := prev(mp, pitch(mp)) 
  pvD := 0 
  foreach note mj in Si do 
    if voice(mj) = v then 
      pDist := |cPitch(prevNote, pitch(mj)) – pitch(mj)| / 128 
      pvD := pvD + (1 – pvD) · pDist 
      if chord(prevNote) ≠ chord(mj) then 
        prevNote := mj 
      end 
    end 
  end 
  return pvD 
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end 

Listing 5.3 Calculation of Cpitch for a single voice v in Si 

and the final Cpitch function for a separation Si given the previous separations S 
is shown in Listing 5.4: 

function Cpitch(Si, S,) 
  input: 
    slice separation Si 
    separation S for previous slices 
  output: 
    pitch distance penalty pD 
begin 
  pD := 0 
  foreach voice v used in Si do 
      pD := pD + (1 – pD) · Cpitch(Si, S, v) 
  end 
  return pD 
end 

Listing 5.4 Calculation of pitch distance penalty Cpitch for slice Si given previous separation S 

Gap Distance Penalty Cgap 

Some studies quoted in [Hoos, 2002] show that listeners prefer voices 
with few and short distances, and this axiom is taken into account for the Cgap 
function, as Listing 5.5 shows. 

function Cgap(Si, S) 
  input: 
    slice separation Si 
    separation S for previous slices 
  output: 
    gap distance penalty gD 
begin 
  gD := 0 
  cNotes := 0 
  foreach voice v used in Si do 
    m := earliest note in Si with voice(m) = v 
    gD := gD + cGap(m, v) 
    cnotes := cnotes + 1 
  end 
  gD := gD / cnotes 
  return gD 
end 

Listing 5.5 Calculation of gap distance penalty Cgap for slice Si given previous separations S 

Therefore, a gap penalty arises whenever a note is added to a voice in 
such a way that it introduces a gap. Moreover, the bigger the gap duration is, 
the bigger the penalty is as well. In case a note starts a new voice, the gap 
distance between it and the beginning of the composition m1 is also penalized.  

Function Cgap(mi, v) among a note mi and a voice v penalizes the 
appending of note mi to voice v by returning the gap distance introduced by mi 
divided by the maximal gap length that mi would introduce to any voice, 
returning thus a value between 0 and 1: 
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  [5.15] 

Chord Distance Penalty Cchord 

When notes are combined within a chord, small ranges are preferred. 
On the other hand, it would be expected that all notes belonging to a chord 
have the same onset time and length in case of quantized data. Therefore, the 
chord distance penalty increases with the range of a chord, durations of notes 
and differences between onset times. Listing 5.6 outlines the steps of the 
function. 

function Cchord(Si) 
  input: 
    slice separation Si 
  output: 
    chord distance penalty cD 
begin 
  cD := 0 
  foreach chord c in Si do 
    p := pDuration(c) + (1 – pDuration(c)) · pRange(c) 
    p := p + (1 – p) · pOnset(c) 
    cD := cD + (1 – cD) · p 
  end 
  return cD 
end 

Listing 5.6 Calculation of chord distance penalty Cchord for slice Si 

The range penalty pRange for a given chord c is defined as the 
difference, in semitones, between the highest and the lowest notes in the 
chord: 

 { }
{ }

{ }

highest lowest

1 n

highest 1 n

lowest 1 n

p p
pRange(c) min ,1

24

c m ,...,m

p max pitch(m ),...,pitch(m )

p min pitch(m ),...,pitch(m )

−⎧ ⎫
= ⎨ ⎬

⎩ ⎭
= ∧

= ∧

=

 [5.16] 

but in a range from 0 to 1, where ranges of more than two octaves receive the 
same penalty. 

Likewise, the pDuration penalty depends on the shortest and latest 
notes in the chord c. Thus, the function returns a value from 0 to 1, where a 
value of zero means that all durations are the same. 
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 { }
{ }
{ }
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=

 [5.17] 

Lately, the pOnset penalty depends on the earliest and latest notes in 
c, as well as on the longest one. Thus, the function returns a value of 0 when 
every note within c has the same onset time. Moreover, since every couple of 
notes in c overlap, the penalty can never be greater than 1. 
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 [5.18] 

With these three penalty functions, the chord distance penalty 
calculates a value by combining them in such a way that if one of them is large, 
the overall penalty will be large as well. 

Overlap Distance Penalty Coverlap 

Depending on the instrument used to play a certain performance, and 
sometimes also on the style, there can be some overlaps among consecutive 
notes within a voice (mainly in melodic lines) that can not be avoided with a 
preprocessing phase. Moreover, in case of a not quantized performance, there 
will arise, for sure, many overlaps that are not supposed to appear, and they 
appear due to the fact that the performance is played by a human being. 

Therefore, overlaps between notes that do not belong to the same 
chord are allowed, and function Coverlap is introduced in order to penalize the 
overlapping amount for a given separation Si: 

function Coverlap(Si, S) 
  input: 
    slice separation Si 
    separation S for previous slices 
  output: 
    overlap distance penalty oD 
begin 
  oD := 0 
  foreach voice v used in Si do 
    oDist := Coverlap(Si, S, v) 
    oD := oD + (1 – oD) · oDist 
  end 
  return oD 
end 

Listing 5.7 Calculation of overlap distance penalty Coverlap for slice Si given previous separations S 
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and delegates on t he following function to compute the overlap penalty for a 
given voice: 

function Coverlap(Si, S, v) 
  input: 
    slice separation Si 
    separation S for previous slices 
    voice v 
  output: 
    overlap distance penalty ovD 
begin 
  prevNote := lOnset (v) 
  ovD := 0 
  foreach note mj in yi do 
    if voice(mj) = v then 
      oDist := Coverlap(prevNote, mj) 
      ovD := ovD + (1 – ovD) · oDist 
      if chord(mj) ≠ chord(prevNote) then 
        prevNote := mj 
      end 
    end 
  end 
  return ovD 
end 

Listing 5.8 Calculation of overlap distance penalty for a single voice 

Thus, a new function Coverlap will return the overlap distance between 
two successive notes in the following way: 

 
k j

j k
joverlap j k

j k

onset(m ) onset(m )
1 overlap(m ,m )

duration(m )C (m ,m )
0 overlap(m ,m )

−⎧
−⎪= ⎨

⎪ ¬⎩

 [5.19] 

returning a value between 0 and 1 as well. 

5.2.4 Cost-Optimized Slice Separation 

Based on the cost function defined in formula 5.10, and given a 
separation of slices S=y1, ..., yi-1, a stochastic local search is used to find out 
the optimal voice separation Si for slice yi. 

Starting with an initial separation 0
i iS : S= , a randomized iterative 

process tries to find out the best separation by assigning a note to a different 
voice, storing the combination that minimizes the cost function. This process is 
limited to a fixed number of θ steps: 

 i3· y ·nVoicesθ =  [5.20] 

As listing 5.9 shows, the algorithm begins with an initial separation 0
iS , 

where every note of yi is assigned to the first voice, grouping into chords those 
notes with equal onset times. Then, the algorithm moves to a neighbor 
separation, understanding iS  and iS '  as neighbor separations if they are valid 
and differ in the voice and/or chord assignment of exactly one note. A 
separation is considered as valid if and only if any notes with identical onset 
times within the same voice are combined into a chord. 
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function separateSlice(yi, S) 
  input: 
    slice yi 
    separations S for previous slices 
  output: 
    optimized selection Siopt 
begin 
  obtain Si by setting all notes of yi to voice 0 and 
    combining all notes with equal onset times into chords 
  Siopt := Si 
  noImpr := 0 
  while noImpr < |yi| · nVoices · 3 do 
    with probability 0.8 do 
      Si := neighbour Si’ of Si with minimal cost C(S’, S) 
    otherwise 
      Si := randomly selected neighbour of Si 
    end 
    if C(Si, S) < C(Siopt, S) then 
      Siopt := Si 
      noImpr := 0 
    else 
      noImpr := noImpr + 1 
    end 
  end 
  return Siopt 
end 

Listing 5.9 Randomized iterative algorithm for finding a cost-optimized separation of slice yi 

The actual next step is chosen randomly: with a fixed probability of 
0.8 (chosen by the authors as the best for empirical results) the neighbor 
separation with minimal cost is selected; otherwise, a random neighbor 
separation is used. That way, the search process will not get stuck into local 
minima of the cost function. 

 



 

 

Part VIII:  
The Mathematical Approach
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1 Introduction 

This part of the document provides a detailed description of the 
mathematical approach that is finally applied to the system. In particular, the 
mathematics subfield of numerical analysis is used to model the musical files as 
functions that define curves in several dimensions. After this modeling is 
performed, the curve is split into several pieces that will later correspond to 
relationships between artifacts. 

The main advantage of this solution is that it is efficient and solves all 
the general requirements shown in Section 3 of the document’s Part VI. 
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2 Preliminaries 

Some initial work must be done upon the input sequence of notes 
before applying the mathematical model to it. This section explains this 
process. 

2.1 Domain Normalization 

The first step in this approach is to distribute notes within a single 
staff maintaining a distance between two successive notes that is a multiple of 
the minimum considered duration for a single note. For instance, if the shortest 
note is a demisemiquaver, a distance of length 1 unit can be considered as the 
minimum distance for convenience. 

Therefore, the following staff in Figure 2.1 

 
Figure 2.1 Note distribution (part I) 

will distribute its notes as Figure 2.2 depicts, where every gap between two 
successive dashed lines has a length of 1 unit (i. e. a demisemiquaver). 

 
Figure 2.2 Note distribution (part II) 

Thus, a crotchet will have a separation of length 8 units with its 
following note, and a quaver will have a separation of 4 units. 

The next step, once the time-dimension is normalized, is to normalize 
the pitch-dimension. To do so, the pitch range will be considered as [0, 127], 
since the MIDI specification allows only 128 possible values for a note’s pitch. 
Using a musical notation, these values range from C0 until G10. 

It is important to note that in this new representation system, 
accidentals are not needed, since two notes that share the same height are 
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commited to have the same pitch. Therefore, if a certain note has a height h, 
its sharp note will have height h+1, whilst the flat note will have h-1. 

Figure 2.3 depicts the same performance in Figure 2.1, but with 
normalized time and pitch dimensions. Note also that every note is depicted 
with a filled circle, avoiding stems and whatever the characteristic that might 
make it different. Moreover, barlines are removed since the time signature is 
no longer useful. 

 
Figure 2.3 Note distribution (part III) 

Now that the performance is normalized, an analytical process starts 
so that the whole piece can be specified by a mathematical function. 

2.2 Music As a Mathematical Function 

The main point of this mathematical approach is to consider every 
piece as a function iC (t)  that defines a curve mapping positions in time with 
the corresponding pitch values. 

 [ ]iC : 0,127→\  [2.1] 

The best way to obtain this function is to interpolate the points 
generated after the normalization phase, but distinguishing among voices. For 
instance, in Figure 2.3 there appear two different voices. Considering that the 
performance starts at t=0, the set of interpolating points ( )i it ,p  for the lower 
voice is: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0,49 , 4,56 , 8,61 , 12,64 , 16,49 , 20,56 , 24,61 , 28,64  [2.2] 

From this set of points, it can be defined a function 2C (t)  as the 
interpolating function of that set, which defines the curve that shapes the 
pitch variation, as the time changes, for the second voice. 

From now on, only pieces with a single voice will be considered for 
simplicity. The case of a piece with several voices will be treated later on, in 
Section 12 with more detail. 
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3 Comparing Musical Pieces Described 
as Mathematical Functions 

Now that every musical piece is defined as a function C(t)  over time, a 
way to compare two of them must be elaborated. Let us imagine, for instance, 
that the following two pieces in Figure 3.1 have to be compared. 

 
Figure 3.1 Comparison among musical functions 

It is pretty clear that both curves has the same shape and, therefore, 
that they are exactly the same musical piece. However, the only difference 
among them is that the green one is shifted 2 pitch units downwards (2 
semitones). Therefore, if the blue curve represents a piece in the tonality of D, 
the green one represents the same piece but in the tonality of C. Thus, if both 
curves are described as a polynomial like 

 
n

n n 1 i
n n 1 1 0 i

i 0
C(t) a t a t a t a a t−

−
=

= + + + + = ∑…  [3.1] 

the only difference between them is the constant 0a  that actually defines the 
height difference. Hence, a good transformation that might be done to every 
function C(t)  is to utilize its first derivative, throwing the original away. Doing 
so, the blue and green curves in Figure 3.1 will have the same first derivatives, 
so that the comparison can be done easily and accurately. 

Therefore, the previous musical performances will be treated as Figure 
3.2 depicts, where it is clear that both functions are exactly the same, even 
with the same eight. 
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Figure 3.2 Comparison among first derivatives 

It is important to note that, even thought deriving the original 
function, no loss of information arises. Indeed, the only loss is the function’s 
pitch eight, which is useless as seen before. If the derivative function  C'(t)  is 
integrated, we obtain the original function C(t)  plus an integration constant, 
say intK , which actually measures the tonality difference and can, therefore, be 
ignored: 

 

( ) n 1 n 2
n n 1 2 1

int

d C'(t)
C'(t) na t (n 1)a t 2a t a

dt
C'(t)dt C(t) K

− −
−= = + − + + +

= +

…

n n 1 2
n n 1 2 1 inta t a t a t a t K−

−= + + + + +∫ …
 [3.2] 

3.2 Vertical Comparison 

Due to the decision of comparing the first derivatives instead of the 
original functions, every vertical constraint defined in Section 3 of the User 
Requirements Definition is fulfilled. 

First of all, the Octave Equality problem is not a situation because of 
the use of the first derivative. The integration constant that represents the 
pitch difference, would be a multiple of 12 in the case of the Octave Equality, 
since a whole octave has 12 semitones. Thus, since this constant is not taken 
into account, the problem is not such anymore. 

The Grade Equality problem is not an issue anymore because it is the 
same case as the Octave Equality problem where the integration constant can 
have whatever the value. 

About the Note Equality problem, the initial solution given before was 
to consider pitch differences between two successive notes instead of their 
actual pitch values. And this is just the idea behind the first derivative of a 
function. While in a first approach there were considered entire pitch 
differences such as +4, 0 or -2, the first derivative leads us to a better and 
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more accurate comparison with real numbers that, moreover, depends not only 
on the two successive notes, but also on the adjacent ones. This is an 
important characteristic that will be discussed later on, in the Part IX. 

3.3 Horizontal Comparison 

Due to the time-dimension normalization time signatures are not 
considered once the interpolation phase is achieved, so that the Time Signature 
Equivalence problem is not an issue. 

Both the Figure Equality and the Tempo Equality problem need more 
considerations in this mathematical model if we want to solve them. The way 
to compare two melodies that share the same pitch progression but differ in 
the time-dimension is simply by applying a linear transformation to the curves 
so that they coincide. For instance, the melody in Figure 3.3 (actually it is 
already a first derivative), is the same as the one in Figure 3.2 but with a 
difference in the time-dimension. 

 
Figure 3.3 Differences in the time-dimension (part I) 

If the curve in Figure 3.2 is denoted as C'(t)  and the one above in 
Figure 3.3 is named D'(t) , we can indeed say that the following equality is 
true: 

 
tD '(t) C '( )
2

=  [3.2] 

That is to say that if two melodies are alike but differ in the time-
dimension, it can be applied a transformation upon the variable t  so that, at 
the end, both melodies will be exactly the same and the comparison should be 
trivial. 
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3.4 Piecewise Comparison 

Previous section showed us how to compare two identical melodies 
that suffer the Figure Equality or the Tempo Equality problem. Simply by 
applying a transformation to the time-dimension we can have identical copies. 

However, the same method can not be used with the Partial Equality 
problem, since a transformation to the time-dimension will modify the whole 
curve and, hence, the comparison will not be feasible. In order to cope with 
this problem, the initial approach outlined in Section 4 of the document’s Part 
VII is now considered again. 

The idea behind the final approach is to split the curve in pieces that 
start and end exactly in the point where a note starts or ends. That is to say 
that whenever a note starts (its onset time) the curve is split in that point and 
will be split again whenever the note ends (its offset time). By doing so, we will 
have at the end a piecewise curve where we will be able to apply a linear 
transformation like before but piece to piece. 

 
Figure 3.4 Piecewise comparison 

Therefore, the curve C(t)  and hence its first derivative C'(t)  will be a 
piecewise function defined by intervals. Thus, given a melody defined by a set 
of notes ordered by onset time 

 { }0 1 l i i 1M (m ,m ,...,m ) i 0,...,l 1 : onset(m ) onset(m )+= ∀ ∈ − <   [3.4] 

a function, say ic (t)  is defined for each interval [ ]i i 1onset(m ),onset(m )+ , so that 

the final curve is defined as: 

 

0 0 1

1 1 2

l 1 l 1 l

c (t) t t t
c (t) t t t

C(t)

c (t) t t t− −

≤ ≤⎧
⎪ ≤ ≤⎪= ⎨
⎪
⎪ ≤ ≤⎩

# #
 [3.5] 



Modeling and Indexing Musical Files to allow Music Reuse 
The Mathematical Approach Comparing Musical Pieces Described as Mathematical Functions 

 page 112 

where i it : onset(m )= , notation that will be used from now on for simplicity. 

Now, with this piecewise function, we can shrink or stretch each piece 
by multiplying or dividing the variable t  by a certain number so that we can 
have identical copies for each piece to compare. 

Of course, there can be applied some penalizations each time a 
transformation is needed in the time-dimension so that, at the end, the 
comparison will not provide a distance of 0 since the melodies are not the same 
actually. 

3.5 How to Perform the Actual Comparison 

Let us imagine that we are about to compare two pieces ic ' (t)  and 

id' (t)  as Figure 3.5 depicts. The best way to compare them is by calculating the 
area between them in the interval, which corresponds with the filled area in 
grey between the curves. 

 
Figure 3.5 Comparing areas 

Thus, the area between both curves, in the interval 
[ ]i i 1onset(m ),onset(m )+  is defined as Δ : 
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+

Δ = −∫  [3.6] 

Since this way to calculate the difference between the curves can lead 
us to a huge range of possible values, the best to do is to normalize that error 
in such a way that is proportional to the curves being compared. A good 
approach is to divide that error by the maximum area defined by the curves: 
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 [3.7] 

Moreover, with this division the error will be in the range [0,1]  which is 
the range that the CAKE Engine uses to quantify semantic distances. 
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4 Basic Polynomial Interpolation 

The most typical way to interpolate a set of l 1+  points in 2\  is to use 
the Lagrange Interpolating Polynomial of degree l  or less: 
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where i ip : pitch(m )= , notation that will be used from now on for simplicity. 

The best way to obtain the solution is to solve the following l 1+  
equations put in matrix-form and that make up a linear system that has exactly 
a unique solution: 
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 [4.2] 

The main characteristic of this interpolation method is that the 
generated curve passes through the interpolating points (the notes). On the 
other hand, it generates a polynomial of degree l  for a given input of l 1+  
notes. It is pretty obvious that this interpolating method is not feasible if we 
want to compare curves by the area between them as seen on Section 3.5, 
since it involves to solve a equation of degree l . 

Since nowadays there are known direct formulas to calculate the roots 
of polynomials with a degree up to four, a new method is needed. An 
approximation method such as the Bisection method or the Newton one might 
be used. However, this will lead as to an efficiency penalization because this 
comparison must be done tons of times. 

4.1 The Runge’s Phenomenon 

A drawback of this common interpolation method is that the curve 
oscillates a lot as long as the number of points, and hence the degree of the 
polynomial, increases. This is called the Runge’s Phenomenon and the main 
disadvantage is not only that the curve oscillates, but that it does it in such an 
unpredictable way that the comparison will not make any sense. 

For instance, Figure 4.1 shows two melodies that differ only in the 
pitch of 3 notes (marked up with a red circle). We can see how the 
interpolating curves differ a lot and how the area between both them increases 
a lot. 
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Figure 4.1 The Runge’s Phenomenon (part I) 

On Figure 4.2 the corresponding first derivatives of the curves above 
are depicted. These are the actual curves that are going to be compared, and 
we can see that the result that this comparison would lead to is not good 
enough. Indeed, we can see how the curves have a huge value for the 
derivative in the boundaries. 

 
Figure 4.2 The Runge’s Phenomenon (part II) 

Moreover, we can see how by changing a single note the whole curve 
will change to some extent. Of course, this is an effect that should be avoided 
because a change in a single note might mess up the whole comparison. 
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5 Spline Interpolation 

The most feasible solution to the Runge’s phenomenon is to 
interpolate using splines instead of interpolating polynomials such as the 
Langrage’s one. 

At a glance, a spline function is a piecewise interpolating function that 
is defined with a single function for each interval between two points. On the 
other hand, the basic polynomial interpolation defined a unique function for 
the whole set of points. However, now with this interpolation method the curve 
is already split into pieces as we wanted from Section 3.4. 

As the spline function is piecewise it offers a much more close 
approximation to the points and is much smoother. Another advantage upon the 
basic interpolation is that the degree of the polynomials that define the curve 
can be chosen so that it does not have a certain value depending on the 
number of points. Indeed, the most typical case is to utilize polynomials of 
degree 3, so that the final curve is so smooth that its second derivative is 
continuous in the whole domain. Therefore, since the curve is 2C  it implies 
that it is also curvature continuous. 

5.1 Cubic Splines 

The most typical case of spline interpolation is the cubic spline, which 
uses polynomials of degree 3. The same example as in Figure 4.1 is depicted in 
Figure 5.1 but using cubic splines. 

 
Figure 5.1 Cubic splines 

We can see how both curves follow the points much more accurately 
than with a Lagrange interpolation. Indeed, the curve seems to change only in 
the interval close to the point where a single note is changed (circled in red). 
However, even thought it seems so the curve changes everywhere. The 
difference is obviously bigger in that points, but changes all along the curve. 
Thus, a change in a single note will change the whole curve since the whole 
curve depends on all the interpolating points (the actual notes). 
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5.2 Choosing a Cubic Spline 

There are a few different kinds of cubic spline curves, depending on 
the conditions that the spline must comply with. Starting with the same 
musical input as before 

 { }0 1 l i i 1M (m ,m ,...,m ) i 0,...,l 1 : onset(m ) onset(m )+= ∀ ∈ − <  [5.1] 

we are about to define a spline curve that is defined in intervals as before: 
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In this particular case, we agree that i 3c (t)∈P , where k�P is the linear 
space of polynomials of degree k . Each of these polynomial pieces must satisfy 
the following conditions: 
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 [5.3] 

where the slopes is  are free parameters. Thus, the curve passes through the 
interpolating points and its first derivative agree at these points regardless of 
the value for the slopes. 

In order to compute the coefficients for the i-th polynomial the 
Newton form is used: 

 [ ]3 2
i i i i i i i i i i 1c (t) a (t t ) b (t t ) c (t t ) d : t t , t += − + − + − + ∀ ∈  [5.4] 

Since there are l  polynomials, each of them with 4 parameters, we 
need 4l  independent conditions to find them. We have 2l  conditions since the 
curve passes through the points: i i i i i 1 i 1c (t ) p c (t ) p+ += ∧ =  (conditions 1 and 2 in 
[5.3]). Moreover, with the third and fourth conditions in [5.3] we can force 
another 2l 2−  conditions since i i i 1 ic ' (t ) c ' (t )−= . 

Therefore, we have 2l 2l 2 4l 2+ − = −  conditions and two more are 
needed. Spline kinds such as the Hermite spline, Bessel spline, Akima’s spline 
or the Clamped spline are not valid since all of them need the values for the 
slopes. These kinds of splines are used mainly for approximating a non-
polynomial function, and hence the slopes can be known by deriving it, but not 
in our case. 

On the other hand, the most common cubic spline is called natural and 
can be defined with the following two restrictions needed to have the 4l  
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conditions: 0 0 l 1 lc '' (t ) 0 c '' (t ) 0−= ∧ = . A trivial linear system can be made to 
solve the 4l  coefficients and be solved very efficiently. 

After all, what we have is a cubic spline defined with l  polynomials of 
degree 3. Moreover, the first derivative is continuous so that we can compare 
melodies by calculating the area among them. In addition, the second 
derivative is continuous, what makes the first one smooth. Thus, the first 
derivative will not have huge variations and will be more accurate. 
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6 Coping with Chords 

As seen in the User Requirements Definition, one of the most desired 
features of the system is the capability to compare chords. However, with the 
current approximation by interpolating curves it is not feasible to compare 
chords since at a given point on time only one note can be defined. That is to 
say that the current model does allow melodic intervals, but not harmonic 
ones. 

As we saw with the General Requirements, the idea behind chords is 
that there might be different possible paths to go from one note to another by 
crossing the chords’ notes. For instance, let us consider the linear interpolation 
in Figure 6.1 where some random chords are inserted in a melodic line. 

 
Figure 6.1 Paths through chords 

The desired comparison should be able to recognize each of those 
paths across the chords. Moreover, it should allow not only a single path 
through all the chords, but also a set of them. For instance, a query may be the 
green path adegik  or the red one cdfhjk . 

However, a better one would contain the green and the red ones. The 
point here is that, if the green and the red paths are provided, the segments in 
yellow can be inferred. Actually, what is provided is not the set of paths but 
the actual notes. Therefore, we could have said that the green path would be 
adehik  and that the red one would be cdfgjk . Thus, since all these 
combinations could be possible, all of them should be considered. 

This example shows the basic idea with the chord comparison, but it 
has been seen with linear interpolation (splines of degree 1). Since the degree 
of the interpolating splines will probably be 3, we will come back to this issue 
later on since the general case is more complex. 
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7 Parametric Curves 

So far, every interpolating method was of the form C(t) : →\ \ , but 
for the next interpolating methods the curve will not be defined in that way. 
On the other hand, it will be defined as a parametric curve. In essence, a 
parametric function is defined as 

 [ ] ( ) n
1 2 nC(u) : 0,1 C (u),C (u),...,C (u)→ ∈\  [7.1] 

Therefore, C(u)  maps a value in the interval [ ]0,1  to a point in the 

space n\ . Actually, the parameter u  can be evaluated in whatever the 
interval, but for convenience it is always evaluated between 0 and 1. 

Thus, if we want a parametric curve to interpolate the notes in the 
pitch-time plane, it will have the following form: 

 [ ] ( ) 2C(u) : 0,1 time(u),pitch(u)→ ∈\  [7.2] 

This kind of functions is mostly used for curves defined in a three 
dimensional space. For instance, if we define the following parametric curve: 

 ( ) [ ]2 3C(u) : u,u ,u u 1,1= ∈ −  [7.3] 

in the interval [ ]1,1−  we will have a curve defined in the space, in a box from 

point ( )1,0, 1− −  to point ( )1,1,1 , as Figure 7.1 depicts. 

 
Figure 7.1 Parametric curves 

Therefore, a parametric curve defines actually n  functions, one per 
dimension. The only point is the domain for u , since an approximation method 
should be used to obtain the point in space that corresponds to a certain value 
in a certain axis. This makes some problems arise, but they will be avoided 
thanks to another solution that will be discussed later on. 
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8 Bézier Curves 

Another type of spline interpolation, which will give us some 
interesting properties, is the Bézier curves. These curves will give us the basic 
ideas for the final interpolating spline used in the system since they are based 
on the Bézier curves and hence share their properties besides some others. 

8.1 Definition 

Given l 1+  notes 0 1 lm ,m ,...,m , called the control points, the Bézier 
curve defined y these control points is 

 
l

l,i i
i 0

C(u) B (u)·m
=

= ∑  [8.1] 

where the coefficients, known as Bézier basis functions or Bernstein 
polynomials, are calculated as follows: 

 i l i
l,i

l!B (u) u (1 u)
i!(l i)!

−= −
−

 [8.2] 

The variable u  is evaluated within the interval [0,1]  and therefore all 
basis functions are non-negative. It is important to note that the curve is 
defined as parametric, since the multiplication by each point im  results in two 
functions: one for the time-component and another one for the pitch-
component of the plane. 

In Figure 8.1 a Bézier curve with 11 control points is depicted in blue. 
The red polygon is called the control polygon or control polyline, depending on 
the literature, and it connects all the control points. In addition, the green 
circle marks the point in the curve that corresponds to u 0.4= . 

 
Figure 8.1 Bézier curves 
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8.2 Properties 

Bézier curves have some interesting properties that we must consider 
before starting the interpolation phase: 

• The degree of a Bézier curve defined by l 1+  control points is l . 

• C(u)  passes through 0m  and lm . 

• Non-negativity: all basis functions are non-negative. 

• Partition of unity: the sum of all basis functions at a fixed u  is 1. 
Figure 8.2 shows a typical distribution for basis functions (in this 
case with 5 control points). According to [8.1] each of these 
functions is multiplied by the corresponding point so that the sum 
leads to the actual point for the curve. 

 
Figure 8.2 Bézier basis functions 

• Convex hull: the Bézier curve lies completely in the convex hull of 
the given control points. This convex hull is actually the area 
contained within the outer points of the control polygon. Thus, in 
Figure 8.3 appears the same curve as Figure 8.1 depicted, and due 
to this property the curve lies completely in the grey area. 

  
Figure 8.3 The convex hull property 

• Variation diminishing: if the curve is in a plane, this means that no 
straight line intersects the curve more times than it intersects the 
curve’s control polyline. For instance, in Figure 8.4 the blue Bézier 
curve is not right because the green straight line intersects it four 
times and only 2 times the control polyline. 
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Figure 8.4 The variation diminishing property 

• Affine invariance: if an affine transformation is applied to a Bézier 
curve, the resulting curve can be constructed from the affine images 
of its control points. Thus, since a linear translation of the time-
dimension is needed in order to compare spans, this property assures 
that the curve will not change its shape with different span lengths 
an note durations. Indeed, the pitch component of the curve does 
not change as long as the notes have the same pitch. 

All there properties, besides some others unique for the B-Splines, will 
help us to solve the General Requirements and will also lead us to a final 
mathematical model that solves the whole music information retrieval issue. 
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9 B-Splines 

Bézier basis functions were used as weights for the construction of 
Bézier curves. In the case of a B-Spline, there are also basis functions used in 
the same way, but they are much more complex: the domain is subdivided by 
knots and each basis functions is non-zero on a few adjacent intervals so that 
B-Spline basis functions are quite local. 

9.1 Definition 

Let U  be a set of l 1+  non-decreasing numbers 0 1 lu u ... u≤ ≤ ≤ . The 

iu ' s  are called knots and the set U  is called the knot vector, whilst the half-

open interval [ )i i 1u ,u +  the i-th knot span. In our case, we are going to consider 

that the sequence is monotone increasing so that 0 1 lu u ... u< < <  and every knot 
is called a simple knot. 

These knots can be considered as division points that subdivide the 
interval [ ]0 lu ,u  into knot spans. Even though the domain can be chosen like it 

was in the Bézier curves, for convenience the interval [ ]0,1  is chosen as the 

domain for u . 

Another characteristic of the B-Spline basis functions is that they can 
have whatever the degree, say p , so that each basis function is defined with 
the Cox-de Boor recursion formula: 

 

i i 1
i,0

i p 1i
i,p i,p 1 i 1,p 1

i p i i p 1 i 1

1 u u u
N (u)

0 otherwise
u uu uN (u) N (u) N (u)

u u u u

+

+ +
− + −

+ + + +

≤ ≤⎧= ⎨
⎩

−−
= +

− −

 [9.1] 

Therefore, if we consider the knot vector ( )U 0,0.25,0.5,0.75,1= , we 

know that each i,0N (u)  will be 1 in [ )i i 1u ,u + , so that the basis functions will be 

as Figure 9.1 depicts and Table 9.1 shows. 

Basis Function Span Equation 

0,0N (u)  [ )0,0.25  1 

1,0N (u)  [ )0.25,0.5  1 

2,0N (u)  [ )0.5,0.75  1 

3,0N (u)  [ )0.75,1  1 

Table 9.1 Degree 0 B-Spline basis functions 
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Figure 9.1 Degree 0 B-Spline basis functions 

The following shows the equations for the degree 1 basis functions. 

Basis Function Span Equation 
[ )0,0.25  4u  

0,1N (u)  
[ )0.25,0.5  2 4u−  

[ )0.25,0.5  4u 1−  
1,1N (u)  

[ )0.5,0.75  3 4u−  

[ )0.5,0.75  4u 2−  
2,1N (u)  

[ )0.75,1  4 4u−  

Table 9.2 Degree 1 B-Spline basis functions 

which are depicted in Figure 9.2: 

  
Figure 9.2 Degree 1 B-Spline basis functions 

In order to calculate the degree 2 functions, we only need to follow 
the recursion formula in [9.1] with the equations already calculated in Table 
9.2. This leads us to the following equations for the degree 2: 

Basis Function Span Equation 
[ )0,0.25  28u  

[ )0.25,0.5  216u 12u 1.5− + −  0,2N (u)  

[ )0.5,0.75  28u 12u 4.5− +  

[ )0.25,0.5  28u 4u 0.5− +  

[ )0.5,0.75  216u 20u 5.5− + −  1,2N (u)  

[ )0.75,0.1  28u 16u 8− +  

Table 9.3 Degree 2 B-Spline basis functions 



Modeling and Indexing Musical Files to allow Music Reuse 
The Mathematical Approach B-Splines 

 page 125 

Each of these functions is defined in three knot spans as we can see in 
Figure 9.3: 

 
Figure 9.3 Degree 2 B-Spline basis functions 

Once the basic functions are calculated, the B-Spline curve is defined 
pretty similarly to the Bézier curves: 

 
l

i,p i
i 0

C(u) N (u)m
=

= ∑  [9.2] 

where p  is de degree for the polynomials. Unlike a Bézier curve, a B-Spline 
involves more information: a set of k 1+  knots and a degree p . However, these 
parameters must satisfy the following: 

 k l p 1= + +  [9.3] 

That is to say that, if we want a B-Spline curve of degree 3 with 10 
control points, we must provide 14 knots that will give us 13 knot spans. This is 
the case, for instance, of the curve depicted in Figure 9.4: 

 
Figure 9.4 B-Spline curves 

9.2 Properties 

B-Spline curves share many important properties with Bézier curves, 
because the former is a generalization of the later. In addition, B-Spline curves 
have unique properties that make them the most suitable for our purposes. 

• A B-Spline is a piecewise curve with each component a curve of 
degree p . This allows us to design complex shapes with lower 
degree polynomials since the curve approximates to the control 
polyline as the degree decreases. 
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• The equality k l p 1= + +  must be satisfied. 

• Strong convex hull: the same property of the convex hull is present 
in B-Splines but even stronger. If a point is defined for a given u  in 
knot span [ )i i 1u ,u + , then the point will be in the hull made up by 

control points i i 1 i pm ,m ,...,m− − . 

 
Figure 9.5 Strong convex hull property 

• Affine invariance: the same property of the Bézier curves appears 
with B-Splines. 

• Local modification scheme: changing the position of a control point 

im  only affects the curve on the interval )i i p 1u ,u + +⎡⎣ . Since every 

basis function i,pN (u)  is non-zero only on interval )i i p 1u ,u + +⎡⎣ , changing 

its corresponding control point will change only that interval. This 
means that if we change a note, the curve will change only in an 
interval close to it. Moreover, this interval is deterministic. 
In the figure below, the control point number 5 is changed and we 
can see how the curve changes only in its proximity. 

 
Figure 9.6 Local modification scheme 

• C(u)  is p hC −  continuous at a knot of multiplicity h . If u  is not a 
knot, the curve is infinitely differentiable at that point because it is 
a polynomial of degree p . 
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• Variation diminishing: if the curve is in a plane, this means that no 
straight line intersects the curve more times than it intersects the 
curve’s control polyline. 
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10 Uniform B-Splines 

When the knot vector of a B-Spline contains knots that are equidistant, 
the B-Spline is called uniform because every knot span has the same length. 
This means that the basis functions i,pN (u)  are all translates of a single blending 

function pN (u)  where 

 i,p pN (u) N (u i)= −  [10.1] 

This blending function can be defined by convolution of blending 
functions of lower degree and assuming a fixed span length, say 1. 

10.1 The Blending Function 

The uniform B-Spline blending function of degree p  is defined 
recursively by: 

 

( )

i i 1
0

p p 1 0

1 u u u
N (u)

0 otherwise
N (u) N N (u)

+

−

≤ ≤⎧= ⎨
⎩

= ∗
 [10.2] 

This convolution can be seen to be the integral 

 ( )
u

p p 1 0 p 1 0 p 1
u 1

N (u) N N (u) N (x)N (u x)dx N (x)dx
∞

− − −
−∞ −

= ∗ = − =∫ ∫  [10.3] 

Thus, to obtain the blending function of degree 1, we have to 
calculate this defined integral  as 

 
u

1 0
u 1

N (u) N (x)dx
−

= ∫  [10.4] 

and evaluate it by intervals. The two possible intervals are depicted in Figure 
10.1, where every interval has a length of 1. 

 
Figure 10.1 Degree 1 blending function integration intervals 

Therefore, the blending function is defined in two intervals, and the 
equations are solved by solving both integrals. 
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u

0
1 1

u 1

dx 0 u 1
N (u)

dx 1 u 2

t 0 u 1
2 t 1 u 2

−

⎧
≤ ≤⎪

⎪= ⎨
⎪ ≤ ≤⎪⎩

≤ ≤⎧= ⎨ − ≤ ≤⎩

∫

∫  [10.5] 

The blending function is quite the same as the ones in Figure 9.2: 

 
Figure 10.2 Degree 1 blending function 

Now that we have the blending function of degree 1, we can apply the 
same formulas and obtain the degree 2 blending function. The intervals are: 

 
Figure 10.3 Degree 2 blending function integration intervals 

and hence, the blending function is calculated as: 

 

u

0
1 u

2
u 1 1
2

u 1

2

2

2

xdx 0 u 1

N (u) xdx 2 xdx 1 u 2

2 xdx 2 u 3

u 0 u 1
2
2u 6u 3 1 u 2

2
u 6u 9 2 u 3

2

−

−

⎧
≤ ≤⎪

⎪
⎪⎪= + − ≤ ≤⎨
⎪
⎪
⎪ − ≤ ≤
⎪⎩
⎧

≤ ≤⎪
⎪

− +⎪= − ≤ ≤⎨
⎪
⎪ − +

≤ ≤⎪
⎩

∫

∫ ∫

∫
 [10.6] 

These equations lead us to a blending function that is, once again, the 
same function in essence as the one seen before in Figure 9.3: 
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Figure 10.4 Degree 2 blending function 

If we want blending functions of a higher order, we only have to keep 
on going with the convolutions. For instance, if we continue until a degree 3 
(which will be the one used in the system), we have the following blending 
function: 

 

u 2

0
1 u2 2

u 1 1
3 2 u2 2

u 1 2
3 2

u 1

3

3 2

3 2

3 2

x dx 0 u 1
2

x 2x 6x 3dx dx 1 u 2
2 2

N (u)
2x 6x 3 x 6x 9dx dx 2 u 3

2 2

x 6x 9 dx 3 u 4
2

u 0 u 1
6
3u 12u 12u 4 1 u 2

6
3u 24u 60u 44 2 u 3

6
u 12u 48u 64 3 u 4

6

−

−

−

⎧
≤ ≤⎪

⎪
⎪ − +⎪ + − ≤ ≤
⎪= ⎨

− + − +⎪ − + ≤ ≤⎪
⎪
⎪ − +

≤ ≤⎪
⎩
⎧

≤ ≤⎪
⎪

− + −⎪− ≤ ≤⎪⎪= ⎨
− + −⎪ ≤ ≤

− + −
− ≤ ≤
⎩

∫

∫ ∫

∫ ∫

∫

⎪
⎪
⎪
⎪

 [10.7] 

The point now is that each of these functions must be translated so 
that they are evaluated in the interval [ ]0,1 . For instance, the second equation 

is evaluated in [ ]1,2 , but it should be in [ ]0,1 , so that the equation is 

translated to the left by changing the variable u  for u 1+ : 

 
3 2 3 23(u 1) 12(u 1) 12(u 1) 4 3u 3u 3u 1

6 6
+ − + + + − − − −

− = −  [10.8] 

Thus, the third and fourth equations would be 

 

3 2 3 2

3 2 3 2

3(u 2) 24(u 2) 60(u 2) 44 3u 6u 4
6 6

(u 3) 12(u 3) 48(u 3) 64 u 3u 3u 1
6 6

+ − + + + − − +
=

+ − + + + − − + −
− = −

 [10.9] 

Later on, multiplying each of them by its corresponding control point 
and then calculating the sum, we have the parametric function that represents 
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the curve in the given interval. This function is usually put in matrix form with 
the blending functions and the fixed set of points that define the interval: 

 [ ]
i 1

3 2 i
i

i 1

i 2

m1 3 3 1
m3 6 3 01c (u) u u u 1 u 0,1

m3 0 3 06
m1 4 1 0

−

+

+

− − ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎡ ⎤= ∈⎣ ⎦ − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 [10.10] 

It is important to note that each piece of the uniform B-Spline is 
evaluated between 0 and 1 and there is no global domain for the whole curve. 
Thus, each basis function is defined there and, once again, the sum of all them 
is equals to 1 in the whole interval [ ]0,1 , so that each of them is a weight for 

each control point. As Figure 8.2, they are depicted in Figure 10.5: 

 
Figure 10.5 Degree 3 uniform B-Spline basis functions 
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11 Why Degree 3 Uniform B-Splines 

So far, we have seen many interpolating methods with many 
interesting properties for the music information retrieval. Afterwards, the 
chosen method uses degree 3 uniform B-Splines for some reasons that are 
discussed from now on. 

• Since it is a spline curve, it does not suffer of the Runge’s 
phenomenon, so that the curve will not oscillate between points. 

• Moreover, it has the variation diminishing property, so that the 
oscillation between points is minimal. 

• A B-Spline is a piecewise curve, so that the curve is already split into 
pieces between control points. These pieces will be the basic 
information unit for RSHPs. A discussion about the boundaries of 
each piece will be seen later on in Section 11.2. 

• Each piece of the curve is a parametric polynomial of degree 3, so 
that the curve is differentiable. In addition, since every knot has a 
multiplicity of 1, the curve is p h 2C C− =  continuous. We need at least 

1C  continuity, but a 2C  curve even makes the first derivative 
smooth. 

• Thanks to the convex hull property (and therefore the strong convex 
hull one), the curve will not go beyond the limits of the domain. In 
other words, since every control point is a note with a pitch value in 
the interval [ ]0,127 , the interpolating curve will not go beyond. 

Therefore, the curve complies with the pitch domain. In addition, it 
is easy to realize that it also complies with the time domain defined 
by the initial and end notes. 

• Thanks to the local modification scheme, and making each knot span 
start and finish at the time-component of control points, the curve 
will not change globally whenever a note is changed. Particularly, 
since the curve has degree 3, changing a note im  changes the curve 

in the interval [ ]i 2 i 2t , t− + . This is a mandatory property if we want to 

cope with chord comparison, since every possible path through the 
points must be compared. With the other methods of interpolation 
the curves changed globally, but with B-Splines it changes around. 
Therefore, since the number of affected spans is deterministic, 
every single path through the points can be calculated and 
compared. 

• Since the curve does not pass through the actual notes and it 
complies with the strong convex hull property, no large picks are 
going to be created. This makes the curve not-sensible to large 
changes in pitch so that we can have accuracy according to the pitch 
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difference between notes. In other words, the curve does not 
change linearly as the pitch changes. 

 
Figure 11.1 Moving control points 

• Since the curve is parametric, we have a single function for the 
pitch-dimension and another one for the time-dimension. Therefore, 
no linear transformation is needed to the time-dimension in order to 
compare two intervals. Actually, the time-dimension function is 
useless since every span has length 1 (i. e. the piece is timeless). 

• Thanks to the affine invariance property the curve will not change 
its shape whenever the span lengths needs to change. 

• The lower the degree is, the fewer the number of possible paths we 
have for each chord. However, the lower the degree, the lower the 
quality of the curve and the lower also the continuity. Therefore, a 
midpoint should be chosen for the degree, and this midpoint is 3. 
Consider that on each onset time, say it  the song has ik  harmonic 
notes. Thus, for a degree p , every single span, say is , depends on 

the points i i 1 i pm ,m ,...,m+ + , so that there will be 
i p

j
j i

k
+

=
∏  possible single 

paths in the span and hence 
i p

j
j i

(p 1) k
+

=

+ ∏  possible whole paths in the 

whole interval of p 1+  spans affected by im . At the end, a degree 3 
is chosen since it guarantees the minimal number of possible paths 
between notes with the smoothness of the first derivative. 

• A uniform B-Spline is easy and efficient to calculate since it needs 
only 4 multiplications of a polynomial by a number. 

• Some other properties of the degree 3 uniform B-Splines are 
discussed in Section 6 of the following document’s Part. 

11.2 The Knot Spans 

There are some issues with the knot spans lengths that must be 
considered carefully because they might ruin the whole thing. 



Modeling and Indexing Musical Files to allow Music Reuse 
The Mathematical Approach Why Degree 3 Uniform B-Splines 

 page 134 

In case the knot span is not uniform or the distance between 
successive notes is not uniform either, the time-dimension single function of 
the curve will not start and finish between the notes. In other words: 

 
( )
( )

i 1 i i 2 i 1 i i 1 i 1 i 2

i 1 i i 2 i 1 i i 1 i i 1

t t t t c (1) t ' c (0) t ' t , t
t t t t c (1) t ' c (0) t ' t , t
+ + + + + +

+ + + + +

− < − → = = ∈

− > − → = = ∈
  [11.1] 

This fact is depicted in Figure 11.2, where we can see the effect of 
having different separation between successive notes. 

 
Figure 11.2 Non-uniform B-Spline spans 

Since the lowest-level comparison is among the polynomials between 
two successive notes, these intervals must have the same length. Therefore, if 
the fact of having different note durations affects to the length of the 
intervals, the knot vector will be uniform as well as the set of control points. 

It is obvious that by doing so we are wasting the time information, so it 
has to be used in some other way so that the system realizes also about the 
time-dimension. 

Having a uniform knot vector we can use the basis functions in [10.10]. 
Then, since the distance between two successive notes is the same, say d, we 
have for the time-dimension: 

 
3 3 2 3 2 3 2u 3u 3u 3u 1 3u 6u 4 u 3u 3u 1d 2d 3d 4d d(3 u)

6 6 6 6
− − − − + − + −

− + − = −  [11.2] 

We can see that the polynomials for the time-dimension have degree 
1, so that we do not need to approximate the value for u  in case we want to 
knot the exact pitch for a certain time value. 

We might move the knots so that the distance between them is 
somehow according to the corresponding note duration, but practical 
experience shows that modifying knot positions is neither predictable nor 
satisfactory. 

It is important also to note that we are only changing the time-
dimension but not the pitch one. The only thing we are doing upon the curve is 
shrinking or stretching it in the time-dimension. Actually this is the linear 
transformation needed upon the time-dimension, but is done from the 
beginning in this case so that every interval has the same length. 

Lastly, if we want to have a function defined like [5.2], these spans 
must be translated in time so that the first point of the interval, ic (0) , should 
be placed in it t= . Therefore, the curve is defined for the time-dimension as: 
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# #
 [11.3] 

and for the pitch dimension as: 

 

1
pitch,0 0 1

2 1

2
pitch,1 1 2

3 2pitch

l p 1
pitch,l p l p l p 1

l p 2 l p 1

t tc t t t
t t

t tc t t t
t tC (t)

t t
c t t t

t t
− +

− − − +
− + − +

⎧ ⎛ ⎞−
≤ ≤⎪ ⎜ ⎟−⎝ ⎠⎪

⎪ ⎛ ⎞−⎪ ≤ ≤⎜ ⎟⎪ −= ⎨ ⎝ ⎠
⎪
⎪
⎪ ⎛ ⎞−

≤ ≤⎜ ⎟⎪ ⎜ ⎟−⎪ ⎝ ⎠⎩

# #
 [11.4] 

The last issue about the degree 3 B-Spline, and particularly related to 
its derivatives, will be discussed in the Part IX of the document, when the 
mathematical model is translated into the RSHP metamodel. 



Modeling and Indexing Musical Files to allow Music Reuse 
The Mathematical Approach Coping with Voices 

 page 136 

12 Coping with Voices 

So far, we have been talking about the mathematical model assuming 
that the performances have only one single voice. However, we must deal with 
voices as it is a general constraint to the system. The whole idea of normalizing 
the domain, interpolating by using B-Splines and then compare each piece of 
the curve will be kept with voices. 

In previous sections we have seen that the curve for a certain 
performance was of the form: 

 

0 0 1

1 1 2

l 1 l 1 l

c (t) t t t
c (t) t t t

C(t)

c (t) t t t− −

≤ ≤⎧
⎪ ≤ ≤⎪= ⎨
⎪
⎪ ≤ ≤⎩

# #
 [12.1] 

This function interpolates the set of notes over a time-pitch plane. The 
issue about voices is that they have to be compared independently and 
together, as we saw in the General Requirements. Therefore, the best solution 
is to use an additional dimension for each voice, maintaining the time-
dimension. 

Doing so, a performance with two voices will be defined in a space of 3 
dimensions and, in general, a performance with v  voices will be defined in a 
space with v 1+  dimensions. By doing so, if we want to compare two 
performances, say C(t)  and D(t) , we have to consider that each of them will 
return a vector in a voice1-voice2 plane: 

 ( )1 2C(t) pitch ,pitch=  [12.2] 

Therefore, if we consider the staff in Figure 2.1, after having 
normalized it and interpolated, the final curve would be like Figure 12.1 
depicts, where the red and green curves are the single voices and the blue one 
is calculated by adding the other two as ( )1 2C(t) C (t),C (t)= : 
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Figure 12.1 3-dimensional interpolating curve 

With this kind of curves, we can compare C(t)  and D(t)  like seen 
before, calculating the area between them in a certain interval. On the other 
hand, if we want to compare only single voices, say iC (t)  and jD (t) , we can 

compare their single components, which lead us to a comparison among their 
partial derivatives: 

 
i jpitch pitch

i j

C(t) D(t)C (t) and D (t)
pitch pitch
∂ ∂

= =
∂ ∂

 [12.3] 

This way, we can compare the pitch variation of both curves together 
so that we can focus only on the partial derivative of one of them but also get 
some information about the pitch variation of the others so that shifted copies 
in time will be detected. 

In the following part of the document we will see how this multi-
dimensional model is translated into the RSHP metamodel and how we will be 
able to compare voices separately and together. The main lack that the RSHP 
metamodel sins of is that it is not able to represent mathematical expressions 
like functions, polynomials, derivatives and so on, so that the transformation is 
not trivial if we want to guarantee a successful comparison. 

 



 

 

Part IX:  
Translation to the RSHP 

Metamodel and the CAKE 
Engine 



Modeling and Indexing Musical Files to allow Music Reuse 
Translation to the RSHP Metamodel and the CAKE Engine Artifacts’ Topology 

 page 139 

1 Artifacts’ Topology 

To begin the RSHP modeling, we have to define first the topology of 
the main artifact and their subartifacts, as well as the relationships that each 
of them contains. Thus, the main artifact’s type is going to be a Sequence. In 
addition, this Sequence artifact will have an artifact Staff for each of them. 
That way, we can compare, for instance, the piano of a Sequence with the 
guitar of another one. 

Even though this version of the system allows only one staff per 
sequence, the model presented here is valid for more staffs. However, in 
Section 2 of Part XI we will see some future work that would be suitable at the 
time of adding more than one single staff per sequence. 

Later on, each of these Staff artifacts will contain a subartifact of type 
Voice that will contain the actual musical information about a single voice in 
the staff. Doing so, we will be able to compare voices separately. 

Voice

Voice

Staff

Voice

Staff

Sequence

 
Figure 1.1 Main artifacts’ topology (part I) 

In the above Figure 1.1 appears a Sequence artifact that contains two 
Staff subartifacts: one of them has two Voice subartifacts and the other one 
has a single Voice subartifact. This topology corresponds to a performance like 
the one depicted in Figure 1.2. 

 
Figure 1.2 Main artifacts’ topology (part II) 

Now that each voice is defined separately, let us consider, from now 
on, that coping only with staffs that have one single voice. 
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2 Single Voices without Chords 

Here we have a Voice artifact that must be filled up with the 
information about a single curve iC (t)  that has no chord. This function is 
actually defined by intervals between two successive notes, so we have to add 
information about each of these single pieces. 

We saw in Section 3.5 of the document’s Part VIII that the comparison 
among two intervals will be made by calculating the area between both curves 
and then dividing it by the maximum area of the two intervals. Note that we 
are comparing the first derivatives instead of the actual interpolating curves. 

Even though this comparing method seems to be the best one for our 
purposes, it is quite difficult to translate that mathematical model into the 
RSHP metamodel. And not only this translation, but also the way the CAKE 
engine compares artifacts and RSHPs. After having considered many ways to 
represent polynomials with the RSHP metamodel and considering the results 
they would yield with the CAKE Engine, another comparison method is proposed 
taking advantage of the B-Spline interpolation method chosen. 

2.1 Final Method to Compare Intervals 

After having discarded the comparison method by calculating the area 
between curves, a new method is proposed by comparing punctual values of 
the first derivative along with the interval’s duration and the shape of the 
curve in that interval. This information is going to be called information unit. 

For instance, considering the first derivative in Figure 2.1, the 
information units to represent in the RSHP metamodel is (note that the values 
for the first derivatives are known): 

• A piece of duration 4 that has a convex shape. The derivative value 
at the beginning is C'(0)  and the value at the end is C'(4) . 

• A piece of duration 2 that has a concave shape. The derivative value 
at the beginning is C'(4)  and the value at the end is C'(6) . 

• A piece of duration 2 that has a convex shape. The derivative value 
at the beginning is C'(6)  and the value at the end is C'(8) . 

 
Figure 2.1 Comparing intervals 

Later on, we can compare these information units by considering the 
shape, the duration and where are they placed in the pitch-dimension by means 
of the derivative values. Firstly, let us see how to represent this in the RSHP 
metamodel. 
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2.2 How to Represent Information Units 

Reminding the RSHP metamodel seen in the document’s Part V, there 
seems to be a clear way to represent information units. First of all, we have to 
consider the point that every RSHP must have a type, an action that gives 
semantics to that specific type of relationship and one or more information 
elements to connect by the RSHP. 

Since we are comparing the derivatives of degree 3 polynomials, we 
have degree 2 curves. In addition, a degree 2 polynomial can have only three 
possible shapes: concave, convex or flat despite of whether they have maxima 
or minima points or not. 

 
Figure 2.2 Degree 2 polynomial shapes 

Thus, we are going to have three kinds of RSHP: Concave, Convex and 
Flat. 

On the other hand, the action of the RSHP will be the duration of the 
interval, whilst the left IE will be a Term containing the derivative at the 
beginning (with concept order 1) and the right IE will be another Term 
containing the derivative value at the end (with concept order 2). 

Therefore, if we have an interval of duration 6, with a concave 
polynomial that goes from a derivative value of 4 to a value of 3, the 
relationship is going to be depicted as Figure 2.3 shows (note that the line 
linking the IEs has a concave shape due to the RSHP’s type): 

 
Figure 2.3 A Concave RSHP 

Therefore, if we have a sequence that contains only the curve in 
Figure 2.1, the resulting Sequence Artifact would be like the one in Figure 2.4: 

Voice

Staff

Sequence

-0.25 0.64 0.6 0.92 0.9 1.42

 
Figure 2.4 Sequence with a single voice 

In addition, each of these RSHP is marked up with a position in the 
Voice artifact so that the sequence is somehow modeled too. 
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3 Single Voices with Chords 

Now that we have seen how to model a basic melody with RSHP, let us 
see how to model a melody with some harmony, i. e. chords. For instance, let 
us consider the first derivative depicted in Figure 3.1: 

 
Figure 3.1 Voice with chords (part I) 

The point is that a query might have only a few of the possible paths 
contained in the original artifact, like the following one: 

 
Figure 3.2 Voice with chords (part II) 

Moreover, the semantic of the chord is that all the paths must be 
together. That is to say that the blue curves, for example, must appear 
together in the same time span. If they appear in different spans they will not 
be a chord, so that we must group all the possible paths of a chord (or a 
melody) into a bigger information unit containing all of them. This information 
unit is, of course, an artifact. 

Therefore, each of the previous spans in the query would be grouped 
into a single artifact of type Span that is a subartifact of the Voice artifact: 

Span

Voice

6 0.54

6 -2

6 -24

4

Span

0.5 -3.52

-2 -3.5

-2 -3.52

2

 
Figure 3.3 The Span artifact 

Note that all the previous examples would be modeled also as a set of 
Span artifacts containing a single RSHP. The thing is that if the artifact in 
Figure 3.3 is compared with the corresponding artifact in Figure 3.1, a 
comparison by inclusion would lead as to a semantic distance of 0, since we 
have some paths of the chord in the query’s artifact. 

Like before, each Span subartifact has a position within the Voice 
artifact, and the RSHPs have now the position in the Span subartifact. 
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4 Several Voices without Chords 

As seen in Section 1, there will be a Voice artifact for each single voice 
of each span. Therefore, the comparison of single voices will be directly done 
by the CAKE Engine, but there are some issues when comparing more than one 
voice simultaneously. For instance, consider the staff in Figure 4.1 which is the 
beginning of the Beethoven’s sonata number 14, Fur Elise. 

 
Figure 4.1 Several voices without chords (part I) 

There we have two single voices. If a query only contains the upper 
one, the comparison by inclusion will give a semantic distance of 0 as well as if 
we compare the lower one. The point now is what happens if we compare a 
query that has both of them. Once again, the comparison will yield a distance 
of zero. But now, consider the following staff: 

 
Figure 4.2 Several voice without chords (part II) 

where we have basically the same staff, but with a translation in time of the 
lower voice. Moreover, we have the same problem in case the translation is not 
applied to the whole voice but only to a portion of it, or several translations 
with different amplitudes. The point here is that the distance among both 
sequences will be zero as well as it is zero comparing voice by voice. Obviously, 
this is not a valid result. 

The problem arises from the simple fact that we are comparing voices 
separately by comparing the partial derivatives as we saw in Section 12 of the 
previous document’s Part. On the other hand, to compare the whole curve in 
every dimension we should compare each vector of values for the dimensions as 
a single unit, and not separately as we are doing here. Therefore, we must join 
somehow both voices but maintaining them separated enough to be able to 
compare them one by one. 

The solution lies in the addition of more data to the information units 
seen before. Reminding, we have a Term with concept order 1 that stores the 
value for the first derivative at the beginning of the interval and another Term 
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with concept order 2 that stores the value for the derivative at the end of the 
value. However, we need some information about how the other voices are 
changing in the interval, how their derivatives evolve. 

The change consists on introducing also the values of the other voice’s 
derivative at both limits of the interval. Let us take a look at the first 
derivative of the interpolating curve for Figure 4.1: 

 
Figure 4.3 Derivatives with several voices 

The idea is to include in the RSHP information about the other 
derivative, which will be the values at the beginning (with concept order 3) and 
the end of the interval (with concept order 4). Thus, a single RSHP for the 
interval 1,8 1,9t , t⎡ ⎤⎣ ⎦  as a type Convex, a duration of 4 and a concept order 1 of 

1 1,8C '(t )  as well as a concept order 2 of 1 1,9C '(t ) . Now, we are going to add 
information about the other curve, so we ad a Term with concept order 3 
containing 2 1,8C '(t )  and a Term with concept order 4 containing 2 1,9C '(t ) . 

Likewise, the RSHP for the interval 2,0 2,1t , t⎡ ⎤⎣ ⎦  is Concave as well, with a 

duration of 4 units and a concept order 1 of 2 2,0C '(t ) , concept order 2 of 

2 2,1C '(t ) , concept order 3 of 1 2,0C '(t )  and concept order 4 of 1 2,1C '(t ) . Note that 
some RSHPs might not have concept order 3 or 4, like it happens with the one 
modeling the interval 1,7 1,8t , t⎡ ⎤⎣ ⎦ , which does not have a value for the concept 

order 3 but it does have the value for the concept order 4. 

Thus, if we have translated copies of the voices, the concept orders 3 
and 4 will change accordingly even though the original concept orders 1 and 2 
will remain unchanged. Note that if another voice is present, there will be 
another pair of Terms with concept orders 3 and 4. 

Therefore, with some additional considerations, comparisons between 
single voices will still work if the number of voices differs, since the concept 
orders 1 and 2 are the same. On the other hand, comparisons of the whole staff 
(all the voices) will realize of the time-translations and will give semantic 
distances accordingly.  
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5 Several Voices with Chords 

The last scenario for a staff is the case with several voices containing 
chords. Let us consider the staff in Figure 5.1 

 
Figure 5.1 Several voices with chords (part I) 

that has the following first derivatives: 

 
Figure 5.2 Several voices with chords (part II) 

The point here is that in the interval 1,8 1,9t , t⎡ ⎤⎣ ⎦ , for instance, there are 

several values for the derivatives that should be placed in the concept orders 3 
and 4. We might put all their corresponding Terms with the corresponding 
concept order, but this would lead us to an error. 

Let us imagine that we have three voices and we are modeling a RSHP 
for the first of them. The second voice provides concept order 3 with values a  
and b . Moreover, the third voice contributes with values c  and d. Therefore, 
the RSHP would have 4 Terms with concept order 3. 

Now consider a query with two voices, where the corresponding RSHP 
has the same concept orders 1and 2, the same action and the same duration. 
That is, the same interval. Imagine also that the second derivative provides 
Terms with concept order 3 and values a  and c . Both RSHP are represented in 
Figure 5.3. 

The comparison among them would give a semantic distance of zero 
since the query is contained in the repository. But it is pretty clear that the 
semantic comparison is not correct because we are comparing voices 2 and 3 of 
the repository with the voice 2 of the query, and we must compare them 
separately. That is to say that we have to compare the voice 2 of the repository 
with the second of the query and later on the last with the third of the 
repository. 
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Figure 5.3 Several voices with chords (part III) 

Thus, we have to group the derivative values for each of the 
derivatives so that we do not mix their values. Doing so, a new subartifact type 
arises, which is called Derivatives and will appear at both ends of the RSHPs, 
which are contained in subartifacts of type Span. Therefore, the final 
representation will be: 

4

2

...

1

3

2

4

Derivatives

a

Derivatives

b

c

Derivatives

d

3

3

Derivatives

4

2
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1

3

2

4

Derivatives

a

Derivatives

c

3

Derivatives

 
Figure 5.4 Several voices with chords (part IV) 

This way we split the semantic of the other derivatives and separate 
them according to their voice. 
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6 Representing Numbers with Terms 

The problem we must deal now with is the impossibility of 
representing real numbers in the RSHP metamodel. However, we can have 
some approximations so that we can define a closed domain for the possible 
note durations and the possible derivative values. 

6.1 Score Durations 

Right now, the real-time is not considered so that we only deal with 
score durations. As seen in Section 2.1 of the last document’s Part, a minimum 
time unit must be defined so that we can normalize the time-dimension. The 
decision taken there is to consider a minimum length of demisemiquaver, so 
that a quaver would be 4 units for instance. 

However, we must deal with the possibility of having tuplets so that a 

demisemiquaver in the tuplet would have duration of 
unit

3
. Thus, minimum 

duration is going to be 3 units so that the demisemiquaver in a tuplet will have 
duration of 2 units. Doing so, the standard notes have the following durations: 

Name Figure Duration In tuplet 

Semibreve  96 64 

Minim 
 

48 32 

Crotchet  24 16 

Quaver  12 8 

Semiquaver  6 4 

Demisemiquaver 
 

3 2 

Table 6.1 Score durations for notes 

Therefore, we can use this numbers as the Tems used in the action of 
the relationships. However, but must consider the possibility of having ties and 
rhythm dots (see Section 4 of the Part II), so that a crotched might be tied with 
a quaver and a rhythm dot. This would lead us to a duration of 
24 12 12 2 42+ + =  which can not be modeled with Terms. 

We might define a huge number of Terms, each of them for the 
possible values in increments of 1 by 1, but this would be unfeasible at the end 
because we do not knot where to stop. If we consider again ties, let us imagine 
a tie between two semibreves where the resulting duration would be 192 units. 
And even more, imagine three tied semibreves with a crotched plus a 
semiquaver in a tuplet.  
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The point is that we can not know, at the time of creating the domain, 
what are the possible values for the duration of notes. Therefore, the solution 
taken by now is to consider intervals between the values in Table 6.1. That is, 
imagine all the values ordered in a vector: 

 ( )2,3,4,6,8,12,16,24,32,48,64,96  [6.1] 

We are about to define intervals around each of these numbers, from 
the midpoint towards the previous number until the midpoint towards the 
following one. For instance, the interval containing 24 is [ )20,28 , whilst the 

one containing the 8 is [ )7,10 . On the other hand, since we know that no note 

will have a duration less that 2, the first interval is [ )2,3 . In addition, the last 

interval to be considered is [ )80,+∞ , where every note with a duration longer 

than 80 is going to be grouped under this Term. 

Thus, we have 12 Terms that define intervals for the possible durations 
in score time and that are defined as so in the domain of the RSHP repository. 
In addition, these Terms are linked in the domain so that a certain interval, say 

jL , is linked with an Association RSHP to the intervals j 1L −  and j 1L + . 

6.2 Derivative Values 

Something similar to the case of the score durations happens here, but 
let us see, first of all, why B-Splines of degree 3 were chosen. 

As seen in the previous Section 10, the pitch-component of a span is 
calculated as: 

 
3 3 2 3 2 3 2

i 1 i i 1 i 2
u 3u 3u 3u 1 3u 6u 4 u 3u 3u 1p p p p
6 6 6 6− + +

− + + + − + − + − +
+ + +  [6.2] 

where jp  denotes the pitch of the note jm . However, what we are about to 

compare is the first derivative of this function, which is 

 
2 2 2 2

i 1 i i 1 i 2
u 3u 2u 1 3u 4u u 2u 1p p p p
2 2 2 2− + +

− + + − − + −
+ + +  [6.3] 

Moreover, we are obtaining the value of the first derivative evaluated 
at u 0= , so that the values to put in the RSHPs are calculated as: 

 i i 2p p
2

+−
 [6.4] 

That is to say that the derivative evaluated in 0 depends only on the 
notes im  and i 2m − . On the other hand, the value at u 1=  is the same as the 
value of the following span evaluated in 0, so that it is 
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 i 1 i 3p p
2

+ +−
 [6.5] 

Thus, the values at both ends of the RSHP depend on the 4 points that 
define the interval. Moreover, these values depend on the difference in pitch 
between two notes, and this is actually the idea behind the first derivative. 
That is to say that every pair of points i i 2p p +−  or i 1 i 3p p+ +−  that keeps the pitch 
difference is going to have the same derivatives. And if we think on it, this is 
the case of a given interval in different tonalities: 

 
Figure 6.1 First derivative intervals 

Therefore, the two values put in a RSHP can not correspond to 
different intervals in two curves. Since the left value depends on the interval 
between 2 notes and the right value depends on the interval between the other 
2 notes, no other sequence of notes is possible with these values. 

This is what gives us the sense of sequence in our representation of 
music. Remind that the RSHP metamodel does not have any mechanism that 
might help us with the issue of taking into account the sequence of notes. 
However, with B-Splines of degree p , we assure that a polynomial is unique of 
a fixed sequence of p 1+  points (actually the derivative of the curve). This acts 
like a sliding window that compares the curve by pieces of 4 notes.  

Moreover, there is another good point from equations [6.4] and [6.5]. 
We know that every pitch value is in the interval [ ]0,127 , so that the 

difference is -127 as minimum and 127 as maximum, which leads us to 255 
possible values. 

Thus, we have the domain entirely defined with the interval 
[ ]127,127− ∈] , so that we might create a Term for the domain with each of 

the values in the interval. 

6.2.1 Derivative Values with Voices 

We have seen so far that the values for the first derivatives can be 
normalized with 255 Terms in the domain. However, this technique is not valid 
with staffs containing more than a single voice. For instance, considering again 
the curve in Figure 4.3, the values having concept order 3 and 4 are not 
necessary integers. 
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The point is that, when calculating the concept order 3 by obtaining 
the derivative value 2 1,8C '(t ) , the polynomial has to be evaluated in u 0.25= , 

and later on 2 1,9C '(t )  will evaluate the polynomial in u 0.5= . In general, the 
curves might be evaluated in any value for u  between 0 and 1, and this makes 
it impossible to define a domain by extension so that a domain by definition of 
intervals is proposed again. 

With the examples considered so far, no derivative value has been 
greater than 14 or smaller than -14. Therefore, intervals are chosen by now 
with length 1 between -14 and 14, so that integer numbers are in the middle of 
each interval and hence we will not be penalized for distances of, for instance, 
3 and 3.2. 

Thus, the domain defines Terms for the derivative values that are 
distributed as follows, so that we have 31 intervals: 

 ( ) [ ) [ ) [ ) [ ), 14.5 , 14.5, 13.5 ,..., 0.5,0.5 ,..., 13.5,14.5 , 14.5,−∞ − − − − ∞  [6.6] 

Like before these Terms are linked with an Association RSHP in de 
domain, so that every interval is associated with the previous and the following 
ones. That way, the CAKE Engine can penalize distances in the derivatives. 
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7 Extending the CAKE Engine 

The current implementation of the CAKE Engine is not suitable at all 
for MIKE and for mathematical models in general. As seen in Section 6 there are 
some problems with the representation and comparison of numbers. 

Even though Part XI of the document outlines a possible solution to the 
problem, the point is that that solution might not be the best at all. 

Moreover, there are some problems with the comparison of the 
information elements contained in the RSHPs. As seen in previous sections, the 
RSHPs have five concept orders right now: 

• Duration of the interval as concept order 0. 

• Value of the derivative at the beginning of the span with concept 
order 1. 

• Value of the derivative at the end of the span as concept order 2. 

• Values of the other voices’ derivatives at the beginning of the span 
as concept order 3. 

• Values of the other voices’ derivatives at the end of the span as 
concept order 4. 

The right way to compare two RSHP is to compare only information 
elements with the same concept order. That is to say that if two elements in 
two RSHP are being compared, their semantic distance will be automatically 1 
in case they do not have the same concept order in their respective 
relationships. 

Therefore, the CAKE Engine has been modified so that an extension is 
possible. This extension allows a particular engine to implement the function in 
charge of calculating the semantic distance among two information elements. 
Once there, the concept orders can be compared and the distance returned 
accordingly. 

Moreover, since the current model has more or less random intervals 
for the possible derivative values as well as for the possible durations in score 
time. Thus, the current version of the system uses a deprecated field in the 
Information Elements that is precisely a floating point number which is used to 
store the actual value of the derivative. 

Therefore, another extension is made so that, provisionally, the 
semantic distance between two terms can be calculated by dividing their 
difference by the maximum of them. Thus, a relative distance is given between 
0 and 1.  



 

 

Part X:  
Implementation Details 
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1 The Music Information Retrieval 
Process 

The music information retrieval process is a complex procedure that is 
divided into several phases that need to be executed in sequence, one after 
the other. 

MIDI File Reading

Preprocessing

Voice Separation

Quantization

Minimization

Interpolation

RSHP Modeling

Toub Model

Preprocessed Model

Separated Model

Quantized Model

Minimized Model

Interpolated Model

MIDI File

RSHP Model

 
Figure 1.1 The music information retrieval process 

As seen in Figure 1.1, there are mainly 7 phases executed in sequence, 
each of which returns an intermediate model that serves as input for the next 
phase. 

• Midi File Reading. In this first phase of the process, the MIDI file is 
read and modeled with the Toub library [Toub]. 
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• Preprocessing. In this part the file is preprocessed to clean it and 
remove useless information. For instance, the event-driven model is 
translated to a score-driven model where there are instances of 
notes with a certain onset time, duration and pitch. All the data but 
the NoteOn and NoteOff events, as well as the division, unit are 
removed. 

• Voice Separation. In this third stage, the preprocessed model is split 
into several voices if applicable. This phase yields a figure-driven 
model where chords appear grouped. 

• Quantization. In this phase the staff is quantized so that the onset 
time and the duration given in milliseconds are expressed in score 
units such as crotchet or minim. Moreover, the tempo is detected in 
this phase. 

• Minimization. Once the input is quantized, it can be minimized by 
obtaining the possible repetitions in the performance such as riffs. 

• Interpolation. Applying the technique seen in the mathematical 
approach, the performance is interpolated so that the curves that 
describe its pitch change for each voice are calculated. 

• RSHP Modeling. In this final stage, the mathematical model is 
translated to artifacts as it was described before. This generated 
RSHP model can then be used for indexing or for accomplish a query. 

These stages are implemented in MIKE with some aspects that need to 
be considered. 
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2 Implementation in MIKE 

Each of the previous phases in the music information retrieval process 
is implemented in MIKE as a different package, nesting from a parent package 
named MIKE. 

2.1 Preprocessing 

In this first package the preprocessing task is implemented. The 
package defines a IPreprocessor interface that is going to be implemented by a 
particular preprocessor. The input to this phase is a Toub model (an instance of 
class MidiSequence) that is event-driven and, after the phase is executed, a 
preprocessed model is returned. 

PreprocessedSequence
Division PreprocessedTrack

PreprocessedNote
Onset
Duration
Pitch

 
Figure 2.1 Preprocessed model 

The implemented preprocessor used in this version is called 
SillyPreprocessor since the only task that it is going to perform is to remove 
useless events from the stream. Therefore, the preprocessor is going to deal 
only with NoteOn and NoteOff messages. For the output model, the 
preprocessor creates instances of notes that do have a certain onset time and 
duration, so that the event-driven model is no longer used. 

2.2 VoiceSeparation 

As well as the Preprocessing package, this one also defines an 
interface IVoiceSeparator that can be implemented in order to provide the 
voice separation functionality. This phase is also in charge of detecting chords, 
so that the output model is slightly changed. A chord is going to be considered 
as a collection of single notes. Thus, an interface ISeparatedNote is declared to 
deal with single notes and chords.  

In this version of the system, a SillyVoiceSeparator is implemented 
even though the Kilian-Hoos algorithm should be used. The point is that the 
Kilian-Hoos algorithm needs some feedback from the user in order to adjust the 
penalization weights so that the input can be split correctly. 
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Thus, the Kilian-Hoos algorithm can not be used right now because the 
process does not have any kind of interaction with the user. Instead, the 
SillyVoiceSeparator is used to generate a separated model. 

SeparatedSequence
Division SeparatedTrack

SeparatedSingleNote
Pitch

SeparatedVoice

ISeparatedNote
Onset
Duration

SeparatedChord

 
Figure 2.2 Separated model 

The point is that the SillyVoiceSeparator actually does not do anything 
but recognizing and grouping chords. Thus, the input must have a special 
format so that, by now, the voices are already separated and stored in 
different tracks. In other words, if a certain staff has more than a single voice, 
it is separated into several tracks, one per voice. Therefore, the current 
version allows only one staff per sequence. 

Anyway, the KilianHoos algorithm is implemented waiting for an 
extension to the current version that could use it so that the voice separation is 
actually performed and the input does not need to be already separated. 

2.3 Quantization 

So far, the onset time and duration of notes are expressed in 
milliseconds, and the quantization phase intends to recognize the tempo and 
hence the score onset time and score duration of notes. 

Once again, the package defines an interface name IQuantizator that 
declares a method to quantize a given instance of the SeparatedModel. Like 
before, a SillyQuantizator is implemented in this version for several reasons. 
First of all, this version only deals with mechanical or metrical sequences, 
where the onset and duration of notes is precisely defined accordingly to the 
division field of the file. This means that the sequence can be quantized simply 
by division and multiplication. 

As seen in Section 6 of the document’s Part VIII, the crotched has 
assigned a score duration of 24, so that for a given delta time the score time is 
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24·delta
division

 [2.1] 

On the other hand, with the tempo detection and quantization 
happens more or less the same as with the voice separation: none of the 
existing algorithms generates a precise output. There are some approaches to 
the tempo detection based on rules, probabilistic models, multiple agents, 
oscillators and many more. For the quantization there are also some 
approaches based on grids, rules, transcriptions, vector models, cellular 
automata and more. In [Kilian, 2004] some hybrid techniques are proposed so 
that they might be used in a future. 

On the other hand, the most typical way to record a live performance 
is with a clicktrack model where the tempo is defined before so that the 
quantization can be performed in real-time while playing. Thus, the 
quantization phase is used in some particular cases. 

After all, the model generated in this phase is basically identical as the 
one generated in the voice separation. This time, the duration and onset time 
of the notes is stored in score time, but in the future it would be nice to store 
also the real time values so that both them can be used when comparing. 

QuantizedSequence QuantizedStaff

QuantizedSingleNote
Pitch

QuantizedVoice

QuantizedNote
Onset
Duration

QuantizedChord

  
Figure 2.3 Quantized model 

2.4 Minimization 

This phase is neither implemented in the current version. Therefore, 
no minimization is applied upon the sequences so that they are not optimized. 
This is, however, an important issue for the efficiency of the system since the 
number of artifacts to create can be huge. Some algorithms such as BLAST can 
be applied here to recognize patterns in the sequence. Indeed, in [Kilian, 2004] 
an extension called MusicBLAST is introduced for the pattern induction and 
segmentation of sequences. 
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Therefore, no minimized model is created and the quantized one is 
directly forwarded to the Interpolating phase. 

2.5 Interpolation 

This package uses a class name Polynomial used to perform operations 
with polynomials such as additions or differentiation. This Polynomial class is 
used from class UniformBSpline in order to generate the corresponding 
polynomial functions for the interpolating curves. 

Basically, an interface IInterpolator is again defined so that the actual 
interpolation, from a quantized model, is executed in a class named 
BSplineInterpolator. Here, the input is separated into normalized spans and 
then every possible path is calculated according to the number of 
simultaneously notes and the degree of the curves, which is 3 currently. 

Once the sequence is interpolated the polynomials are stored in a 
interpolated model as follows: 

InterpolatedSequence InterpolatedStaff

Polynomial
Degree
Shape

InterpolatedVoice

InterpolatedSpan
Onset
Duration

pitch time

 
Figure 2.4 Interpolated model 

Note that, since a certain span might have more than one path due to 
the existence of a close chord, each span has a collection of polynomials for 
the pitch component of the curve. 

2.6 RSHP Modeling 

The last phase in the music modeling process is to generate an 
instance of the RSHP metamodel that represents the original input sequence. 
An interface IRSHPzator is defined so that the current implementation in 
RSHPzator performs the model translation. After loading the domain from the 
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given repository, the RSHPzator generates the Sequence Artifact as explained 
in Part IX. 

2.7 The CAKE Studio Manager 

In the parent package, named MIKE, there are some classes used to 
incorporate MIKE to the CAKE Studio. Basically there is a Manager that declares 
the kind of indexing. It is the one in charge of starting the whole MIR process 
and storing the artifacts in the repository as well as creating some others for 
queries. In addition, the MIKEManager is in charge of creating the domain in the 
repository in the first time it is executed. 

 



  

 

Part XI:  
Epilogue 
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1 Conclusions 

Considering the initial objectives proposed it can be affirmed that all 
of them have been achieved. 

Even though the project leaves many points where an extension and 
future work can be done, the main objective of providing a metamodel for 
music information in the RSHP information representation metamodel that 
allows the music reuse with the CAKE Engine has been achieved. 

Moreover, the whole thing has a solid mathematical basis that solves 
all of the common problems in the music information retrieval process. The 
main advantage of MIKE is that it solves, in a single system, all these problems. 
Nowadays there are many approaches to the music information retrieval, but 
none of them is as extensive as MIKE at least about the comparison capabilities. 

The main disadvantage of the current methods of music information 
retrieval is that they are not thought for the actual music information. There 
are many proposals based on probabilistic models that do not offer reliability. 
Some others are based on text information retrieval techniques applied to some 
textual representation of the music such as the GUIDO music notation. Others 
apply regular expressions searches to these textual representations, but the 
issue is the same: music is not text. 

On the other hand, MIKE is thought for music since the beginning so 
that every decision made was focused only on music information. It uses a 
mathematical model that solves in a single system all the General 
Requirements considered and it is easily extensible to include more information 
thanks to the versatility of the RSHP metamodel. 

This project opens many interesting doors for the music information 
retrieval by establishing the theoretical basis for the whole process. Much more 
work is remaining as seen in Part X, so that some other contributions to MIKE 
would lead to an important and strong reference point in the field of music 
information retrieval. 
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2 Future Work 

As seen in Section X, many parts of the music information retrieval 
process are not yet implemented. Phases such as the Quantization or the 
Minimization would be suitable for a future work upon MIKE. 

On the other hand, an important extension to consider is to definitely 
include the Kilian-Hoos voice separation algorithm (or an improved one). The 
point is that the algorithm needs some kind of feedback from the user in order 
to assign a value to each of the penalization constants (see Section 5.2.3 of the 
Part VII). Therefore, a good future work would be to provide some kind of staff 
visualization window for the CAKE Studio so that the user can see the 
intermediate voice separations and change the penalization constants 
accordingly. A good point would be to offer the possibility of fixing the 
separation note by note with a single action like clicking on it and swaping the 
voice assigned. 

Once the voice separation is fully integrated, it would be possible to 
model into a single Sequence artifact several Staff subartifacts so that several 
instruments can be included in a single piece. Therefore, it could be possible to 
compare instruments one by one or as a whole, like the case with voices. 

Another point is to add some extra information to the current model 
such as metadata about the piece, instruments or whatever. Another good 
point is to offer the possibility of comparing pieces not only by score time like 
now, but also by real time. The thing would be to change the action of the 
RSHP so that it becomes an artifact containing terms for both cases. 

However, the most important and critical applicable work to MIKE is 
about the domain definition for the duration and derivative values. Right now 
the values are split into intervals that are linked one to each other so that the 
CAKE Engine penalizes distances. However, this interval definition is almost 
random right now. 

The point is that intervals with a lot of occurrences should have more 
accuracy than those with a few occurrences. Therefore, the best solution would 
be to do a statistic study with a large MIDI database so that we could see how 
many occurrences appear for each derivative and duration value. Thus, with a 
histogram it would be possible to perform an optimal distribution of the 
domain. 

In addition, the current model is open to modifications. A possible 
modification would be to add the information about the other voices not for 
each RSHP in a single span, but in the own Span artifact. Another extension is 
to add some values of the second derivative in the RSHPs so that the function 
that maps a polynomial to a RSHP would become surjective. 
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Figure 2.1 Surjective mapping to RHSP 

Right now, both curves (they are already the first derivatives) in Figure 
2.1 are treated as equal because the current model does not have collect 
information about the curvature. However, it is clear that they are not the 
same, the green one changes much more than the blue one. It can be easily 
demonstrated that by adding the value of the second derivative evaluated in 
u 0=  is enough to make the mapping surjective. 

If the derivative polynomial is in the form 2au bu c+ + , the RSHP 
already contains the value of c  since it is evaluated in 0. On the other hand, it 
has the value of a b c+ +  when evaluated in u 1= . This is why the curvature is 
not taken into account. However, the second derivative has the form 2au b+ , 
so that evaluating it in u 0=  would give the value of b  and hence the value of 
a . This way, the polynomial is totally defined in the RSHP. 

This change would mean a new artifact type to add or the usage of 
new concept orders in the RSHPs, but will assure that there will not be false 
positives. 

Therefore, several extensions can be applied upon MIKE, and all of 
them are welcome. 
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3 Project Budget 

In order to specify the budget of the current herein described, there 
are established some assumptions: 

• 8 full working hours per day. 

• 20 days per month. 

Moreover, the project can be developed by two different kinds of 
workers: 

• Senior engineer with experience and research skills, responsible of 
the research area and schedule. A salary of 155 €/day is 
established1. 

• Junior engineer responsible of the programming tasks, with a salary 
of 105 €/day. 

In addition, the identified tasks needed to accomplish the project are: 

• Documentation about the MIDI standard and the SMF format. 

• Documentation about the RSHP metamodel and the CAKE Engine. 

• Documentation about the state of the art in the field of music 
information retrieval. 

• Goals and software scope establishment. 

• Analysis. 

• Research in the field of numerical analysis. 

• Design. 

• Implementation. 

• Tests. 

• Documentation that yields to the current report. 

Therefore, the effort can be calculated as follows: 

                                             
 
1 Salaries containing all applicable taxes like 40% for Social Security.  
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Task Worker Estimated Days Cost 
Documentation on MIDI and SMF Senior 7 1,085€ 

Documentation on RSHP and CAKE Senior 
Junior 12 3,120€ 

Documentation on State of the art Senior 16 2,480€ 
Goals establishment Senior 3 465€ 
Analysis Senior 7 1,085€ 
Research in numerical analysis Senior 36 5,580€ 

Design Senior 
Junior 7 1,830€ 

Implementation Junior 15 1,575€ 

Test Senior 
Junior 3 780€ 

Documentation Senior 
Junior 8 2,080€ 

Total 114 20,080€ 

Table 3.1 Human effort cost estimation 

Moreover, during the elaboration of the project there were needed 
some stuff spending as well as the purchase of books and related 
documentation stuff. 

Stuff Quantity Unitary 
Cost Cost 

Notebook Samsung NP-X20 1 during 114 
days 1,277€ 199€ 

Printer Samsung ML-2510 1 during 114 
days 86€ 13€ 

Microsoft Windows XP Professional 1 Student 
License 0€ 

Microsoft Visual Studio .net 2003 1 Student 
License 0€ 

Microsoft Office 2003 Professional 1 Student 
License 0€ 

Reuse Studio with Indexing 
License 1 3,480€ 3,480€ 

Paper 2000 0.01€ 20€ 
Toner ink 1 64€ 64€ 
CD-ROM 5 0.20€ 1€ 
Internet connection 6 months 20€ 120€ 
Books and related documentation - - 82€ 

Total 3,979€ 

Table 3.2 Stuff and documentation cost 

Moreover, the project was developed as part of an Erasmus grant 
awarded during 5 months in the city of Mariehamn, in Finland. Thus, the 
applicable cost resulting from the grant is: 
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Concept Quantity Unitary 
Cost Cost 

Travel to and from Mariehamn 2 120€ 240€ 

Housing 5 months Included in 
the grant 0€ 

Subsistence allowance 5 months 450€ 2,250€ 
Total 2,490€ 

Table 3.3 Erasmus grant estimated cost 

Therefore, the total cost of the project before taxes is: 

 20,080 3,979 2,490 26,549€+ + =  [3.1] 

Finally, by applying taxes and the corresponding risk and profit 
percentages: 

Concept Cost 
Total cost 26,549€ 
Risk (8%) 2,124€ 
Profit (14%) 3,717€ 

Subtotal 
VAT (16%) 

Total 

32,390€ 
5,182€ 

37,572€ 

Table 3.4 Final cost calculation 

Therefore, the total final cost of the project focused on a potential 
client would be 37,572€. 



  

 

Part XII:  
Source Code 
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1 MIKE 

1.1 MikeManagerFactory 
using System; 
 
using CAKE; 
using CAKE.Managers; 
 
namespace MIKE { 
    public class MIKEManagerFactory : CAKEManagerFactory{ 
        public override string ModuleNamespace{ 
            get{ 
                return "MIKE"; 
            } 
        } 
        protected override void AddManagerNames(){ 
            base.AddManager(MIKEManager.DisplayName, MIKEManager.Description, 
            typeof(MIKEManager).Name, MIKEManager.Version, MIKEManager.Projects); 
        } 
        public override CAKEManager CreateManagerByName(string managerName){ 
            if(managerName == typeof(MIKEManager).Name){ 
                return new MIKEManager(this); 
            } 
            return null; 
        } 
        public override CAKELicenseInfo GetLicenseInfo(string managerName){ 
            return null; 
        } 
        protected override void RegisterIndexers(){ 
            base.RegisterIndexer(MIKEManager.KnownExtensions, 
            new MIKEIndexerCreator()); 
        } 
    } 
} 

1.2 MIKEIndexerCreator 
using System; 
 
using CAKE; 
using CAKE.Managers; 
using CAKE.IndexingServices; 
 
namespace MIKE { 
    public class MIKEIndexerCreator : IFileIndexerCreator { 
        public IFileIndexer CreateFileIndexer(IndexingManager indexerManager) { 
            return new MIKEManager(indexerManager); 
        } 
    } 
} 

1.3 MIKEManager 
using System; 
using System.ComponentModel; 
using System.Windows.Forms; 
using System.Collections; 
using WindowDockerLib; 
 
using CAKE; 
using CAKE.Managers; 
using CAKE_Indexer; 
using CAKE.IndexingServices; 
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using Toub.Sound.Midi; 
using MIKE.Preprocessing; 
using MIKE.Preprocessing.Silly; 
using MIKE.VoiceSeparation; 
using MIKE.VoiceSeparation.Silly; 
using MIKE.Quantization; 
using MIKE.Quantization.Silly; 
using MIKE.Interpolation; 
using MIKE.RSHPzation; 
 
namespace MIKE { 
   public class MIKEManager : CAKEManagerIndexable{ 
 
      protected IPreprocessor _prep; 
      protected IVoiceSeparator _sep; 
      protected IQuantizator _quant; 
      protected IInterpolator _inte; 
      protected IRSHPzator _rshp; 
 
      internal const string DisplayName = "MIKE"; 
      internal const string Description = 
         "Music Indexer based on the CAKE Engine"; 
      internal static Version Version{ 
         get{ 
            return new Version(1, 0); 
         } 
      } 
      internal static ProjectInfoCollection Projects{ 
         get{ 
            ProjectInfoCollection projects = new ProjectInfoCollection(); 
            projects.Add(new ProjectInfo("MIKE Project")); 
            return projects; 
         } 
      } 
      internal static String[] KnownExtensions{ 
         get{ 
            return new string[] {"midi", "mid"}; 
         } 
      } 
 
      private bool _isDestroyed; 
      public override bool IsDestroyed{ 
         get{ 
            return _isDestroyed; 
         } 
      } 
 
      protected internal MIKEManager(MIKEManagerFactory f) : base(f){ 
         this._isDestroyed = false;             
         _prep = new SillyPreprocessor(); 
         _sep = new SillySeparator(); 
         _quant = new SillyQuantizator(); 
         _inte = new BSplineInterpolator(3); 
         _rshp = new RSHPzator(); 
      } 
      protected internal MIKEManager(IndexingManager idxManager) : 
         base(idxManager){         
         _prep = new SillyPreprocessor(); 
         _sep = new SillySeparator(); 
         _quant = new SillyQuantizator(); 
         _inte = new BSplineInterpolator(3); 
         _rshp = new RSHPzator(); 
      } 
      protected override void AddManagerForms(){ 
         this.AddForm(typeof(MIKEManagerMainForm).FullName); 
      } 
      protected override CAKEItem OnCreate(ProjectInfo projectType, string name){ 
         CreateNewProject(name); 
         return null; 
      } 
      protected override void OnConnect(){ 
         return; 
      } 
      protected override void OnDisconnecting(CancelEventArgs e){ 
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         return; 
      } 
      protected override void OnDisconnect(){ 
         return; 
      } 
      protected override void OnDestroy(){ 
         if(!this.IsDestroyed){ 
            _isDestroyed = true; 
            if(base.MainForm != null){ 
               base.MainForm.Close(); 
               base.MainForm.Dispose(); 
            } 
            base._mainForm = null; 
         } 
      } 
      protected override bool OnLoad(string location){ 
         return true; /** @todo OnLoad */ 
      } 
      public override bool IsDependentForm(DockableForm formInstance){ 
         return formInstance.Equals(base.MainForm); 
      } 
      public override Form CreateFormByName(string formTypeName){ 
         return this.CreateDockedFormByName(formTypeName); 
      } 
      public override DockableForm CreateDockedFormByName(string formTypeName){ 
         if(formTypeName == typeof(MIKEManagerMainForm).FullName){ 
            return this.GetMainForm(); 
         } 
 
         return null; 
      } 
      public override bool Save(string location){ 
         return true; /** @todo Save */ 
      } 
      internal void CreateNewProject(string name){ 
         this.GetMainForm(); 
         base.GetDocker().Add(base.MainForm, true, DockStyle.Left); 
         MIKEManagerMainForm frmChild = new MIKEManagerMainForm(this); 
         frmChild.MdiParent = base.GetDocker().DockingForm; 
      } 
      internal MIKEManagerMainForm GetMainForm(){ 
         if(base.MainForm != null && !base.MainForm.IsDisposed){ 
            return (MIKEManagerMainForm)base.MainForm; 
         } 
         base._mainForm = new MIKEManagerMainForm(this); 
         return (MIKEManagerMainForm)base.MainForm; 
      } 
 
      public override string[] AvailableExtensions{ 
         get{ 
            return KnownExtensions; 
         } 
      } 
      protected override Artifact OnBatchIndex(IndexingManager idxManager, 
         string fullName){ 
         CAKEEngine engine = idxManager.Repository; 
         // Start the MIR process 
         MidiSequence mSeq = MidiSequence.Import(fullName); 
         PreprocessedMidiSequence pSeq = _prep.Preprocess(mSeq); 
         SeparatedSequence sSeq = _sep.SeparateVoices(pSeq); 
         QuantizedSequence qSeq = _quant.Quantize(sSeq); 
         InterpolatedSequence iSeq = _inte.Interpolate(qSeq); 
         Artifact rSeq = _rshp.RSHPtize(iSeq, engine, fullName,  false); 
 
         rSeq.Save(false); 
         return rSeq; 
      } 
      protected override Artifact OnBatchQuery(IndexingManager idxManager, 
         string fullName){ 
         CAKEEngine engine = idxManager.Repository; 
         // Start the MIR process 
         MidiSequence mSeq = MidiSequence.Import(fullName); 
         PreprocessedMidiSequence pSeq = _prep.Preprocess(mSeq); 
         SeparatedSequence sSeq = _sep.SeparateVoices(pSeq); 
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         QuantizedSequence qSeq = _quant.Quantize(sSeq); 
         InterpolatedSequence iSeq = _inte.Interpolate(qSeq); 
         Artifact rSeq = _rshp.RSHPtize(iSeq, engine, fullName, true); 
 
         return rSeq; 
      } 
      protected override Artifact OnIndex(Indexer idx){ 
         CAKEEngine eng = idx.Repository; 
         return null; 
      } 
      protected override Artifact OnQuery(Indexer idx){ 
         return null; 
      } 
 
      public void CreateDomain(CAKEEngine Engine) { 
         Engine.Clear(); 
         Engine.Load(true); 
         Engine.DeleteAndSaveArtifacts(); 
 
         // The language for MIKE 
         Language music = new Language(Engine, "MI", "MIKE", "MIKE Language", 
            null, 30000, 0); 
 
         // Artifact Types 
         ArtifactType atSequence = new ArtifactType(Engine, "Sequence", 0, null, 
            30000, 0); 
         ArtifactType atStaff = new ArtifactType(Engine, "Staff", 0, null, 
            30001, 0); 
         ArtifactType atVoice = new ArtifactType(Engine, "Voice", 0, null, 
            30002, 0); 
         ArtifactType atSpan = new ArtifactType(Engine, "Span", 0, null, 
            30003, 0); 
         ArtifactType atDerivative = new ArtifactType(Engine, "Derivatives", 0, 
            null, 30004, 0); 
 
         // Types of Term 
         TermSemanticItem tsiDerivatives = newTermSemanticItem(Engine, 
            "Derivatives", 30000, 0); 
         TermSemanticItem tsiDurationsScore = newTermSemanticItem(Engine, 
            "Score Durations", 30001, 0); 
 
         // Types of RSHP 
         SemanticItem siAssociation = Engine.SemanticItemFromJC(300); 
         if(siAssociation== null){ 
            siAssociation = new SemanticItem(Engine, "Association", null, false, 
               1, true, true, true, true, "Related", "Related", false, "RT", 
               "RT", 300, 0); 
         } 
         SemanticItem siConcave = newSemanticItem(Engine, "Concave", 30000, 0); 
         SemanticItem siConvex = newSemanticItem(Engine, "Convex", 30001, 0); 
         SemanticItem siFlat = newSemanticItem(Engine, "Flat", 30002, 0); 
 
         // Intervals for the 1st derivatives as Terms 
         ArrayList derivativeIntervals = new ArrayList(); 
         derivativeIntervals.Add(newTerm(Engine, "(-inf, -14.5)", tsiDerivatives, 
            music, null, 0)); 
         for(int i = 13; i >= 0; i--) { 
            derivativeIntervals.Add(newTerm(Engine, "[-"+(i+1)+".5, -"+i+".5)", 
               tsiDerivatives, music, null, 0)); 
         } 
         derivativeIntervals.Add(newTerm(Engine, "[-0.5, 0.5)", tsiDerivatives, 
            music, null, 0)); 
         for(int i = 0; i < 14; i++) { 
            derivativeIntervals.Add(newTerm(Engine, "["+i+".5, "+(i+1)+".5)", 
               tsiDerivatives, music, null, 0)); 
         } 
         derivativeIntervals.Add(newTerm(Engine, "[14.5, +inf)", tsiDerivatives, 
            music, null, 0)); 
 
         // Durations for the notes in score time 
         ArrayList scoreDurationIntervals = new ArrayList(); 
         scoreDurationIntervals.Add(newTerm(Engine, "[2, 3)", 
         tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[3, 4)", 



Modeling and Indexing Musical Files to allow Music Reuse 
Source Code MIKE 

 page 172 

         tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[4, 5)", 
         tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[5, 7)", 
         tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[7, 10)", 
         tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[10, 14)", 
            tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[14, 20)", 
         tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[20, 28)", 
         tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[28, 40)", 
         tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[40, 56)", 
         tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[56, 80)", 
         tsiDurationsScore, music, null, 0)); 
         scoreDurationIntervals.Add(newTerm(Engine, "[80, +inf)", 
         tsiDurationsScore, music, null, 0)); 
 
         // Domain creation 
         Artifact domain = Engine.DomainArtifact; 
         if(domain != null) { 
            // Relationships among 1st derivative value terms 
            for(int i = 0; i < derivativeIntervals.Count-1; i++) { 
               RSHP rshpT = new RSHP(domain, siAssociation, false, false, 
                  0, false, false, false, false, false, 0, 0); 
               KE keT1 = new KE(rshpT, derivativeIntervals[i] as Term, 
                  1, 0, 0, 0, 0); 
               KE keT2 = new KE(rshpT, derivativeIntervals[i+1] as  Term, 
                  2, 0, 0, 0, 0); 
            } 
            // Relationships among score time terms 
            for(int i = 0; i < scoreDurationIntervals.Count-1; i++) { 
               RSHP rshpT = new RSHP(domain, siAssociation, false, false, 0, 
                  false, false, false, false, false, 0, 0); 
               KE keT1 = new KE(rshpT, scoreDurationIntervals[i] as Term, 
                  1, 0, 0, 0, 0); 
               KE keT2 = new KE(rshpT, scoreDurationIntervals[i+1] as  Term, 
                  2, 0, 0, 0, 0); 
            } 
         }else{ 
            MessageBox.Show("There was an error creating the domain.", 
               "Domain Not Created", MessageBoxButtons.OK, MessageBoxIcon.Error); 
            return; 
         } 
         Engine.Save(false); 
         Engine.CalculateTermDistances( 
            CalculateDistancesType.CalculateOnlyOneLevel, false, domain); 
         MessageBox.Show("The domain was created successfully.", 
            "Domain Created", MessageBoxButtons.OK, MessageBoxIcon.Information); 
      } 
      // Auxiliar functions to create the domain with default parameters 
      protected SemanticItem newSemanticItem(CAKEEngine engine, string category, 
         int JC, int databaseCode) { 
         return new SemanticItem(engine, category, null, false, 180, false, 
            false, false, false, null, null, false, null, null, JC,databaseCode); 
      } 
      protected TermSemanticItem newTermSemanticItem(CAKEEngine engine, 
         string description, int JC, int databaseCode) { 
         return new TermSemanticItem(engine, description, 
            engine.TermSemanticItemFromJC(100), false, 1, 0, 0, 0.00001, 0.00001, 
            false, false, JC, databaseCode); 
      } 
      protected Term newTerm(CAKEEngine engine, string normalizedTermName, 
         TermSemanticItem kind, Language language, SemanticItem semanticItem, 
         int databaseCode) { 
         return new Term(engine, normalizedTermName, kind, language,semanticItem, 
            false, 0, 0, null, null, null, null, null, null, null, null, true, 
            0, 0, null, 0, 0, false, false, 0, 0, 0.00001, 0.00001,databaseCode); 
      } 
   } 
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} 

1.4 MIKEManagerMainForm 
using System; 
using System.Drawing; 
using System.Collections; 
using System.ComponentModel; 
using System.Windows.Forms; 
 
using WindowDockerLib; 
using CAKE.Managers; 
using CAKE; 
 
namespace MIKE { 
   public class MIKEManagerMainForm : DockableForm { 
      private System.ComponentModel.Container components = null; 
      private System.Windows.Forms.Button button1; 
 
      private readonly MIKEManager _manager; 
 
      public MIKEManagerMainForm(MIKEManager workingManager) : base() { 
         _manager = workingManager; 
         InitializeComponent(); 
      } 
      protected override void Dispose( bool disposing ) { 
         if( disposing ) { 
            if(components != null) { 
               components.Dispose(); 
            } 
         } 
         base.Dispose( disposing ); 
      } 
 
      #region Código generado por el Diseñador de Windows Forms 
      private void InitializeComponent() { 
         this.button1 = new System.Windows.Forms.Button(); 
         this.SuspendLayout(); 
 
         this.button1.Location = new System.Drawing.Point(8, 8); 
         this.button1.Name = "button1"; 
         this.button1.Size = new System.Drawing.Size(88, 32); 
         this.button1.TabIndex = 0; 
         this.button1.Text = "Create Domain"; 
         this.button1.Click += new System.EventHandler(this.button1_Click); 
 
         this.AutoScaleBaseSize = new System.Drawing.Size(5, 13); 
         this.ClientSize = new System.Drawing.Size(292, 273); 
         this.ControlBox = false; 
         this.Controls.Add(this.button1); 
         this.Name = "MIDIManagerMainForm"; 
         this.Text = "MIDIManagerMainForm"; 
         this.ResumeLayout(false); 
 
      } 
      #endregion 
 
      private void button1_Click(object sender, System.EventArgs e) { 
         if(_manager.IndexingManager != null) { 
            button1.Enabled = false; 
            _manager.CreateDomain(_manager.IndexingManager.Repository); 
            button1.Enabled = true; 
         }else{ 
            MessageBox.Show("You must be first connected to the repository", 
               "No Repository Open", MessageBoxButtons.OK, 
               MessageBoxIcon.Information); 
         } 
      } 
   } 
} 
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2 MIKE.Preprocessing 

2.1 IPreprocessor 
using System; 
using Toub.Sound.Midi; 
 
namespace MIKE.Preprocessing { 
   public interface IPreprocessor { 
      PreprocessedMidiSequence Preprocess(MidiSequence seq); 
   } 
} 

2.2 PreprocessedMidiSequence 
using System; 
using System.Collections; 
using System.IO; 
 
namespace MIKE.Preprocessing { 
   public class PreprocessedMidiSequence : IEnumerable{ 
 
      protected ArrayList _tracks; 
      protected int _division; 
 
      public int Count { 
         get { return this._tracks.Count; } 
      } 
      public int Division { 
         get { return _division; } 
      } 
      public PreprocessedMidiSequence(int division){ 
         _division = division; 
         this._tracks = new ArrayList(); 
      } 
 
      public void Add(PreprocessedMidiTrack trk) { 
         this._tracks.Add(trk); 
      } 
      public PreprocessedMidiTrack this[int index] { 
         get { return (PreprocessedMidiTrack)(this._tracks[index]); } 
         set { this._tracks[index] = value; } 
      } 
      public IEnumerator GetEnumerator() { 
         return this._tracks.GetEnumerator(); 
      } 
   } 
} 

2.3 PreprocessedMidiTrack 
using System; 
using System.Collections; 
using System.IO; 
 
namespace MIKE.Preprocessing { 
   public class PreprocessedMidiTrack : IEnumerable{ 
      protected ArrayList _notes; 
 
      public int Count { 
         get { return this._notes.Count; } 
      } 
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      public PreprocessedMidiTrack() { 
         this._notes = new ArrayList(); 
      } 
 
      public void Add(PreprocessedNote fig) { 
         this._notes.Add(fig); 
      } 
      internal void SortByOnset() { 
         this._notes.Sort(new PreprocessedNote.OnsetComparer()); 
      } 
      public PreprocessedNote this[int index] { 
         get { return (PreprocessedNote)(this._notes[index]); } 
         set { this._notes[index] = value; } 
      } 
      public virtual IEnumerator GetEnumerator() { 
         return _notes.GetEnumerator(); 
      } 
   } 
} 

2.4 PreprocessedMidiNote 
using System; 
using System.Collections; 
 
namespace MIKE.Preprocessing { 
   public class PreprocessedNote { 
      private long _onset; 
      private int _duration; 
      private byte _pitch; 
 
      public long Onset { 
         get { return this._onset; } 
      } 
      public int Duration { 
         get { return this._duration; } 
      } 
      public byte Pitch { 
         get { return this._pitch; } 
      } 
      public long Offset { 
         get { return this._onset + this._duration; } 
      } 
 
      public PreprocessedNote(long onset, int duration, byte pitch) { 
         this._onset = onset; 
         this._duration = duration; 
         this._pitch = pitch; 
      } 
      public static bool operator <= (PreprocessedNote n1, PreprocessedNote n2) { 
         return n1.Onset <= n2.Onset; 
      } 
      public static bool operator >= (PreprocessedNote n1, PreprocessedNote n2) { 
         return n1.Onset >= n2.Onset; 
      } 
 
      public bool Overlap(PreprocessedNote n2) { 
         return (this.Onset <= n2.Onset && n2.Onset < this.Offset) || 
            (n2.Onset <= this.Onset && this.Onset < n2.Offset); 
      } 
      public override string ToString() { 
         return this.Onset +"\t"+ this.Duration +"\t"+ this.Pitch; 
      } 
      public static string NoteName(byte note) { 
         // Get the octave and the pitch within the octave 
         int octave = note / 12; 
         int pitch = note % 12; 
 
         // Translate the pitch into a note name 
         string name; 
         switch(pitch) { 
            case 0: name = "C"; break; 
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            case 1: name = "C#"; break; 
            case 2: name = "D"; break; 
            case 3: name = "D#"; break; 
            case 4: name = "E"; break; 
            case 5: name = "F"; break; 
            case 6: name = "F#"; break; 
            case 7: name = "G"; break; 
            case 8: name = "G#"; break; 
            case 9: name = "A"; break; 
            case 10: name = "A#"; break; 
            case 11: name = "B"; break; 
            default: name = ""; break; 
         } 
         // Append the octave onto the name 
         return name + octave; 
      } 
      public class OnsetComparer : IComparer { 
         public int Compare(object x, object y) { 
            PreprocessedNote X = x as PreprocessedNote; 
            PreprocessedNote Y = y as PreprocessedNote; 
 
            // Compare the onset times 
            return X.Onset.CompareTo(Y.Onset); 
         } 
      } 
   } 
} 

2.5 MIKE.Preprocessing.Silly 

2.5.1 SillyPreprocessor 
using System; 
using Toub.Sound.Midi; 
using MIKE.Preprocessing; 
 
namespace MIKE.Preprocessing.Silly { 
   public class SillyPreprocessor: IPreprocessor { 
      public PreprocessedMidiSequence Preprocess(MidiSequence seq) { 
         if(seq.Format != 0 && seq.Format != 1) 
            throw new ArgumentException( 
               "SMF format "+ seq.Format +" not supported"); 
 
         PreprocessedMidiSequence pSeq = 
            new PreprocessedMidiSequence(seq.Division); 
         foreach(MidiTrack trk in seq) { 
            PreprocessedMidiTrack pTrk = new PreprocessedMidiTrack(); 
 
            long[] onsets = new long[128]; 
            long onset = 0; 
            foreach(MidiEvent e in trk.Events) { 
               onset += e.DeltaTime; 
               if(e is NoteVoiceMidiEvent) { 
                  NoteVoiceMidiEvent v = e as NoteVoiceMidiEvent; 
                  if(IsNoteOff(v)) { 
                     PreprocessedNote n = new PreprocessedNote( 
                        onsets[v.Note], (int)(onset - onsets[v.Note]), v.Note); 
                     pTrk.Add(n); 
                  } else if(IsNoteOn(v)) { 
                     onsets[v.Note] = onset;  
                  } 
               } 
            } 
            pTrk.SortByOnset(); 
            if(pTrk.Count != 0){ 
               pSeq.Add(pTrk); 
            } 
         } 
         return pSeq; 
      } 
      protected bool IsNoteOff(MidiEvent e) { 
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         return (e is NoteOff || (e is NoteOn && ((NoteOn)e).Velocity == 0)); 
      } 
      protected bool IsNoteOn(MidiEvent e) { 
         return (e is NoteOn); 
      } 
      protected void DeltasToTotals(MidiTrack trk) { 
         // Update all delta times to be total times 
         MidiEventCollection evs = trk.Events; 
         long total = evs[0].DeltaTime; 
         for(int i = 1; i < evs.Count; i++) { 
            total += evs[i].DeltaTime; 
            evs[i].DeltaTime = total; 
         } 
      } 
   } 
} 
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3 MIKE.VoiceSeparation 

3.1 IVoiceSeparator 
using System; 
using MIKE.Preprocessing; 
 
namespace MIKE.VoiceSeparation { 
   public interface IVoiceSeparator { 
      SeparatedSequence SeparateVoices(PreprocessedMidiSequence pSeq); 
   } 
} 

3.2 SeparatedSequence 
using System; 
using System.Collections; 
using System.IO; 
 
namespace MIKE.VoiceSeparation { 
   public class SeparatedSequence : IEnumerable{ 
 
      protected ArrayList _tracks; 
      protected int _division; 
 
      public int Count { 
         get { return this._tracks.Count; } 
      } 
      public int Division { 
         get { return _division; } 
      } 
      public SeparatedSequence(int division){ 
         _division = division; 
         this._tracks = new ArrayList(); 
      } 
 
      public void Add(SeparatedTrack sTrk) { 
         this._tracks.Add(sTrk); 
      } 
      public SeparatedTrack this[int index] { 
         get { return (SeparatedTrack)(this._tracks[index]); } 
         set { this._tracks[index] = value; } 
      } 
      public IEnumerator GetEnumerator() { 
         return this._tracks.GetEnumerator(); 
      } 
   } 
} 

3.3 SeparatedTrack 
using System; 
using System.Collections; 
using System.IO; 
 
namespace MIKE.VoiceSeparation { 
   public class SeparatedTrack : IEnumerable{ 
      protected ArrayList _voices; 
 
      public int Count { 
         get { return _voices.Count; } 
      } 
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      public SeparatedTrack() { 
         _voices = new ArrayList(); 
      } 
 
      public int Add(SeparatedVoice sVoice) { 
         return _voices.Add(sVoice); 
      } 
      public SeparatedVoice this[int index] { 
         get { return (SeparatedVoice)(_voices[index]); } 
         set { _voices[index] = value; } 
      } 
      public virtual IEnumerator GetEnumerator() { 
         return _voices.GetEnumerator(); 
      } 
   } 
} 

3.4 SeparatedVoice 
using System; 
using System.Collections; 
using System.IO; 
using MIKE.Preprocessing; 
 
namespace MIKE.VoiceSeparation { 
   public class SeparatedVoice : IEnumerable{ 
      protected ArrayList _notes; 
 
      public int Count { 
         get { return this._notes.Count; } 
      } 
 
      public SeparatedVoice() { 
         this._notes = new ArrayList(); 
      } 
 
      public void Add(SeparatedNote sNote) { 
         _notes.Add(sNote); 
         SortByOnset(); 
      } 
      public void Remove(SeparatedNote sNote) { 
         _notes.Remove(sNote); 
         SortByOnset(); 
      } 
      public int IndexOf(SeparatedNote sNote) { 
         return this._notes.IndexOf(sNote); 
      } 
      internal void SortByOnset() { 
         this._notes.Sort(new MIKE.VoiceSeparation.OnsetComparer()); 
      } 
      public SeparatedNote this[int index] { 
         get { return (SeparatedNote)(this._notes[index]); } 
         set { this._notes[index] = value; } 
      } 
      public virtual IEnumerator GetEnumerator() { 
         return _notes.GetEnumerator(); 
      } 
   } 
} 

3.5 SeparatedNote 
using System; 
using System.Collections; 
using MIKE.Preprocessing; 
 
namespace MIKE.VoiceSeparation { 
   public interface SeparatedNote { 
      long Onset { 
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         get; 
      } 
      int Duration { 
         get; 
      } 
      long Offset { 
         get; 
      } 
      bool IsChord { 
         get; 
      } 
   } 
  
   public class OnsetComparer : IComparer { 
      public int Compare(object x, object y) { 
         SeparatedNote X = x as SeparatedNote; 
         SeparatedNote Y = y as SeparatedNote; 
         // Compare the onset times 
         return X.Onset.CompareTo(Y.Onset); 
      } 
   } 
} 

3.6 SeparatedSingleNote 
using System; 
using System.Collections; 
using MIKE.Preprocessing; 
 
namespace MIKE.VoiceSeparation { 
   public class SeparatedSingleNote : SeparatedNote{ 
      private long _onset; 
      private int _duration; 
      private byte _pitch; 
 
      public long Onset { 
         get { return _onset; } 
      } 
      public int Duration { 
         get { return _duration; } 
      } 
      public byte Pitch { 
         get { return _pitch; } 
      } 
      public long Offset { 
         get { return _onset + _duration; } 
      } 
      public bool IsChord { 
         get { return false; } 
      } 
 
      public SeparatedSingleNote(long onset, int duration, byte pitch) { 
         this._onset = onset; 
         this._duration = duration; 
         this._pitch = pitch; 
      } 
   } 
} 

3.7 SeparatedChord 
using System; 
using System.Collections; 
using System.IO; 
using MIKE.Preprocessing; 
 
namespace MIKE.VoiceSeparation { 
   public class SeparatedChord : SeparatedNote, IEnumerable{ 
      protected ArrayList _notes; 
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      private long _onset; 
      private int _duration; 
 
      public long Onset { 
         get { return this[0].Onset; } 
      } 
      public int Duration { 
         get { return (int)(this[Count-1].Offset-this[0].Onset); } 
      } 
      public long Offset { 
         get { return this[Count-1].Offset; } 
      } 
      public bool IsChord { 
         get { return true; } 
      } 
 
      public int Count { 
         get { return _notes.Count; } 
      } 
 
      public SeparatedChord() { 
         _notes = new ArrayList(); 
      } 
 
      public void Add(SeparatedSingleNote sNote) { 
         _notes.Add(sNote); 
         SortByOnset(); 
      } 
      public void Remove(SeparatedSingleNote sNote) { 
         _notes.Remove(sNote); 
         SortByOnset(); 
      } 
      protected void SortByOnset() { 
         _notes.Sort(new MIKE.VoiceSeparation.OnsetComparer()); 
      } 
      public SeparatedSingleNote this[int index] { 
         get { return (SeparatedSingleNote)(_notes[index]); } 
         set { _notes[index] = value; } 
      } 
      public virtual IEnumerator GetEnumerator() { 
         return _notes.GetEnumerator(); 
      } 
   } 
} 

3.8 MIKE.VoiceSeparation.KilianHoos 

3.8.1 KilianHoosVoiceSeparator 
using System; 
using System.Collections; 
using MIKE.Preprocessing; 
 
namespace MIKE.VoiceSeparation.KilianHoos { 
 
   public class KilianHoosVoiceSeparator : IVoiceSeparator { 
 
      protected const int N_VOICES = 2; 
      protected const double K_pitch = 0.3; 
      protected const double K_gap = 0.8; 
      protected const double K_chord = 0.3; 
      protected const double K_overlap = 0.1; 
 
      public SeparatedSequence SeparateVoices(PreprocessedMidiSequence pSeq) { 
         return null; 
      } 
 
      public SeparatedSequence SeparateVoices(PreprocessedMidiSequence pSeq) { 
         ArrayList Ss = new ArrayList(); 
         foreach(PreprocessedMidiTrack pTrk in pSeq) { 
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            if(pTrk.Count != 0){ 
               ArrayList B = CalculateVectorB(pTrk); 
               ArrayList Y = CalculateSlicesY(B, pTrk); 
               ArrayList S = new ArrayList(); 
               foreach(ArrayList y_i in Y) { 
                  ArrayList S_i = SeparateSlice(y_i, S); 
                  S.Add(S_i); 
                  // Remove overlaps and regularize chords 
               } 
               Ss.Add(S); 
            } 
         } 
         return Ss; 
      } 
 
      #region Main Algorithm's Procedures 
 
      protected ArrayList SeparateSlice(ArrayList y_i, ArrayList S) { 
         ArrayList S_i = InitializeS_i(y_i); 
         ArrayList S_i_opt = S_i; 
         int noImpr = 0; 
 
         Random r = new Random(); 
         while(noImpr < y_i.Count*N_VOICES*3) { 
            ArrayList neighbors = CalculateNeighbors(S_i); 
            if(r.Next(10) <= 8) { 
               if(neighbors.Count != 0){ 
                  ArrayList S_min = neighbors[0] as ArrayList; 
                  foreach(ArrayList S_j in neighbors) { 
                     if(C(S_j, S) < C(S_min, S)){ 
                        S_min = S_j; 
                     } 
                  } 
                  S_i = S_min; 
                  Console.Write("  Minima con C="+C(S_i, S)+": "); 
                  foreach(KilianHoosSingleNote m in S_i) { 
                     Console.Write(m+", "); 
                  } 
                  Console.WriteLine(); 
               }else{ 
                  noImpr = Int32.MaxValue-1; 
               } 
            }else{ 
               if(neighbors.Count != 0){ 
                  S_i = neighbors[r.Next(neighbors.Count-1)] as ArrayList; 
                  Console.Write("  Random con C="+C(S_i, S)+": "); 
                  foreach(KilianHoosSingleNote m in S_i) { 
                     Console.Write(m+", "); 
                  } 
                  Console.WriteLine(); 
               }else{ 
                  noImpr = Int32.MaxValue-1; 
               } 
            } 
            if(C(S_i, S) < C(S_i_opt, S)) { 
               S_i_opt = S_i; 
               noImpr = 0; 
            }else{ 
               noImpr++; 
            } 
         } 
         return S_i_opt; 
      } 
      private ArrayList InitializeS_i(ArrayList y_i) { 
         ArrayList S_i = new ArrayList(); 
         ArrayList temp = new ArrayList(); 
         // Add them to a temporal list, without chords 
         foreach(KilianHoosSingleNote m in y_i) { 
            KilianHoosSingleNote m2 = m.Clone(); 
            m2.Voice = 0; 
            temp.Add(m2); 
         } 
         // Group into chords when possible 
         KilianHoosNote last = null; 
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         foreach(KilianHoosSingleNote m in temp) { 
            if(last != null && m.Onset == last.Onset) { 
               // If has the same onset and duration as another one, 
               // group them into a chord 
               if(!last.IsChord) { 
                  KilianHoosChord c = new KilianHoosChord(); 
                  c.Add(last as KilianHoosSingleNote); 
                  last = c; 
               } 
               (last as KilianHoosChord).Add(m); 
            } 
            S_i.Add(m); 
            last = m; 
         } 
         return S_i; 
      } 
      private ArrayList CalculateNeighbors(ArrayList S_i) { 
         ArrayList neighbors = new ArrayList(); 
         // Create neighbors by changing voices note by note 
         for(int i = 0; i < S_i.Count; i++){ 
            KilianHoosSingleNote m_i = S_i[i] as KilianHoosSingleNote; 
            // Create a neighbor for each of the remaining voices of note m_i 
            for(int v = m_i.Voice+1; v < N_VOICES; v++) { 
               ArrayList neighbor = new ArrayList(); 
               // Add previous notes to the neighbor maintaining voice 
               // and with no chord 
               for(int j = 0; j < i; j++) { 
                  KilianHoosSingleNote m_j = S_i[j] as KilianHoosSingleNote; 
                  KilianHoosSingleNote m_j_2 = m_j.Clone(); 
                  m_j_2.Voice = m_j.Voice; 
                  neighbor.Add(m_j_2); 
               } 
               // Add the current note with another voice 
               KilianHoosSingleNote m_i_2 = m_i.Clone(); 
               m_i_2.Voice = v; 
               neighbor.Add(m_i_2); 
               // Add following notes to the neighbor maintaining voice 
               // and with no chord 
               for(int j = i+1; j < S_i.Count; j++){ 
                  KilianHoosSingleNote m_j = S_i[j] as KilianHoosSingleNote; 
                  KilianHoosSingleNote m_j_2 = m_j.Clone(); 
                  m_j_2.Voice = m_j.Voice; 
                  neighbor.Add(m_j_2); 
               } 
               // Group notes with same onset and voice into chords 
               ArrayList grouped = new ArrayList(); 
               for(int j = 0; j < neighbor.Count; j++) { 
                  if(!grouped.Contains(j as Object)) { 
                     KilianHoosSingleNote m_j = neighbor[j] 
                        as KilianHoosSingleNote; 
                     // Check the following notes 
                     for(int k = j+1; k < neighbor.Count; k++) { 
                        KilianHoosSingleNote m_k = neighbor[k] 
                           as KilianHoosSingleNote; 
                        if(m_j.Voice == m_k.Voice && m_j.Onset == m_k.Onset){ 
                           if(!m_j.IsChord){ 
                              m_j.Chord = new ArrayList(); 
                           } 
                           m_k.Chord = m_j.Chord; 
                           grouped.Add(k as object); 
                           grouped.Add(j as object); 
                        } 
                     } 
                  } 
               } 
               neighbors.Add(neighbor); 
            } 
         } 
         return neighbors; 
      } 
      protected double C(ArrayList S_i, ArrayList S) { 
         double p = K_pitch*C_pitch(S_i, S); 
         double g = K_gap*C_gap(S_i, S); 
         double c = K_chord*C_chord(S_i); 
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         double o = K_overlap*C_overlap(S_i, S); 
         /*double r = p + (1-p)*g; 
         r = r + (1-r)*c; 
         r = r + (1-r)*o; 
         return r;*/ 
         return p+g+c+o; 
      } 
 
      #endregion 
 
      #region Input Splitting 
 
      protected ArrayList CalculateVectorB(PreprocessedMidiTrack pTrk) { 
         ArrayList B = new ArrayList(); 
         // First index is the first note's 
         B.Add((object)0); 
         for(int i = 1; i < pTrk.Count; i++) { 
            int j = (int)B[B.Count-1]; 
            // Check that overlaps with all previous notes 
            // within the current slice 
            while(j < i && pTrk[i].Overlap(pTrk[j])) { 
               j++; 
            } 
            // If not, start new slice with that index 
            if(i != j) { 
               B.Add(i as object); 
            } 
         } 
         return B; 
      } 
      protected ArrayList CalculateSlicesY(ArrayList B, 
         PreprocessedMidiTrack pTrk) { 
         ArrayList Y = new ArrayList(); 
         ArrayList y = null; 
         for(int i = 0, b = 0; i < pTrk.Count; i++) { 
            if(B.GetRange(b, B.Count-b).Contains(i as object)) { 
               // If the note index is beyond the current slice, 
               // create a new one 
               y = new ArrayList(); 
               Y.Add(y); 
               y.Add(new KilianHoosSingleNote(pTrk[i])); 
               b++; 
            }else{ 
               // If not, add it to the current slice 
               y.Add(new KilianHoosSingleNote(pTrk[i])); 
            } 
         } 
         return Y; 
      } 
 
      #endregion 
 
      #region Pitch Distance Penalty 
 
      protected byte cPitch(KilianHoosSingleNote m_j, byte p_l) { 
         return cPitchNote(m_j, p_l).Pitch; 
      } 
      private KilianHoosSingleNote cPitchNote(KilianHoosSingleNote m_j,byte p_l){ 
         if(!m_j.IsChord) { 
            // If m_j does not belong to a chord, return itself 
            return m_j; 
         }else{ 
            // If not, return the note within the chord that is 
            // closest in pitch to p_l 
            KilianHoosSingleNote m_c = m_j; 
            foreach(KilianHoosSingleNote m_k in m_j.Chord) { 
               if(Math.Abs(m_k.Pitch - p_l) < Math.Abs(m_c.Pitch - p_l)) { 
                  m_c = m_k; 
               } 
            } 
            return m_c; 
         } 
      } 
      protected KilianHoosSingleNote lOnset(int v, ArrayList S) { 
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         KilianHoosSingleNote m_latest = null; 
         int i = S.Count-1; 
         // Search within the previous separations 
         while(i >= 0 && m_latest == null){ 
            ArrayList S_i = S[i] as ArrayList; 
            int j = S_i.Count-1; 
            // Search within the notes of each separation 
            while(j >= 0 && m_latest == null){ 
               KilianHoosSingleNote m_j = S_i[j] as KilianHoosSingleNote; 
               if(m_j.Voice == v) { 
                  m_latest = m_j; 
               } 
               j--; 
            } 
            i--; 
         } 
         return m_latest; 
      } 
      protected double C_pitch(ArrayList S_i, ArrayList S, 
         KilianHoosSingleNote m_0) { 
         // Take the last note in S with voice v 
         KilianHoosSingleNote prevNote = lOnset(m_0.Voice, S); 
         double pvD = 0; 
         if(prevNote == null) { 
            // m_0 starts a new voice 
            prevNote = m_0; 
            pvD = 0.3; 
         } 
         foreach(KilianHoosSingleNote m_j in S_i) { 
            if(m_j.Voice == m_0.Voice) { 
               double pDist = (double)Math.Abs(cPitch(prevNote, m_j.Pitch) - 
                  m_j.Pitch) / 128; 
               pvD += (1-pvD)*pDist; 
               if(!prevNote.IsChord || !m_j.IsChord || 
                  !prevNote.Chord.Equals(m_j.Chord)) { 
                  prevNote = m_j; 
               } 
            } 
         } 
         return pvD; 
      } 
      protected double C_pitch(ArrayList S_i, ArrayList S) { 
         double pD = 0; 
         ArrayList usedVoices = new ArrayList(); 
         foreach(KilianHoosSingleNote m_j in S_i) { 
            if(!usedVoices.Contains(m_j.Voice)){ 
               usedVoices.Add(m_j.Voice as object); 
               pD += (1-pD)*C_pitch(S_i, S, m_j); 
            } 
         } 
         return pD; 
      } 
      #endregion 
  
      #region Gap Distance Penalty 
 
      protected double cGap(KilianHoosSingleNote m_g, ArrayList S) { 
         if(lOnset(m_g.Voice, S) == null) { 
            // m_g starts a new voice 
            return 0.1; // Penalize accordingly 
         } 
         ArrayList calculatedVoices = new ArrayList(); 
         KilianHoosSingleNote m_max = m_g; 
         KilianHoosSingleNote m_max_v = null; 
         int i = S.Count-1; 
         // Search within the previous separations 
         while(i >= 0 && calculatedVoices.Count != N_VOICES){ 
            ArrayList S_i = S[i] as ArrayList; 
            int j = S_i.Count-1; 
            // Search within the notes of each separation 
            while(j >= 0 && calculatedVoices.Count != N_VOICES){ 
               KilianHoosSingleNote m_j = S_i[j] as KilianHoosSingleNote; 
               if(!calculatedVoices.Contains(m_j.Voice as object)) { 
                  calculatedVoices.Add(m_j.Voice as object); 
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                  if(m_j.Voice == m_g.Voice) { 
                     m_max_v = m_j; 
                  } 
                  if(m_max.Offset > m_j.Offset) { 
                     m_max = m_j; 
                  } 
               } 
               j--; 
            } 
            i--; 
         } 
         if(m_g.Onset != m_max.Offset){ 
            return (m_g.Onset - m_max_v.Offset) / (m_g.Onset - m_max.Offset); 
         }else{ 
            return 0; 
         } 
      } 
      protected double C_gap(ArrayList S_i, ArrayList S) { 
         double gD = 0; 
         int cNotes = 0; 
         ArrayList usedVoices = new ArrayList(); 
         foreach(KilianHoosSingleNote m_j in S_i) { 
            if(!usedVoices.Contains(m_j.Voice)){ 
               usedVoices.Add(m_j.Voice as object); 
               gD += cGap(m_j, S); 
               cNotes++; 
            } 
         } 
         gD /= cNotes; 
         return gD; 
      } 
 
      #endregion 
 
      #region Chord Distance Penalty 
 
      protected double C_chord(ArrayList S_i) { 
         double cD = 0; 
         ArrayList usedChords = new ArrayList(); 
         foreach(KilianHoosSingleNote m in S_i) { 
            if(m.IsChord && !usedChords.Contains(m.Chord)){ 
               usedChords.Add(m.Chord); 
               double p = pDuration(m.Chord) + 
                  (1-pDuration(m.Chord))*pRange(m.Chord); 
               p += (1-p)*pOnset(m.Chord); 
               cD += (1-cD)*p; 
            } 
         } 
         return cD; 
      } 
      protected double pRange(ArrayList c) { 
         KilianHoosSingleNote p_highest = c[0] as KilianHoosSingleNote; 
         KilianHoosSingleNote p_lowest = c[0] as KilianHoosSingleNote; 
         foreach(KilianHoosSingleNote m_i in c) { 
            if(m_i.Pitch > p_highest.Pitch) { 
               p_highest = m_i; 
            }else if(m_i.Pitch < p_lowest.Pitch) { 
               p_lowest = m_i; 
            } 
         } 
         double r = Math.Min((double)(p_highest.Pitch - p_lowest.Pitch) / 24, 1); 
         return r; 
      } 
      protected double pDuration(ArrayList c) { 
         KilianHoosSingleNote d_longest = c[0] as KilianHoosSingleNote; 
         KilianHoosSingleNote d_shortest = c[0] as KilianHoosSingleNote; 
         foreach(KilianHoosSingleNote m_i in c) { 
            if(m_i.Duration > d_longest.Duration) { 
               d_longest = m_i; 
            }else if(m_i.Duration< d_shortest.Duration) { 
               d_shortest = m_i; 
            } 
         } 
         double r = 1 - (double)(d_longest.Duration / d_shortest.Duration); 
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         return r; 
      } 
      protected double pOnset(ArrayList c) { 
         KilianHoosSingleNote o_earliest = c[0] as KilianHoosSingleNote; 
         KilianHoosSingleNote o_latest = c[0] as KilianHoosSingleNote; 
         KilianHoosSingleNote d_longest = c[0] as KilianHoosSingleNote; 
         foreach(KilianHoosSingleNote m_i in c) { 
            if(m_i.Onset > o_latest.Onset) { 
               o_latest = m_i; 
            }else if(m_i.Onset < o_earliest.Onset) { 
               o_earliest = m_i; 
            } 
            if(m_i.Duration > d_longest.Duration) { 
               d_longest = m_i; 
            } 
         } 
         double r = (double)(o_latest.Onset - o_earliest.Onset) / 
            d_longest.Duration; 
         return r; 
      } 
      #endregion 
 
      #region Overlap Distance Penalty 
 
      protected double C_overlap(ArrayList S_i, ArrayList S) { 
         double oD = 0; 
         ArrayList usedVoices = new ArrayList(); 
         foreach(KilianHoosSingleNote m in S_i) { 
            if(!usedVoices.Contains(m.Voice as object)){ 
               usedVoices.Add(m.Voice as object); 
               double oDist = C_overlap(S_i, S, m); 
               oD += (1-oD)*oDist; 
            } 
         } 
         return oD; 
      } 
      protected double C_overlap(ArrayList S_i, ArrayList S, 
         KilianHoosSingleNote m_0) { 
         KilianHoosSingleNote prevNote = lOnset(m_0.Voice, S); 
         if(prevNote == null) { 
            // m_0 starts the voice 
            prevNote = m_0; 
         } 
         double ovD = 0; 
         foreach(KilianHoosSingleNote m_j in S_i) { 
            if(m_j.Voice == m_0.Voice) { 
               double oDist = cOverlap(prevNote, m_j); 
               ovD += (1-ovD)*oDist; 
               if(!prevNote.IsChord || !m_j.IsChord || 
                  !prevNote.Chord.Equals(m_j.Chord)) { 
                  prevNote = m_j; 
               } 
            } 
         } 
         return ovD; 
      } 
      protected double cOverlap(KilianHoosSingleNote m_j, 
         KilianHoosSingleNote m_k) { 
         if(m_j.Onset != m_k.Onset && m_j.Overlap(m_k)) { 
            return 1-((double)(m_k.Onset-m_j.Onset)/m_j.Duration); 
         }else{ 
            return 0; 
         } 
      } 
 
      #endregion 
   } 
} 

3.8.2 KilianHoosNote 
using System; 
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namespace MIKE.VoiceSeparation.KilianHoos { 
   public interface KilianHoosNote { 
      long Onset { 
         get; 
      } 
      bool IsChord { 
         get; 
      } 
      int Voice { 
         get; 
         set; 
      } 
   } 
} 

3.8.3 KilianHoosSingleNote 
using System; 
using System.Collections; 
using MIKE.Preprocessing; 
 
namespace MIKE.VoiceSeparation.KilianHoos { 
   public class KilianHoosSingleNote : PreprocessedNote, KilianHoosNote { 
      private ArrayList _chord; 
      private int _voice; 
 
      public ArrayList Chord { 
         set { 
            if(this.IsChord){ 
               this._chord.Remove(this); 
            } 
            this._chord = value; 
            if(this.IsChord){ 
               this.Chord.Add(this); 
            } 
         } 
         get { return this._chord; } 
      } 
      public bool IsChord { 
         get { return this.Chord != null; } 
      } 
      public int Voice { 
         set { this._voice = value; } 
         get { return this._voice; } 
      } 
      public KilianHoosSingleNote(PreprocessedNote pNote) : 
         base(pNote.Onset, pNote.Duration, pNote.Pitch) { 
         this._chord = null; 
         this._voice = -1; 
      } 
      protected KilianHoosSingleNote(long onset, int duration, byte pitch) : 
         base(onset, duration, pitch) { 
         this._chord = null; 
         this._voice = -1; 
      } 
      public KilianHoosSingleNote Clone() { 
         KilianHoosSingleNote m = new KilianHoosSingleNote( 
            this.Onset, this.Duration, this.Pitch); 
         return m; 
      } 
   } 
} 

3.8.4 KilianHoosChord 
using System; 
using System.Collections; 
 
namespace MIKE.VoiceSeparation.KilianHoos { 
   public class KilianHoosChord : KilianHoosNote, IEnumerable { 
      private int _voice; 
      public int Voice { 
         get{ return this._voice; } 
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         set{ this._voice = value; } 
      } 
      public long Onset { 
         get { return this[0].Onset; } 
      } 
      public bool IsChord { 
         get { return true; } 
      } 
      private ArrayList _notes; 
 
      public KilianHoosChord() { 
         this._notes = new ArrayList(); 
      } 
      public void Add(KilianHoosSingleNote m){ 
         this._notes.Add(m); 
      } 
      public KilianHoosSingleNote this[int index] { 
         get { return this._notes[index] as KilianHoosSingleNote; } 
      } 
      public IEnumerator GetEnumerator() { 
         return this._notes.GetEnumerator(); 
      } 
   } 
} 

3.9 MIKE.VoiceSeparation.Silly 

3.9.1 SillyVoiceSeparator 
using System; 
using System.Collections; 
using MIKE.Preprocessing; 
using MIKE.VoiceSeparation; 
 
namespace MIKE.VoiceSeparation.Silly { 
   public class SillySeparator : IVoiceSeparator { 
 
      public SeparatedSequence SeparateVoices(PreprocessedMidiSequence pSeq) { 
         SeparatedSequence sSeq = new SeparatedSequence(pSeq.Division); 
         SeparatedTrack sTrk = new SeparatedTrack(); 
         foreach(PreprocessedMidiTrack pVoice in pSeq) { 
            SeparatedVoice sVoice = new SeparatedVoice(); 
 
            SeparatedNote prev = null; 
            foreach(PreprocessedNote m in pVoice){ 
               SeparatedSingleNote ssn = new SeparatedSingleNote( 
                  m.Onset, m.Duration, m.Pitch); 
               if(prev != null && m.Onset == prev.Onset){ 
                  if(!prev.IsChord){ 
                     SeparatedChord c = new SeparatedChord(); 
                     c.Add(prev as SeparatedSingleNote); 
                     c.Add(ssn); 
                     prev = c; 
                  }else{ 
                     (prev as SeparatedChord).Add(ssn); 
                  } 
               }else{ 
                  if(prev != null){ 
                     sVoice.Add(prev); 
                  } 
                  prev = ssn; 
               } 
            } 
            sVoice.Add(prev); 
            sTrk.Add(sVoice); 
         } 
         sSeq.Add(sTrk); 
         return sSeq; 
      } 
   } 
} 
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4 MIKE.Quantization 

4.1 IQuantizator 
using System; 
using MIKE.VoiceSeparation; 
 
namespace MIKE.Quantization { 
   public interface IQuantizator { 
      QuantizedSequence Quantize(SeparatedSequence sSeq); 
   } 
} 

4.2 QuantizedSequence 
using System; 
using System.Collections; 
using System.IO; 
using MIKE.VoiceSeparation; 
 
namespace MIKE.Quantization { 
   public class QuantizedSequence : IEnumerable{ 
 
      protected ArrayList _staffs; 
 
      public int Count { 
         get { return _staffs.Count; } 
      } 
 
      public QuantizedSequence(){ 
         _staffs = new ArrayList(); 
      } 
 
      public void Add(QuantizedStaff qStaff) { 
         _staffs.Add(qStaff); 
      } 
      public QuantizedStaff this[int index] { 
         get { return (QuantizedStaff)(_staffs[index]); } 
         set { _staffs[index] = value; } 
      } 
      public IEnumerator GetEnumerator() { 
         return _staffs.GetEnumerator(); 
      } 
   } 
} 

4.3 QuantizedStaff 
using System; 
using System.Collections; 
using System.Drawing; 
 
namespace MIKE.Quantization { 
   public class QuantizedStaff : IEnumerable { 
      protected ArrayList _voices; 
 
      public int Count { 
         get { return _voices.Count; } 
      } 
      public QuantizedStaff() { 
         _voices = new ArrayList(); 
      } 
      public void Add(QuantizedVoice voice) { 
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         _voices.Add(voice); 
      } 
      public QuantizedVoice this[int index] { 
         get { return _voices[index] as QuantizedVoice; } 
      } 
      public IEnumerator GetEnumerator() { 
         return _voices.GetEnumerator(); 
      } 
 
      public void Paint(Graphics g, int s, int offset) { 
         foreach(QuantizedVoice v in this) { 
            foreach(QuantizedNote n in v) { 
               if(n.IsChord) { 
                  foreach(QuantizedSingleNote sn in (n as QuantizedChord)) { 
                     g.DrawRectangle(new Pen(Color.Black, 1), 
                        sn.Onset*s*-1, offset-sn.Pitch*s-1, 2, 2); 
                  } 
               }else{ 
                  g.DrawRectangle(new Pen(Color.Black, 1), 
                     ((QuantizedSingleNote)n).Onset*s-1, 
                     offset-((QuantizedSingleNote)n).Pitch*s-1, 2, 2); 
               } 
            } 
         } 
      } 
   } 
} 

4.4 QuantizedVoice 
using System; 
using System.Collections; 
 
namespace MIKE.Quantization { 
   public class QuantizedVoice : IEnumerable { 
      protected ArrayList _notes; 
 
      public int Count { 
         get { return _notes.Count; } 
      } 
      public QuantizedVoice() { 
         _notes = new ArrayList(); 
      } 
      public void Add(QuantizedNote note) { 
         _notes.Add(note); 
      } 
      public QuantizedNote this[int index] { 
         get { return _notes[index] as QuantizedNote; } 
      } 
      public IEnumerator GetEnumerator() { 
         return _notes.GetEnumerator(); 
      } 
   } 
} 

4.5 QuantizedDurations 
using System; 
 
namespace MIKE.Quantization { 
   public enum QuantizedDurations { 
      TupletDemisemiquaver = 2, 
      Demisemiquaver = 3, 
      TupletSemiquaver = 4, 
      Semiquaver = 6, 
      TupletQuaver = 8, 
      Quaver = 12, 
      TupletCrotchet = 16, 
      Crotchet = 24, 
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      TupletMinim = 32, 
      Minim = 48, 
      TupletSemibreve = 64, 
      Semibreve = 96, 
   } 
} 

4.6 QuantizedNote 
using System; 
 
namespace MIKE.Quantization { 
   public interface QuantizedNote { 
      int Onset { 
         get; 
      } 
      bool IsChord { 
         get; 
      } 
   } 
} 

4.7 QuantizedSingleNote 
using System; 
 
namespace MIKE.Quantization { 
   public class QuantizedSingleNote : QuantizedNote { 
      protected byte _pitch; 
      protected int _onset; 
      protected int _duration; 
 
      public byte Pitch { 
         get { return _pitch; } 
      } 
      public int Onset { 
         get { return _onset; } 
      } 
      public bool IsChord { 
         get { return false; } 
      } 
      public QuantizedSingleNote(byte pitch, int onset, int duration) { 
         _pitch = pitch; 
         _onset = onset; 
         _duration = duration; 
      } 
   } 
} 

4.8 QuantizedChord 
using System; 
using System.Collections; 
 
namespace MIKE.Quantization { 
   public class QuantizedChord : QuantizedNote, IEnumerable { 
      protected ArrayList _notes; 
 
      public int Onset { 
         get { return ((QuantizedSingleNote)_notes[0]).Onset; } 
      } 
      public bool IsChord { 
         get { return true; } 
      } 
      public int Count { 
         get { return _notes.Count; } 
      } 
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      public QuantizedChord(){ 
         _notes = new ArrayList(); 
      } 
      public void Add(QuantizedSingleNote note) { 
         _notes.Add(note); 
      } 
      public QuantizedSingleNote this[int index] { 
         get { return _notes[index] as QuantizedSingleNote; } 
      } 
      public IEnumerator GetEnumerator() { 
         return _notes.GetEnumerator(); 
      } 
   } 
} 

4.9 MIKE.Quantization.Silly 

4.9.1 SillyQuantizator 
using System; 
using MIKE.VoiceSeparation; 
 
namespace MIKE.Quantization.Silly { 
   public class SillyQuantizator : IQuantizator { 
      public QuantizedSequence Quantize(SeparatedSequence sSeq) { 
         int division = sSeq.Division; 
 
         QuantizedSequence qSeq = new QuantizedSequence(); 
         foreach(SeparatedTrack sTrack in sSeq){ 
            QuantizedStaff qStaff = new QuantizedStaff(); 
            foreach(SeparatedVoice sVoice in sTrack){ 
               QuantizedVoice qVoice = new QuantizedVoice(); 
               foreach(SeparatedNote sNote in sVoice){ 
                  if(sNote.IsChord) { 
                     QuantizedChord qChord = new QuantizedChord(); 
                     foreach(SeparatedSingleNote m in (sNote as SeparatedChord)){ 
                        int onset = ((int)(m.Onset* 
                           (int)QuantizedDurations.Crotchet)/division); 
                        int duration = ((int)(m.Duration* 
                           (int)QuantizedDurations.Crotchet)/division); 
                        QuantizedSingleNote qNote = new QuantizedSingleNote( 
                           m.Pitch, onset, duration); 
                        qChord.Add(qNote); 
                     } 
                     qVoice.Add(qChord); 
                  }else{ 
                     SeparatedSingleNote m = sNote as SeparatedSingleNote;  
                     int onset = ((int)(m.Onset* 
                        (int)QuantizedDurations.Crotchet)/division); 
                     int duration = ((int)(m.Duration* 
                        (int)QuantizedDurations.Crotchet)/division); 
                     QuantizedSingleNote qNote = new QuantizedSingleNote( 
                        m.Pitch, onset, duration); 
                     qVoice.Add(qNote); 
                  } 
               } 
               qStaff.Add(qVoice); 
            } 
            qSeq.Add(qStaff); 
         } 
         return qSeq; 
      } 
   } 
} 



Modeling and Indexing Musical Files to allow Music Reuse 
Source Code MIKE.Interpolation 

 page 194 

5 MIKE.Interpolation 

5.1 IInterpolator 
using System; 
using MIKE.Quantization; 
 
namespace MIKE.Interpolation { 
   public interface IInterpolator { 
      InterpolatedSequence Interpolate(QuantizedSequence qSeq); 
   } 
} 

5.2 InterpolatedSequence 
using System; 
using System.Collections; 
using System.IO; 
using MIKE.Quantization; 
 
namespace MIKE.Interpolation { 
   public class InterpolatedSequence : IEnumerable{ 
 
      protected ArrayList _staffs; 
 
      public int Count { 
         get { return _staffs.Count; } 
      } 
 
      public InterpolatedSequence(){ 
         _staffs = new ArrayList(); 
      } 
 
      public void Add(InterpolatedStaff iStaff) { 
         _staffs.Add(iStaff); 
      } 
      public InterpolatedStaff this[int index] { 
         get { return (InterpolatedStaff)(_staffs[index]); } 
         set { _staffs[index] = value; } 
      } 
      public IEnumerator GetEnumerator() { 
         return _staffs.GetEnumerator(); 
      } 
   } 
} 

5.3 InterpolatedStaff 
using System; 
using System.Collections; 
using System.Drawing; 
 
namespace MIKE.Interpolation { 
   public class InterpolatedStaff : IEnumerable { 
      protected ArrayList _voices; 
 
      public int Count { 
         get { return _voices.Count; } 
      } 
      public InterpolatedStaff() { 
         _voices = new ArrayList(); 
      } 
      public void Add(InterpolatedVoice voice) { 
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         _voices.Add(voice); 
      } 
      public InterpolatedVoice this[int index] { 
         get { return _voices[index] as InterpolatedVoice; } 
      } 
      public IEnumerator GetEnumerator() { 
         return _voices.GetEnumerator(); 
      } 
      public ArrayList GetDerivativesAt(int scoreTime) { 
         ArrayList l = new ArrayList(); 
         foreach(InterpolatedVoice iVoice in _voices) { 
            l.Add(iVoice.GetDerivativesAt(scoreTime)); 
         } 
         return l; 
      } 
      public void Paint(Graphics g, int ss, int offset) {  
         Pen[] pens = new Pen[]{ new Pen(Color.Blue, 1), 
                                  new Pen(Color.Green, 1), 
                                  new Pen(Color.Red, 1)}; 
         float s = 6f; 
         offset = 1000; 
         g.DrawLine(new Pen(Color.Gray, 1), 0, offset/2, 3000, offset/2); 
         g.DrawLine(new Pen(Color.Gray, 1), 0, offset, 3000, offset); 
 
         int e=0; 
         foreach(InterpolatedVoice iVoice in _voices){ 
            PointF dp_1 = new PointF(0, 0); 
            PointF dp_2 = new PointF(0, 0); 
            foreach(InterpolatedSpan iSpan in iVoice) { 
               foreach(Polynomial poly in iSpan) { 
                  double d = 1f/20; 
                  for(int j = 0; j <= 20; j++){ 
                     float x = (float)(iSpan.ScoreOnset+iSpan.ScoreDuration*j*d); 
                     float dy = (float)(poly.Evaluate(j*d)); 
                     dp_2 = new PointF(x*s, offset/2-dy*s*2); 
                     g.DrawLine(pens[e%pens.Length], dp_1, dp_2); 
                     dp_1 = dp_2; 
                     if(j%5==0) 
                        g.DrawString(Math.Round(dy, 3)+"", 
                        new Font("Arial Narrow", 6), Brushes.Black, dp_2); 
                  } 
               } 
               e++; 
            } 
         } 
      } 
   } 
} 

5.4 InterpolatedVoice 
using System; 
using System.Collections; 
 
namespace MIKE.Interpolation { 
   public class InterpolatedVoice : IEnumerable { 
      protected ArrayList _spans; 
 
      public int Count { 
         get { return _spans.Count; } 
      } 
      public InterpolatedVoice() { 
         _spans = new ArrayList(); 
      } 
      public void Add(InterpolatedSpan span) { 
         _spans.Add(span); 
      } 
      public InterpolatedSpan this[int index] { 
         get { return _spans[index] as InterpolatedSpan; } 
      } 
      public IEnumerator GetEnumerator() { 
         return _spans.GetEnumerator(); 
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      } 
      public InterpolatedSpan GetSpanAt(int scoreTime) { 
         return GetSpanAt(scoreTime, 0, Count-1); 
      } 
      private InterpolatedSpan GetSpanAt(int scoreTime, int left, int right) { 
         if(right < left){ 
            return null; 
         } 
         int iMid = (left+right)/2; 
         InterpolatedSpan mid = _spans[iMid] as InterpolatedSpan; 
         if(mid.EvaluateXAt(0) <= scoreTime && scoreTime <= mid.EvaluateXAt(1)){ 
            return mid; 
         } 
         if(mid.EvaluateXAt(0) > scoreTime){ 
            return GetSpanAt(scoreTime, left, iMid-1); 
         }else{ 
            return GetSpanAt(scoreTime, iMid+1, right); 
         } 
      } 
      public ArrayList GetDerivativesAt(int scoreTime) { 
         ArrayList l = new ArrayList(); 
         InterpolatedSpan iSpan = GetSpanAt(scoreTime); 
         if(iSpan != null) { 
            l = iSpan.GetDerivativesAt(scoreTime); 
         } 
         return l; 
      } 
   } 
} 

5.5 InterpolatedSpan 
using System; 
using System.Collections; 
using MIKE.Quantization; 
 
namespace MIKE.Interpolation { 
 
   public class InterpolatedSpan : IEnumerable { 
 
      protected Polynomial _x; 
      protected ArrayList _polys; 
      protected int _scoreOnset; 
      protected int _scoreDuration; 
 
      public int ScoreOnset { 
         get { return _scoreOnset; } 
      } 
      public int ScoreDuration { 
         get { return _scoreDuration; } 
      } 
      public int Count { 
         get { return _polys.Count; } 
      } 
 
      public InterpolatedSpan(Polynomial x, int scoreOnset, int scoreDuration) { 
         _x = x; 
         _polys = new ArrayList(); 
         _scoreOnset = scoreOnset; 
         _scoreDuration = scoreDuration; 
      } 
      public void Add(Polynomial poly) { 
         _polys.Add(poly); 
      } 
      public Polynomial this[int index] { 
         get { return _polys[index] as Polynomial; } 
      } 
      public IEnumerator GetEnumerator() { 
         return _polys.GetEnumerator(); 
      } 
      public ArrayList GetDerivativesAt(int scoreTime) { 
         double u = ((double)(scoreTime-ScoreOnset))/ScoreDuration; 
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         ArrayList l = new ArrayList(); 
 
         foreach(Polynomial p in _polys) { 
            l.Add(p.Evaluate(u) as object); 
         } 
         return l; 
      } 
      public double EvaluateXAt(double u) { 
         return _x.Evaluate(u)*ScoreDuration+ScoreOnset; 
      } 
   } 
} 

5.6 Polynomial 
using System; 
using System.Collections; 
using System.Text; 
 
namespace MIKE.Interpolation { 
   public class Polynomial { 
 
      public static readonly Polynomial ZERO = new Polynomial(new double[] {0}); 
      public static readonly Polynomial ONE = new Polynomial(new double[] {1}); 
 
      protected double[] _coefs; 
      public int Degree { 
         get{ return _coefs.Length-1; } 
      } 
 
      public PolynomialShapes Shape { 
         get { 
            Polynomial ddd = Derivative().Derivative(); 
            if(ddd.Evaluate(0)<0) 
               return PolynomialShapes.Convex; 
            else if(ddd.Evaluate(0)==0) 
               return PolynomialShapes.Flat; 
            else 
               return PolynomialShapes.Concave; 
         } 
      }   
      protected Polynomial(int degree) { 
         this._coefs = new double[degree+1]; 
      } 
      public Polynomial(double[] coefs) { 
         _coefs = new double[coefs.Length]; 
         for(int i = 0; i < coefs.Length; i++){ 
            _coefs[i] = coefs[i]; 
         } 
         Narrow(); 
      } 
 
      public Polynomial Add(Polynomial p) { 
         Polynomial r = new Polynomial(Math.Max(Degree, p.Degree)); 
         for(int i = 0; i <= Degree; i++){ 
            r._coefs[i] = _coefs[i]; 
         } 
         for(int i = 0; i<= p.Degree; i++){ 
            r._coefs[i] += p._coefs[i]; 
         } 
         r.Narrow(); 
         return r; 
      } 
      public Polynomial Subtract(Polynomial p) { 
         Polynomial r = new Polynomial(Math.Max(Degree, p.Degree)); 
         for(int i = 0; i <= Degree; i++) { 
            r._coefs[i] = _coefs[i]; 
         } 
         for(int i = 0; i <= p.Degree; i++){ 
            r._coefs[i] -= p._coefs[i]; 
         } 
         r.Narrow(); 
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         return r; 
      } 
      public Polynomial Multiply(Polynomial p) { 
         Polynomial r = new Polynomial(Degree+p.Degree); 
         for(int i = Degree; i >= 0; i--){ 
            for(int j = p.Degree; j >= 0; j--){ 
               r._coefs[i+j] += _coefs[i]*p._coefs[j]; 
            } 
         } 
         r.Narrow(); 
         return r; 
      } 
      public Polynomial Multiply(double d) { 
         Polynomial r = new Polynomial(_coefs); 
         for(int i = this.Degree; i >= 0; i--) { 
            r._coefs[i] *= d; 
         } 
         return r; 
      } 
      public Polynomial Divide(double d) { 
         Polynomial r = new Polynomial(_coefs); 
         for(int i = this.Degree; i >= 0; i--) { 
            r._coefs[i] /= d; 
         } 
         return r; 
      } 
      public Polynomial Derivative() { 
         if(Degree == 0){ 
            return Polynomial.ZERO; 
         } 
         Polynomial r = new Polynomial(Degree-1); 
         for(int i = Degree; i > 0; i--){ 
            r._coefs[i-1] = _coefs[i]*i; 
         } 
         return r; 
      } 
      public double Evaluate(double x) { 
         double r = _coefs[0]; 
         for(int i = 1; i <= Degree; i++){ 
            r += _coefs[i]*Math.Pow(x, i); 
         } 
         return r; 
      } 
      protected void Narrow() { 
         int i = Degree; 
         while(i > 0 && _coefs[i] == 0){ 
            i--; 
         } 
         if(i >= 0 && i != Degree){ 
            double[] aux = new double[i+1]; 
            for(i = i ; i >= 0; i--) { 
               aux[i] = _coefs[i]; 
            } 
            _coefs = aux; 
         } 
      } 
      public ArrayList Solve(double val) { 
         if(Degree == 3) { 
            return SolveDegree3(val); 
         }else if(Degree == 2) { 
            return SolveDegree2(val); 
         }else { 
            return SolveDegree1(val); 
         } 
      } 
      private ArrayList SolveDegree3(double val) { 
         ArrayList res = new ArrayList(); 
         double d = _coefs[0] - val; 
         double c = _coefs[1]; 
         double b = _coefs[2]; 
         double a = _coefs[3]; 
 
         double s1 = 2*Math.Sqrt(b*b-3*a*c); 
         double s2 = ((27*a*a*d-9*a*b*c+2*b*b*b)*Math.Sign(a))/ 
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            (2*(b*b-3*a*c)*Math.Sqrt(b*b-3*a*c)); 
         double s3 = 3*Math.Abs(a); 
         double s4 = b/(3*a); 
    
         double s5 = -b*b+3*a*c; 
         double s6 = -2*b*b*b+9*a*b*c-27*a*a*d; 
         double s7 = Math.Pow(s6+Math.Sqrt(4*Math.Pow( 
            s5, 3)+Math.Pow(s6, 2)),1d/3); 
 
         double r0 = -b/(3*a)-(Math.Pow(2, 1d/3)*s5)/(3*a*s7)+s7/ 
            (3*a*Math.Pow(2, 1d/3)); 
         double r1 = (s1*Math.Cos(Math.Acos(-s2)/3))/s3-s4; 
         double r2 = (-s1*Math.Sin( Math.Asin(s2)/3 + Math.PI/3))/s3-s4; 
         double r3 = (s1*Math.Sin(Math.Asin(s2)/3))/s3-s4; 
 
         res.Add(r0 as object); 
         res.Add(r1 as object); 
         res.Add(r2 as object); 
         res.Add(r3 as object); 
         return res; 
      } 
      private ArrayList SolveDegree2(double val) { 
         ArrayList res = new ArrayList(); 
         double d = _coefs[0] - val; 
         double c = _coefs[1]; 
         double b = _coefs[2]; 
 
         double r1 = -c+Math.Sqrt(c*c-4*b*d)/(2*b); 
         double r2 = -c-Math.Sqrt(c*c-4*b*d)/(2*b); 
 
         res.Add(r1 as object); 
         res.Add(r2 as object); 
         return res; 
      } 
      private ArrayList SolveDegree1(double val) { 
         ArrayList res = new ArrayList(); 
         double d = _coefs[0] - val; 
         double c = _coefs[1]; 
 
         double r1 = -d/c; 
 
         res.Add(r1 as object); 
         return res; 
      } 
      public override string ToString() { 
         StringBuilder r = new StringBuilder(); 
         for(int i = Degree; i > 0; i--){ 
            if(_coefs[i] != 0){ 
               r.Append(Math.Round(_coefs[i], 4)+"x^"+i+" "); 
            } 
         } 
         if(this.Degree == 0 || _coefs[0] != 0){ 
            r.Append(Math.Round(_coefs[0], 4)); 
         } 
         return r.ToString(); 
      } 
   } 
} 

5.7 BSplineInterpolator 
using System; 
using System.Drawing; 
using System.Collections; 
using MIKE.Quantization; 
 
namespace MIKE.Interpolation { 
   public class BSplineInterpolator : IInterpolator { 
      protected UniformBSpline _bSpline; 
 
      public int Degree { 
         get{ return _bSpline.Degree; } 
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      } 
 
      public BSplineInterpolator(int degree) { 
         _bSpline = new UniformBSpline(degree); 
      } 
 
      protected ArrayList ExpandChords(QuantizedVoice qVoice) { 
         ArrayList points = new ArrayList(); 
         for(int i = 0; i < qVoice.Count; i++){ 
            QuantizedNote n = qVoice[i]; 
            if(n.IsChord){ 
               QuantizedChord c = n as QuantizedChord; 
               // Duplicate previous unfinished polynomials n_j 
               for(int j = 1; j < Degree+1 && (i-j) >= 0; j++) { 
                  ArrayList l_n_j = points[i-j] as ArrayList; 
                  // Create c.Count-1 copies of l_n_j 
                  ArrayList copies = new ArrayList(); 
                  for(int k = 1; k < c.Count; k++) { 
                     foreach(ArrayList l_n_j_k in l_n_j){ 
                        ArrayList copy = new ArrayList(); 
                        foreach(Point n_j in l_n_j_k){ 
                           copy.Add(n_j); 
                        } 
                        copy.Add(new Point(c[k].Onset, c[k].Pitch)); 
                        copies.Add(copy); 
                     } 
                  } 
                  // Append c[0] to previous polynomials 
                  foreach(ArrayList l_n_j_k in l_n_j){ 
                     l_n_j_k.Add(new Point(c[0].Onset, c[0].Pitch)); 
                     copies.Add(l_n_j_k); 
                  } 
                  // Swap previous l_n_j for copies 
                  points[i-j] = copies;       
               } 
               // Create a new ArrayList for polynomials starting at n_i 
               ArrayList l_n_i = new ArrayList(); 
               foreach(QuantizedSingleNote n_i in c) { 
                  ArrayList l_n_i_0 = new ArrayList(); 
                  l_n_i_0.Add(new Point(n_i.Onset, n_i.Pitch)); 
                  l_n_i.Add(l_n_i_0); 
               } 
               points.Add(l_n_i); 
            }else { 
               QuantizedSingleNote n_i = n as QuantizedSingleNote; 
               // Append n_i to previous unfinished polynomials n_j 
               for(int j = 1; j < Degree+1 && (i-j) >= 0; j++){ 
                  ArrayList l_n_j = points[i-j] as ArrayList; 
                  foreach(ArrayList l_n_j_k in l_n_j){ 
                     l_n_j_k.Add(new Point(n_i.Onset, n_i.Pitch)); 
                  } 
               } 
               // Create a new ArrayList for polynomials starting at n_i 
               ArrayList l_n_i = new ArrayList(); 
               ArrayList l_n_i_0 = new ArrayList(); 
               l_n_i_0.Add(new Point(n_i.Onset, n_i.Pitch)); 
               l_n_i.Add(l_n_i_0); 
               points.Add(l_n_i); 
            } 
         } 
         // Remove Last #Degree polynomials 
         points.RemoveRange(points.Count-Degree, Degree); 
         return points; 
      } 
      public InterpolatedSequence Interpolate(QuantizedSequence qSeq) { 
         InterpolatedSequence iSeq = new InterpolatedSequence(); 
         InterpolatedStaff iStaff = new InterpolatedStaff(); 
         foreach(QuantizedStaff qStaff in qSeq){ 
            foreach(QuantizedVoice qVoice in qStaff) { 
               InterpolatedVoice iVoice = new InterpolatedVoice(); 
               ArrayList points = ExpandChords(qVoice); 
               // Create a new InterpolatedSpan foreach list l_i 
               foreach(ArrayList l_i in points){ 
                  ArrayList l_i_0 = l_i[0] as ArrayList; 
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                  Point l_i_0_0 = (Point)l_i_0[l_i_0.Count/2-1]; 
                  Point l_i_0_1 = (Point)l_i_0[l_i_0.Count/2]; 
                  InterpolatedSpan iSpan = new InterpolatedSpan( 
                     _bSpline.ComputeX(l_i[0] as ArrayList), 
                     l_i_0_0.X, l_i_0_1.X-l_i_0_0.X); 
                  // Add a polynomial foreach combination l_i_j 
                  foreach(ArrayList l_i_j in l_i) { 
                     // Interpolate points and get the blending polynomial 
                     Polynomial p_i_j = _bSpline.ComputeY(l_i_j).Derivative(); 
                     iSpan.Add(p_i_j); 
                  } 
                  iVoice.Add(iSpan); 
               } 
               iStaff.Add(iVoice); 
            } 
            iSeq.Add(iStaff); 
         } 
         return iSeq; 
      } 
   } 
} 

5.8 UniformBSpline 
using System; 
using System.Drawing; 
using System.Collections; 
 
namespace MIKE.Interpolation { 
   public class UniformBSpline { 
      protected int _degree; 
 
      public int Degree { 
         get { return _degree; } 
      } 
      protected static readonly Polynomial[][] Blendings = 
         new Polynomial[][]{ 
            new Polynomial[] { 
               new Polynomial(new double[] {0, 0, 0, 1}).Divide(6), 
               new Polynomial(new double[] {1, 3, 3, -3}).Divide(6), 
               new Polynomial(new double[] {4, 0, -6, 3}).Divide(6), 
               new Polynomial(new double[] {1, -3, 3, -1}).Divide(6)}, 
 
         new Polynomial[] { 
               new Polynomial(new double[]{0, 0, 0, 0, 1}).Divide(24), 
               new Polynomial(new double[]{1, 4, 6, 4, -4}).Divide(24), 
               new Polynomial(new double[]{11, 12, -6, -12, 6}).Divide(24), 
               new Polynomial(new double[]{11, -12, -6, 12, -4}).Divide(24), 
               new Polynomial(new double[]{1, -4, 6, -4, 1}).Divide(24)} 
         }; 
      protected Polynomial[] Blending { 
         get { return Blendings[Degree-3]; } 
      } 
 
      public UniformBSpline(int degree) { 
         _degree = degree; 
      } 
      public Polynomial ComputeY(ArrayList points) { 
         Polynomial y = Polynomial.ZERO; 
         Polynomial[] b = Blendings[Degree-3]; 
         for(int i = 0; i <= Degree; i++){ 
            Point p_i = (Point)points[Degree-i]; 
            y = y.Add(b[i].Multiply(p_i.Y)); 
         } 
         return y; 
      } 
      public Polynomial ComputeX(ArrayList points) { 
         return new Polynomial(new double[]{0, 1});; 
      } 
   } 
} 
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6 MIKE.RSHPzation 

6.1 IRSHPzator 
using System; 
using System.Collections; 
using MIKE.Interpolation; 
using CAKE; 
 
namespace MIKE.RSHPzation { 
   public interface IRSHPzator { 
      Artifact RSHPtize(InterpolatedSequence iSeq, 
         CAKEEngine Engine, string fullName, bool isQuery); 
   } 
} 

6.2 RSHPzator 
using System; 
using MIKE.Interpolation; 
using System.Collections; 
 
using CAKE; 
 
namespace MIKE.RSHPzation { 
   public class RSHPzator : IRSHPzator { 
      protected bool _domainLoaded; 
 
      protected Language _language; 
 
      protected ArtifactType _atSequence; 
      protected ArtifactType _atStaff; 
      protected ArtifactType _atVoice; 
      protected ArtifactType _atSpan; 
      protected ArtifactType _atDerivatives; 
 
      protected TermSemanticItem _tsiDerivatives; 
      protected TermSemanticItem _tsiScoreDurations; 
 
      protected SemanticItem _siConcave; 
      protected SemanticItem _siConvex; 
      protected SemanticItem _siFlat; 
 
      protected ArrayList _tNegativeDerivatives; 
      protected ArrayList _tPositiveDerivatives; 
      protected ArrayList _tScoreDurations; 
 
      public RSHPzator() { 
         _domainLoaded = false; 
      } 
 
      protected void LoadDomain(CAKEEngine Engine) { 
         _language = Engine.LanguageFromJC(30000); 
 
         _atSequence = Engine.ArtifactTypeFromJC(30000); 
         _atStaff = Engine.ArtifactTypeFromJC(30001); 
         _atVoice = Engine.ArtifactTypeFromJC(30002); 
         _atSpan = Engine.ArtifactTypeFromJC(30003); 
         _atDerivatives = Engine.ArtifactTypeFromJC(30004); 
 
         _tsiDerivatives = Engine.TermSemanticItemFromJC(30000); 
         _tsiScoreDurations = Engine.TermSemanticItemFromJC(30001); 
 
         _siConcave = Engine.SemanticItemFromJC(30000); 
         _siConvex = Engine.SemanticItemFromJC(30001); 
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         _siFlat = Engine.SemanticItemFromJC(30002); 
 
         _tNegativeDerivatives = new ArrayList(); 
         _tNegativeDerivatives.Add(Engine.Term("[-0.5, 0.5)", _tsiDerivatives, 
            false)); 
         for(int i = 1; i <= 14; i++) { 
            _tNegativeDerivatives.Add(Engine.Term("[-"+i+".5, -"+(i-1)+".5)", 
               _tsiDerivatives, false)); 
         } 
         _tNegativeDerivatives.Add(Engine.Term("(-inf, -14.5)", _tsiDerivatives, 
            false)); 
 
         _tPositiveDerivatives = new ArrayList(); 
         _tPositiveDerivatives.Add(Engine.Term("[-0.5, 0.5)", _tsiDerivatives, 
            false)); 
         for(int i = 0; i <= 13; i++) { 
            _tPositiveDerivatives.Add(Engine.Term("["+i+".5, "+(i+1)+".5)", 
               _tsiDerivatives, false)); 
         } 
         _tPositiveDerivatives.Add(Engine.Term("[14.5, +inf)", _tsiDerivatives, 
            false)); 
 
         _tScoreDurations = new ArrayList(); 
         Term t = Engine.Term("[2, 3)", _tsiScoreDurations, false); 
         for(int i = 0; i < 3; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[3, 4)", _tsiScoreDurations, false); 
         for(int i = 3; i < 4; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[4, 5)", _tsiScoreDurations, false); 
         for(int i = 4; i < 5; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[5, 7)", _tsiScoreDurations, false); 
         for(int i = 5; i < 7; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[7, 10)", _tsiScoreDurations, false); 
         for(int i = 7; i < 10; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[10, 14)", _tsiScoreDurations, false); 
         for(int i = 10; i < 14; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[14, 20)", _tsiScoreDurations, false); 
         for(int i = 14; i < 20; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[20, 28)", _tsiScoreDurations, false); 
         for(int i = 20; i < 28; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[28, 40)", _tsiScoreDurations, false); 
         for(int i = 28; i < 40; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[40, 56)", _tsiScoreDurations, false); 
         for(int i = 40; i < 56; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[56, 80)", _tsiScoreDurations, false); 
         for(int i = 56; i < 80; i++) 
            _tScoreDurations.Add(t); 
         t = Engine.Term("[80, +inf)", _tsiScoreDurations, false); 
         _tScoreDurations.Add(t);    
      } 
 
      public Artifact RSHPtize(InterpolatedSequence iSeq, CAKEEngine Engine, 
         string fullName, bool isQuery){ 
         if(!_domainLoaded) { 
            LoadDomain(Engine); 
         } 
         Artifact rSeq = new Artifact(Engine, fullName, _atSequence, fullName, 
            null, _language, false, "Sequence", isQuery, 0); 
 
         for(int staff = 0; staff < iSeq.Count; staff++){ 
            InterpolatedStaff iStaff = iSeq[staff]; 
            Artifact rStaff = new Artifact(Engine, rSeq, fullName+":"+staff, 
               _atStaff, null, null, _language, 0, staff, 0, 0, null, false, 
               "Staff "+staff, isQuery, 0); 
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            for(int voice = 0; voice < iStaff.Count; voice++){ 
               InterpolatedVoice iVoice = iStaff[voice]; 
               Artifact rVoice = new Artifact(Engine, rStaff, fullName+":"+ 
                  staff+":"+voice, _atVoice, null, null, _language, 0, voice, 0, 
                  0, null, false, "Voice "+voice, isQuery, 0); 
 
               for(int span = 0; span < iVoice.Count; span++){ 
                  InterpolatedSpan iSpan = iVoice[span]; 
                  Artifact rSpan = new Artifact(Engine, rVoice, 
                     fullName+":"+staff+":"+voice+":"+span, 
                     _atSpan, null, null, _language, 0, span, 0, 0, null, false, 
                     "Span "+span, isQuery, 0); 
 
                  for(int poly = 0; poly < iSpan.Count; poly++){ 
                     Polynomial iPoly = iSpan[poly]; 
                     RSHP rshp = new RSHP(rSpan, GetSemanticItem(iPoly), false, 
                        false, 0, false, false, false, false, false, 0, 0); 
                     KE action = new KE(rshp, GetScoreDuration( 
                        iSpan.ScoreDuration), 0, 0, 0, 0, 0); 
                     Artifact dy0 = new Artifact(Engine, rshp, fullName+":"+ 
                        staff+":"+voice+":"+span+"dy0", _atDerivatives, null, 
                        null, _language, 1, 0, 0, 0, GetDerivative( 
                        iPoly.Evaluate(0)), false, "dy0", isQuery, 0); 
                     Artifact dy1 = new Artifact(Engine, rshp, fullName+":"+ 
                        staff+":"+voice+":"+span+"dy1", _atDerivatives, null, 
                        null, _language, 2, 0, 0, 0, GetDerivative( 
                        iPoly.Evaluate(1)), false, "dy0", isQuery, 0); 
                     // Add Concept Orders 3 
                     ArrayList co3 = iStaff.GetDerivativesAt(iSpan.ScoreOnset); 
                     for(int i = 0; i < co3.Count; i++){ 
                        ArrayList co3_ = co3[i] as ArrayList; 
                        if(i != voice && co3_.Count != 0) { 
                           Artifact dy0_ = new Artifact(Engine, rshp, fullName+ 
                              ":"+staff+":"+voice+":"+span+"dy0_",_atDerivatives, 
                              null, null, _language, 3, 0, 0, 0, null, false, 
                              "dy0_", isQuery, 0); 
                           foreach(double dy0_d in co3_) { 
                              KE dy0_k = new KE(dy0_, GetDerivative(dy0_d), 0, 
                                 0, 0, dy0_d, 0); 
                           } 
                        } 
                     } 
                     // Add Concept Orders 4 
                     ArrayList co4 = iStaff.GetDerivativesAt(iSpan.ScoreOnset+ 
                        iSpan.ScoreDuration); 
                     for(int i = 0; i < co4.Count; i++){ 
                        ArrayList co4_ = co4[i] as ArrayList; 
                        if(i != voice && co4_.Count != 0) { 
                           Artifact dy1_ = new Artifact(Engine, rshp, fullName+ 
                              ":"+staff+":"+voice+":"+span+"dy1_",_atDerivatives, 
                              null, null, _language, 4, 0, 0, 0, null, false, 
                              "dy1_", isQuery, 0); 
                           foreach(double dy1_d in co4_) { 
                              KE dy1_k = new KE(dy1_, GetDerivative(dy1_d), 0, 
                                 0, 0, dy1_d, 0); 
                           } 
                        } 
                     } 
                  } 
               } 
            } 
         } 
         return rSeq; 
      } 
      protected Term GetDerivative(double dy) { 
         if(dy > 0){ 
            double dy2 = Math.Round(Math.Round(dy, 3)); 
            return _tPositiveDerivatives[(int)Math.Min(dy2, 
               _tPositiveDerivatives.Count-1)] as Term; 
         }else{ 
            double dy2 = Math.Round(Math.Round(dy, 3)); 
            dy2 = Math.Sign(dy2)*dy2; 
            return _tNegativeDerivatives[(int)Math.Min(dy2, 
               _tNegativeDerivatives.Count-1)] as Term; 
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         } 
      } 
      protected Term GetScoreDuration(int duration) { 
         if(duration >= 80) { 
            return _tScoreDurations[_tScoreDurations.Count-1] as Term; 
         }else{ 
            return _tScoreDurations[duration] as Term; 
         } 
      } 
      protected SemanticItem GetSemanticItem(Polynomial poly){ 
         switch(poly.Shape){ 
            case PolynomialShapes.Concave: return _siConcave; 
            case PolynomialShapes.Convex: return _siConvex;  
            default: return _siFlat; 
         } 
      } 
   } 

} 
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1 Notación Musical, MIDI y SMF 

El presente proyecto fin de carrera se basa en el estándar MIDI y en 
SMF para representación de archivos musicales. En esta Sección se presenta una 
muy breve introducción a los conceptos básicos de la notación musical así como 
de MIDI y SMF 1.0. 

1.1 Notación Musical 

En el sistema actual de representación de música se usan pentagramas 
como los de la Figura 1.1, en el que aparece el llamado gran pentagrama, con 
claves de Sol y de Fa. 

 
Figure 1.1 El gran pentagrama 

Las notas se representan con símbolos como los de la figura, de tal 
forma que cada uno de ellos representa una duración distinta de la nota y la 
altura en la que esté representará el tono (cuanto más algo más agudo). 

Nombre Figura Duración 

Redonda  Taken as unit 

Blanca 
 

La mitad de una redonda 

Negra  La mitad de una blanca 

Corchea  La mitad de una negra 

Semicorchea  La mitad de una corchea 

Fusa 
 

La mitad de una semicorchea 

Table 1.1 Notas musicales 

Estas notas, según la tonalidad elegida para una determinada canción, 
tienen de forma natural unos intervalos entre notas sucesivas. Estos intervalos 
definen la escala del tono y el modo del mismo. Por ejemplo, la Figura 1.2 
muestra una escala mayor en la tonalidad de do. 
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Figure 1.2 Escala mayor de Do 

1.2 El Estándar MIDI 

MIDI es un estándar de representación de información musical dirigida 
por eventos. Básicamente, un flujo de datos MIDI consiste en una secuencia 
ordenada en el tiempo de eventos. 

Estos eventos pueden ser de muy variados tipos, pero principalmente 
interesan los eventos NoteOn y NoteOff, que son los que indican cuando una 
nota debe sonar o detenerse. 

Hay otros tipos de información en un flujo MIDI, pero carecen de 
interés para el objetivo de este proyecto. 

1.3 Standard MIDI Files 

SMF es una especificación acerca de cómo almacenar contenido 
musical en archivos. Básicamente contiene también eventos al igual que un 
flujo MIDI. Sin embargo, un archivo SMF puede contener mucha más 
información adicional como la tonalidad, tiempo, letra, copyright, etc. 
Además, en un archivo SMF los eventos se separan por tracks, que 
esencialmente se pueden corresponder con distintos instrumentos que aparecen 
en la composición.  

Para la realización de este proyecto fin de carrera se ha elegido MIDI 
como medio de representación musical porque está muy extendido actualmente 
(es un estándar de hace dos décadas), es sencillo, ampliable y contiene toda la 
información necesaria. 
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2 El Modelo RSHP y el CAKE Engine 

RSHP es un metamodelo de representación de información que permite 
modelar cualquier dominio de información de una única forma. Está basado en 
relaciones entre elementos de información, que a su vez se pueden agrupar en 
artefactos. La Figura 2.1 muestra un diagrama UML del modelo. 
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Figure 2.1 El metamodelo RSHP 

Aunque RSHP se originó para recuperación de información textual, lo 
cierto es que su diseño permite el modelado de cualquier dominio de 
información (salvo algunos pequeños aspectos), y en este caso se va a aplicar a 
la representación de información musical. 

La unidad de comparación son los artefactos, que pueden ser 
comparados entre sí de acuerdo a su tipo. Un artefacto a su vez puede tener 
más subartefactos y relaciones RSHP entre, de nuevo, artefactos o términos. 

Cada RSHP tiene también un tipo y se le asocia un elemento de 
información llamado acción y que recoge la semántica dinámica de la relación, 
mientras que el tipo recoge la semántica estática. A su vez, cada RSHP conecta 
elementos de información entre sí. Así, por ejemplo, para decir que un 
ordenador es un tipo que hereda desde el tipo máquina, podemos establecer 
una relación jerarquía de la siguiente forma: 
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 { }Jerarquía
1RSHP ser,ordenador,máquina=  [2.1] 

2.2 El CAKE Engine 

Por otro lado, el metamodelo RSHP sólo sirve para representar 
información. Cuando se quieran comparar artefactos para realizar búsquedas, 
debe incluirse un framework que realice tal tarea. Aquí es donde entra el CAKE 
Engine, encargado de ofrecer procesos de indexación y recuperación sobre 
artefactos modelados con RSHP. 

El CAKE Engine ofrece consultas por similitud o por inclusión. Realiza 
dos tipos de comparación en cualquier caso: 

• Toma en cuenta la topología de los artefactos, de forma que 
considera aspectos como número de subartefactos, su estructura, 
tipo, etc. 

• Distancias semánticas entre elementos de información, de forma que 
permite establecer relaciones y distancias entre términos de una red 
semántica. 

Los datos obtenidos se ponen en forma vectorial sobre un espacio n-
dimensional en el que cada artefacto base está representado por un vector. 
Después, una distancia euclídea sirve para determinar la distancia semántica 
entre una query y un artefacto en el repositorio. 

El CAKE Engine se encuentra integrado en una herramienta llamada 
Software Reuse o CAKE Studio. Así, el proyecto deberá estar integrado a su vez 
con esta herramienta, estableciendo así el entorno operativo del mismo. 
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3 Requisitos Generales 

En esta Sección se presentan una serie de requisitos generales con los 
que el sistema debe cumplir. Se dividen en requisitos verticales y horizontales, 
atendiendo a la dimensión musical que tratan. 

3.1 Restricciones Verticales 

Primeramente, el sistema no debe ser sensible a cambios de octava. Es 
decir, que las dos piezas en la Figura 3.1 deben ser consideradas como iguales 
al tratarse aisladamente.  

 
Figure 3.1 Equivalencia de octava 

Por otro lado, tampoco debe ser sensible a cambios de tonalidad. Esto 
significa que si se comparan dos piezas musicales iguales pero en distinta 
tonalidad, el sistema deberá retornar una distancia semántica cero. 

  

 
Figure 3.2 Igualdad de grados 

Sin embargo, también debe reconocer como iguales las secuencias en 
las que aparezcan las mismas notas, aunque se trate de grados distintos en 
distintas tonalidades. 

 
Figure 3.3 Igualdad de notas 

Otra característica deseable del sistema es la capacidad de reconocer 
acordes y armonía en general. Particularmente, debería ser posible la 
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comparación parcial de acordes, de forma que un acorde de 3 notas comparado 
con otro que tenga sólo 2 de ellas no debería dar una distancia semántica de 1, 
sino algo más cercano a 0. 

3.2 Restricciones Horizontales 

El sistema no debe ser sensible a diferencias en la clave de tiempo. 
Así, las siguientes dos piezas musicales deben ser consideradas como iguales: 

 

 
Figure 3.4 Equivalencia de clave de tiempo 

Tampoco se deben considerar estrictamente cambios en el tempo 
global, de forma que las dos piezas siguientes se pueden considerar iguales: 

 
Figure 3.5 Igualdad de tempo 

Por otra parte, tampoco deben ser estrictamente consideradas 
diferencias en tempo si la duración métrica de las notas que componen dos 
canciones son las mismas, como en la Figura 3.6. 

 
Figure 3.6 Igualdad de figuras 

Y, por último, tampoco deben ser restrictivas diferencias parciales 
entre dos piezas. Una consulta podría ser igual que otra canción en el 
repositorio pero con algunas partes tocadas más rápidamente que otras. Estas 
diferencias no deberían ser fatales. 

3.3 Separación de Voces 

Otra característica deseable del sistema sería la separación de voces, 
de forma que puedan ser comparadas por separado o en conjunto. Por ejemplo, 
un piano tocado con dos voces no podría ser igual a una flauta en la que sólo es 
posible representar una de las voces y, además, no es posible la armonía. 
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Así, piezas como la de la Figura 3.7 deberían separar las voces azul y 
verde: 

 
Figure 3.7 Separación de voces 
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4 El Modelo Matemático 

La solución propuesta para el proceso de recuperación de información 
musical pasa por el uso del análisis numérico para interpolar la secuencia de 
notas en un espacio multidimensional de forma que los elementos a comparar 
sean las derivadas de las curvas generadas. 

4.1 Normalización de Dominios 

Primeramente, debe realizarse un proceso de normalización de los 
dominios temporal y de tono. Aprovechando el intervalo de tonos posibles de 
MIDI [0,127], y estableciendo una unidad mínima de tiempo para las notas, una 
pieza como la de la Figura 4.1 

 
Figure 4.1 Normalización de dominios (parte I) 

se convertiría en una secuencia normalizada de puntos como la siguiente: 

 
Figure 4.2 Normalización de dominios (parte II) 

Una vez hecho esto, se podría empezar la interpolación de los puntos 
para generar las curvas. Entre los distintos tipos de interpolación existentes, se 
ha elegido interpolación por B-Splines paramétricos debido a una gran cantidad 
de propiedades que los hacen destacar sobre el resto de opciones: 

• No sufre el fenómeno de Runge, por lo que no habrá oscilaciones de 
la curva entre dos puntos. 

• La curva se define por partes, justamente para poder comparar el 
intervalo entre dos notas de forma más precisa. 
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• Cada parte de la curva es un polinomio de grado 3, por lo que es 
derivable y además tiene continuidad geométrica. 

• Los B-Spline aseguran que la curva se mantendrá en un dominio 
deseado de valores, por lo que el intervalo [0,127] de MIDI se 
mantendrá siempre. 

• El cambio de una de las notas sólo afecta a la curva en un intervalo 
determinista, por lo que los cambios locales no repercutirán 
globalmente y hacen además posible la comparación de acordes. 

• Son muy fáciles de calcular ya que solo necesitan cuatro 
multiplicaciones de un polinomio por una constante. 

Así, la pieza musical de la Figura 4.1 quedaría, lista para comparación, 
como sigue (con una voz simple por cada dimensión): 

 
Figure 4.3 Interpolación de canciones 
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